/* -*- mode: c; c-basic-offset: 8; -*- * vim: noexpandtab sw=8 ts=8 sts=0: * * alloc.c * * Extent allocs and frees * * Copyright (C) 2002, 2004 Oracle. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include #include #include #include #include #define MLOG_MASK_PREFIX ML_DISK_ALLOC #include #include "ocfs2.h" #include "alloc.h" #include "aops.h" #include "dlmglue.h" #include "extent_map.h" #include "inode.h" #include "journal.h" #include "localalloc.h" #include "suballoc.h" #include "sysfile.h" #include "file.h" #include "super.h" #include "uptodate.h" #include "buffer_head_io.h" static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc); /* * Structures which describe a path through a btree, and functions to * manipulate them. * * The idea here is to be as generic as possible with the tree * manipulation code. */ struct ocfs2_path_item { struct buffer_head *bh; struct ocfs2_extent_list *el; }; #define OCFS2_MAX_PATH_DEPTH 5 struct ocfs2_path { int p_tree_depth; struct ocfs2_path_item p_node[OCFS2_MAX_PATH_DEPTH]; }; #define path_root_bh(_path) ((_path)->p_node[0].bh) #define path_root_el(_path) ((_path)->p_node[0].el) #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh) #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el) #define path_num_items(_path) ((_path)->p_tree_depth + 1) /* * Reset the actual path elements so that we can re-use the structure * to build another path. Generally, this involves freeing the buffer * heads. */ static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root) { int i, start = 0, depth = 0; struct ocfs2_path_item *node; if (keep_root) start = 1; for(i = start; i < path_num_items(path); i++) { node = &path->p_node[i]; brelse(node->bh); node->bh = NULL; node->el = NULL; } /* * Tree depth may change during truncate, or insert. If we're * keeping the root extent list, then make sure that our path * structure reflects the proper depth. */ if (keep_root) depth = le16_to_cpu(path_root_el(path)->l_tree_depth); path->p_tree_depth = depth; } static void ocfs2_free_path(struct ocfs2_path *path) { if (path) { ocfs2_reinit_path(path, 0); kfree(path); } } /* * Make the *dest path the same as src and re-initialize src path to * have a root only. */ static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src) { int i; BUG_ON(path_root_bh(dest) != path_root_bh(src)); for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { brelse(dest->p_node[i].bh); dest->p_node[i].bh = src->p_node[i].bh; dest->p_node[i].el = src->p_node[i].el; src->p_node[i].bh = NULL; src->p_node[i].el = NULL; } } /* * Insert an extent block at given index. * * This will not take an additional reference on eb_bh. */ static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index, struct buffer_head *eb_bh) { struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data; /* * Right now, no root bh is an extent block, so this helps * catch code errors with dinode trees. The assertion can be * safely removed if we ever need to insert extent block * structures at the root. */ BUG_ON(index == 0); path->p_node[index].bh = eb_bh; path->p_node[index].el = &eb->h_list; } static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh, struct ocfs2_extent_list *root_el) { struct ocfs2_path *path; BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH); path = kzalloc(sizeof(*path), GFP_NOFS); if (path) { path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth); get_bh(root_bh); path_root_bh(path) = root_bh; path_root_el(path) = root_el; } return path; } /* * Allocate and initialize a new path based on a disk inode tree. */ static struct ocfs2_path *ocfs2_new_inode_path(struct buffer_head *di_bh) { struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; struct ocfs2_extent_list *el = &di->id2.i_list; return ocfs2_new_path(di_bh, el); } /* * Convenience function to journal all components in a path. */ static int ocfs2_journal_access_path(struct inode *inode, handle_t *handle, struct ocfs2_path *path) { int i, ret = 0; if (!path) goto out; for(i = 0; i < path_num_items(path); i++) { ret = ocfs2_journal_access(handle, inode, path->p_node[i].bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret < 0) { mlog_errno(ret); goto out; } } out: return ret; } enum ocfs2_contig_type { CONTIG_NONE = 0, CONTIG_LEFT, CONTIG_RIGHT }; static int ocfs2_block_extent_contig(struct super_block *sb, struct ocfs2_extent_rec *ext, u64 blkno) { return blkno == (le64_to_cpu(ext->e_blkno) + ocfs2_clusters_to_blocks(sb, le32_to_cpu(ext->e_clusters))); } static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left, struct ocfs2_extent_rec *right) { return (le32_to_cpu(left->e_cpos) + le32_to_cpu(left->e_clusters) == le32_to_cpu(right->e_cpos)); } static enum ocfs2_contig_type ocfs2_extent_contig(struct inode *inode, struct ocfs2_extent_rec *ext, struct ocfs2_extent_rec *insert_rec) { u64 blkno = le64_to_cpu(insert_rec->e_blkno); if (ocfs2_extents_adjacent(ext, insert_rec) && ocfs2_block_extent_contig(inode->i_sb, ext, blkno)) return CONTIG_RIGHT; blkno = le64_to_cpu(ext->e_blkno); if (ocfs2_extents_adjacent(insert_rec, ext) && ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno)) return CONTIG_LEFT; return CONTIG_NONE; } /* * NOTE: We can have pretty much any combination of contiguousness and * appending. * * The usefulness of APPEND_TAIL is more in that it lets us know that * we'll have to update the path to that leaf. */ enum ocfs2_append_type { APPEND_NONE = 0, APPEND_TAIL, }; struct ocfs2_insert_type { enum ocfs2_append_type ins_appending; enum ocfs2_contig_type ins_contig; int ins_contig_index; int ins_free_records; int ins_tree_depth; }; /* * How many free extents have we got before we need more meta data? */ int ocfs2_num_free_extents(struct ocfs2_super *osb, struct inode *inode, struct ocfs2_dinode *fe) { int retval; struct ocfs2_extent_list *el; struct ocfs2_extent_block *eb; struct buffer_head *eb_bh = NULL; mlog_entry_void(); if (!OCFS2_IS_VALID_DINODE(fe)) { OCFS2_RO_ON_INVALID_DINODE(inode->i_sb, fe); retval = -EIO; goto bail; } if (fe->i_last_eb_blk) { retval = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk), &eb_bh, OCFS2_BH_CACHED, inode); if (retval < 0) { mlog_errno(retval); goto bail; } eb = (struct ocfs2_extent_block *) eb_bh->b_data; el = &eb->h_list; } else el = &fe->id2.i_list; BUG_ON(el->l_tree_depth != 0); retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec); bail: if (eb_bh) brelse(eb_bh); mlog_exit(retval); return retval; } /* expects array to already be allocated * * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and * l_count for you */ static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb, handle_t *handle, struct inode *inode, int wanted, struct ocfs2_alloc_context *meta_ac, struct buffer_head *bhs[]) { int count, status, i; u16 suballoc_bit_start; u32 num_got; u64 first_blkno; struct ocfs2_extent_block *eb; mlog_entry_void(); count = 0; while (count < wanted) { status = ocfs2_claim_metadata(osb, handle, meta_ac, wanted - count, &suballoc_bit_start, &num_got, &first_blkno); if (status < 0) { mlog_errno(status); goto bail; } for(i = count; i < (num_got + count); i++) { bhs[i] = sb_getblk(osb->sb, first_blkno); if (bhs[i] == NULL) { status = -EIO; mlog_errno(status); goto bail; } ocfs2_set_new_buffer_uptodate(inode, bhs[i]); status = ocfs2_journal_access(handle, inode, bhs[i], OCFS2_JOURNAL_ACCESS_CREATE); if (status < 0) { mlog_errno(status); goto bail; } memset(bhs[i]->b_data, 0, osb->sb->s_blocksize); eb = (struct ocfs2_extent_block *) bhs[i]->b_data; /* Ok, setup the minimal stuff here. */ strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE); eb->h_blkno = cpu_to_le64(first_blkno); eb->h_fs_generation = cpu_to_le32(osb->fs_generation); #ifndef OCFS2_USE_ALL_METADATA_SUBALLOCATORS /* we always use slot zero's suballocator */ eb->h_suballoc_slot = 0; #else eb->h_suballoc_slot = cpu_to_le16(osb->slot_num); #endif eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start); eb->h_list.l_count = cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb)); suballoc_bit_start++; first_blkno++; /* We'll also be dirtied by the caller, so * this isn't absolutely necessary. */ status = ocfs2_journal_dirty(handle, bhs[i]); if (status < 0) { mlog_errno(status); goto bail; } } count += num_got; } status = 0; bail: if (status < 0) { for(i = 0; i < wanted; i++) { if (bhs[i]) brelse(bhs[i]); bhs[i] = NULL; } } mlog_exit(status); return status; } /* * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth(). * * Returns the sum of the rightmost extent rec logical offset and * cluster count. * * ocfs2_add_branch() uses this to determine what logical cluster * value should be populated into the leftmost new branch records. * * ocfs2_shift_tree_depth() uses this to determine the # clusters * value for the new topmost tree record. */ static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el) { int i; i = le16_to_cpu(el->l_next_free_rec) - 1; return le32_to_cpu(el->l_recs[i].e_cpos) + le32_to_cpu(el->l_recs[i].e_clusters); } /* * Add an entire tree branch to our inode. eb_bh is the extent block * to start at, if we don't want to start the branch at the dinode * structure. * * last_eb_bh is required as we have to update it's next_leaf pointer * for the new last extent block. * * the new branch will be 'empty' in the sense that every block will * contain a single record with e_clusters == 0. */ static int ocfs2_add_branch(struct ocfs2_super *osb, handle_t *handle, struct inode *inode, struct buffer_head *fe_bh, struct buffer_head *eb_bh, struct buffer_head *last_eb_bh, struct ocfs2_alloc_context *meta_ac) { int status, new_blocks, i; u64 next_blkno, new_last_eb_blk; struct buffer_head *bh; struct buffer_head **new_eb_bhs = NULL; struct ocfs2_dinode *fe; struct ocfs2_extent_block *eb; struct ocfs2_extent_list *eb_el; struct ocfs2_extent_list *el; u32 new_cpos; mlog_entry_void(); BUG_ON(!last_eb_bh); fe = (struct ocfs2_dinode *) fe_bh->b_data; if (eb_bh) { eb = (struct ocfs2_extent_block *) eb_bh->b_data; el = &eb->h_list; } else el = &fe->id2.i_list; /* we never add a branch to a leaf. */ BUG_ON(!el->l_tree_depth); new_blocks = le16_to_cpu(el->l_tree_depth); /* allocate the number of new eb blocks we need */ new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *), GFP_KERNEL); if (!new_eb_bhs) { status = -ENOMEM; mlog_errno(status); goto bail; } status = ocfs2_create_new_meta_bhs(osb, handle, inode, new_blocks, meta_ac, new_eb_bhs); if (status < 0) { mlog_errno(status); goto bail; } eb = (struct ocfs2_extent_block *)last_eb_bh->b_data; new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list); /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be * linked with the rest of the tree. * conversly, new_eb_bhs[0] is the new bottommost leaf. * * when we leave the loop, new_last_eb_blk will point to the * newest leaf, and next_blkno will point to the topmost extent * block. */ next_blkno = new_last_eb_blk = 0; for(i = 0; i < new_blocks; i++) { bh = new_eb_bhs[i]; eb = (struct ocfs2_extent_block *) bh->b_data; if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb); status = -EIO; goto bail; } eb_el = &eb->h_list; status = ocfs2_journal_access(handle, inode, bh, OCFS2_JOURNAL_ACCESS_CREATE); if (status < 0) { mlog_errno(status); goto bail; } eb->h_next_leaf_blk = 0; eb_el->l_tree_depth = cpu_to_le16(i); eb_el->l_next_free_rec = cpu_to_le16(1); /* * This actually counts as an empty extent as * c_clusters == 0 */ eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos); eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno); eb_el->l_recs[0].e_clusters = cpu_to_le32(0); if (!eb_el->l_tree_depth) new_last_eb_blk = le64_to_cpu(eb->h_blkno); status = ocfs2_journal_dirty(handle, bh); if (status < 0) { mlog_errno(status); goto bail; } next_blkno = le64_to_cpu(eb->h_blkno); } /* This is a bit hairy. We want to update up to three blocks * here without leaving any of them in an inconsistent state * in case of error. We don't have to worry about * journal_dirty erroring as it won't unless we've aborted the * handle (in which case we would never be here) so reserving * the write with journal_access is all we need to do. */ status = ocfs2_journal_access(handle, inode, last_eb_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); goto bail; } status = ocfs2_journal_access(handle, inode, fe_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); goto bail; } if (eb_bh) { status = ocfs2_journal_access(handle, inode, eb_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); goto bail; } } /* Link the new branch into the rest of the tree (el will * either be on the fe, or the extent block passed in. */ i = le16_to_cpu(el->l_next_free_rec); el->l_recs[i].e_blkno = cpu_to_le64(next_blkno); el->l_recs[i].e_cpos = cpu_to_le32(new_cpos); el->l_recs[i].e_clusters = 0; le16_add_cpu(&el->l_next_free_rec, 1); /* fe needs a new last extent block pointer, as does the * next_leaf on the previously last-extent-block. */ fe->i_last_eb_blk = cpu_to_le64(new_last_eb_blk); eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk); status = ocfs2_journal_dirty(handle, last_eb_bh); if (status < 0) mlog_errno(status); status = ocfs2_journal_dirty(handle, fe_bh); if (status < 0) mlog_errno(status); if (eb_bh) { status = ocfs2_journal_dirty(handle, eb_bh); if (status < 0) mlog_errno(status); } status = 0; bail: if (new_eb_bhs) { for (i = 0; i < new_blocks; i++) if (new_eb_bhs[i]) brelse(new_eb_bhs[i]); kfree(new_eb_bhs); } mlog_exit(status); return status; } /* * adds another level to the allocation tree. * returns back the new extent block so you can add a branch to it * after this call. */ static int ocfs2_shift_tree_depth(struct ocfs2_super *osb, handle_t *handle, struct inode *inode, struct buffer_head *fe_bh, struct ocfs2_alloc_context *meta_ac, struct buffer_head **ret_new_eb_bh) { int status, i; u32 new_clusters; struct buffer_head *new_eb_bh = NULL; struct ocfs2_dinode *fe; struct ocfs2_extent_block *eb; struct ocfs2_extent_list *fe_el; struct ocfs2_extent_list *eb_el; mlog_entry_void(); status = ocfs2_create_new_meta_bhs(osb, handle, inode, 1, meta_ac, &new_eb_bh); if (status < 0) { mlog_errno(status); goto bail; } eb = (struct ocfs2_extent_block *) new_eb_bh->b_data; if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb); status = -EIO; goto bail; } eb_el = &eb->h_list; fe = (struct ocfs2_dinode *) fe_bh->b_data; fe_el = &fe->id2.i_list; status = ocfs2_journal_access(handle, inode, new_eb_bh, OCFS2_JOURNAL_ACCESS_CREATE); if (status < 0) { mlog_errno(status); goto bail; } /* copy the fe data into the new extent block */ eb_el->l_tree_depth = fe_el->l_tree_depth; eb_el->l_next_free_rec = fe_el->l_next_free_rec; for(i = 0; i < le16_to_cpu(fe_el->l_next_free_rec); i++) { eb_el->l_recs[i].e_cpos = fe_el->l_recs[i].e_cpos; eb_el->l_recs[i].e_clusters = fe_el->l_recs[i].e_clusters; eb_el->l_recs[i].e_blkno = fe_el->l_recs[i].e_blkno; } status = ocfs2_journal_dirty(handle, new_eb_bh); if (status < 0) { mlog_errno(status); goto bail; } status = ocfs2_journal_access(handle, inode, fe_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); goto bail; } new_clusters = ocfs2_sum_rightmost_rec(eb_el); /* update fe now */ le16_add_cpu(&fe_el->l_tree_depth, 1); fe_el->l_recs[0].e_cpos = 0; fe_el->l_recs[0].e_blkno = eb->h_blkno; fe_el->l_recs[0].e_clusters = cpu_to_le32(new_clusters); for(i = 1; i < le16_to_cpu(fe_el->l_next_free_rec); i++) { fe_el->l_recs[i].e_cpos = 0; fe_el->l_recs[i].e_clusters = 0; fe_el->l_recs[i].e_blkno = 0; } fe_el->l_next_free_rec = cpu_to_le16(1); /* If this is our 1st tree depth shift, then last_eb_blk * becomes the allocated extent block */ if (fe_el->l_tree_depth == cpu_to_le16(1)) fe->i_last_eb_blk = eb->h_blkno; status = ocfs2_journal_dirty(handle, fe_bh); if (status < 0) { mlog_errno(status); goto bail; } *ret_new_eb_bh = new_eb_bh; new_eb_bh = NULL; status = 0; bail: if (new_eb_bh) brelse(new_eb_bh); mlog_exit(status); return status; } /* * Should only be called when there is no space left in any of the * leaf nodes. What we want to do is find the lowest tree depth * non-leaf extent block with room for new records. There are three * valid results of this search: * * 1) a lowest extent block is found, then we pass it back in * *lowest_eb_bh and return '0' * * 2) the search fails to find anything, but the dinode has room. We * pass NULL back in *lowest_eb_bh, but still return '0' * * 3) the search fails to find anything AND the dinode is full, in * which case we return > 0 * * return status < 0 indicates an error. */ static int ocfs2_find_branch_target(struct ocfs2_super *osb, struct inode *inode, struct buffer_head *fe_bh, struct buffer_head **target_bh) { int status = 0, i; u64 blkno; struct ocfs2_dinode *fe; struct ocfs2_extent_block *eb; struct ocfs2_extent_list *el; struct buffer_head *bh = NULL; struct buffer_head *lowest_bh = NULL; mlog_entry_void(); *target_bh = NULL; fe = (struct ocfs2_dinode *) fe_bh->b_data; el = &fe->id2.i_list; while(le16_to_cpu(el->l_tree_depth) > 1) { if (le16_to_cpu(el->l_next_free_rec) == 0) { ocfs2_error(inode->i_sb, "Dinode %llu has empty " "extent list (next_free_rec == 0)", (unsigned long long)OCFS2_I(inode)->ip_blkno); status = -EIO; goto bail; } i = le16_to_cpu(el->l_next_free_rec) - 1; blkno = le64_to_cpu(el->l_recs[i].e_blkno); if (!blkno) { ocfs2_error(inode->i_sb, "Dinode %llu has extent " "list where extent # %d has no physical " "block start", (unsigned long long)OCFS2_I(inode)->ip_blkno, i); status = -EIO; goto bail; } if (bh) { brelse(bh); bh = NULL; } status = ocfs2_read_block(osb, blkno, &bh, OCFS2_BH_CACHED, inode); if (status < 0) { mlog_errno(status); goto bail; } eb = (struct ocfs2_extent_block *) bh->b_data; if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb); status = -EIO; goto bail; } el = &eb->h_list; if (le16_to_cpu(el->l_next_free_rec) < le16_to_cpu(el->l_count)) { if (lowest_bh) brelse(lowest_bh); lowest_bh = bh; get_bh(lowest_bh); } } /* If we didn't find one and the fe doesn't have any room, * then return '1' */ if (!lowest_bh && (fe->id2.i_list.l_next_free_rec == fe->id2.i_list.l_count)) status = 1; *target_bh = lowest_bh; bail: if (bh) brelse(bh); mlog_exit(status); return status; } static inline int ocfs2_is_empty_extent(struct ocfs2_extent_rec *rec) { return !rec->e_clusters; } /* * This function will discard the rightmost extent record. */ static void ocfs2_shift_records_right(struct ocfs2_extent_list *el) { int next_free = le16_to_cpu(el->l_next_free_rec); int count = le16_to_cpu(el->l_count); unsigned int num_bytes; BUG_ON(!next_free); /* This will cause us to go off the end of our extent list. */ BUG_ON(next_free >= count); num_bytes = sizeof(struct ocfs2_extent_rec) * next_free; memmove(&el->l_recs[1], &el->l_recs[0], num_bytes); } static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el, struct ocfs2_extent_rec *insert_rec) { int i, insert_index, next_free, has_empty, num_bytes; u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos); struct ocfs2_extent_rec *rec; next_free = le16_to_cpu(el->l_next_free_rec); has_empty = ocfs2_is_empty_extent(&el->l_recs[0]); BUG_ON(!next_free); /* The tree code before us didn't allow enough room in the leaf. */ if (el->l_next_free_rec == el->l_count && !has_empty) BUG(); /* * The easiest way to approach this is to just remove the * empty extent and temporarily decrement next_free. */ if (has_empty) { /* * If next_free was 1 (only an empty extent), this * loop won't execute, which is fine. We still want * the decrement above to happen. */ for(i = 0; i < (next_free - 1); i++) el->l_recs[i] = el->l_recs[i+1]; next_free--; } /* * Figure out what the new record index should be. */ for(i = 0; i < next_free; i++) { rec = &el->l_recs[i]; if (insert_cpos < le32_to_cpu(rec->e_cpos)) break; } insert_index = i; mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n", insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count)); BUG_ON(insert_index < 0); BUG_ON(insert_index >= le16_to_cpu(el->l_count)); BUG_ON(insert_index > next_free); /* * No need to memmove if we're just adding to the tail. */ if (insert_index != next_free) { BUG_ON(next_free >= le16_to_cpu(el->l_count)); num_bytes = next_free - insert_index; num_bytes *= sizeof(struct ocfs2_extent_rec); memmove(&el->l_recs[insert_index + 1], &el->l_recs[insert_index], num_bytes); } /* * Either we had an empty extent, and need to re-increment or * there was no empty extent on a non full rightmost leaf node, * in which case we still need to increment. */ next_free++; el->l_next_free_rec = cpu_to_le16(next_free); /* * Make sure none of the math above just messed up our tree. */ BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count)); el->l_recs[insert_index] = *insert_rec; } /* * Create an empty extent record . * * l_next_free_rec may be updated. * * If an empty extent already exists do nothing. */ static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el) { int next_free = le16_to_cpu(el->l_next_free_rec); if (next_free == 0) goto set_and_inc; if (ocfs2_is_empty_extent(&el->l_recs[0])) return; mlog_bug_on_msg(el->l_count == el->l_next_free_rec, "Asked to create an empty extent in a full list:\n" "count = %u, tree depth = %u", le16_to_cpu(el->l_count), le16_to_cpu(el->l_tree_depth)); ocfs2_shift_records_right(el); set_and_inc: le16_add_cpu(&el->l_next_free_rec, 1); memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); } /* * For a rotation which involves two leaf nodes, the "root node" is * the lowest level tree node which contains a path to both leafs. This * resulting set of information can be used to form a complete "subtree" * * This function is passed two full paths from the dinode down to a * pair of adjacent leaves. It's task is to figure out which path * index contains the subtree root - this can be the root index itself * in a worst-case rotation. * * The array index of the subtree root is passed back. */ static int ocfs2_find_subtree_root(struct inode *inode, struct ocfs2_path *left, struct ocfs2_path *right) { int i = 0; /* * Check that the caller passed in two paths from the same tree. */ BUG_ON(path_root_bh(left) != path_root_bh(right)); do { i++; /* * The caller didn't pass two adjacent paths. */ mlog_bug_on_msg(i > left->p_tree_depth, "Inode %lu, left depth %u, right depth %u\n" "left leaf blk %llu, right leaf blk %llu\n", inode->i_ino, left->p_tree_depth, right->p_tree_depth, (unsigned long long)path_leaf_bh(left)->b_blocknr, (unsigned long long)path_leaf_bh(right)->b_blocknr); } while (left->p_node[i].bh->b_blocknr == right->p_node[i].bh->b_blocknr); return i - 1; } typedef void (path_insert_t)(void *, struct buffer_head *); /* * Traverse a btree path in search of cpos, starting at root_el. * * This code can be called with a cpos larger than the tree, in which * case it will return the rightmost path. */ static int __ocfs2_find_path(struct inode *inode, struct ocfs2_extent_list *root_el, u32 cpos, path_insert_t *func, void *data) { int i, ret = 0; u32 range; u64 blkno; struct buffer_head *bh = NULL; struct ocfs2_extent_block *eb; struct ocfs2_extent_list *el; struct ocfs2_extent_rec *rec; struct ocfs2_inode_info *oi = OCFS2_I(inode); el = root_el; while (el->l_tree_depth) { if (le16_to_cpu(el->l_next_free_rec) == 0) { ocfs2_error(inode->i_sb, "Inode %llu has empty extent list at " "depth %u\n", (unsigned long long)oi->ip_blkno, le16_to_cpu(el->l_tree_depth)); ret = -EROFS; goto out; } for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) { rec = &el->l_recs[i]; /* * In the case that cpos is off the allocation * tree, this should just wind up returning the * rightmost record. */ range = le32_to_cpu(rec->e_cpos) + le32_to_cpu(rec->e_clusters); if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) break; } blkno = le64_to_cpu(el->l_recs[i].e_blkno); if (blkno == 0) { ocfs2_error(inode->i_sb, "Inode %llu has bad blkno in extent list " "at depth %u (index %d)\n", (unsigned long long)oi->ip_blkno, le16_to_cpu(el->l_tree_depth), i); ret = -EROFS; goto out; } brelse(bh); bh = NULL; ret = ocfs2_read_block(OCFS2_SB(inode->i_sb), blkno, &bh, OCFS2_BH_CACHED, inode); if (ret) { mlog_errno(ret); goto out; } eb = (struct ocfs2_extent_block *) bh->b_data; el = &eb->h_list; if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb); ret = -EIO; goto out; } if (le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count)) { ocfs2_error(inode->i_sb, "Inode %llu has bad count in extent list " "at block %llu (next free=%u, count=%u)\n", (unsigned long long)oi->ip_blkno, (unsigned long long)bh->b_blocknr, le16_to_cpu(el->l_next_free_rec), le16_to_cpu(el->l_count)); ret = -EROFS; goto out; } if (func) func(data, bh); } out: /* * Catch any trailing bh that the loop didn't handle. */ brelse(bh); return ret; } /* * Given an initialized path (that is, it has a valid root extent * list), this function will traverse the btree in search of the path * which would contain cpos. * * The path traveled is recorded in the path structure. * * Note that this will not do any comparisons on leaf node extent * records, so it will work fine in the case that we just added a tree * branch. */ struct find_path_data { int index; struct ocfs2_path *path; }; static void find_path_ins(void *data, struct buffer_head *bh) { struct find_path_data *fp = data; get_bh(bh); ocfs2_path_insert_eb(fp->path, fp->index, bh); fp->index++; } static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path, u32 cpos) { struct find_path_data data; data.index = 1; data.path = path; return __ocfs2_find_path(inode, path_root_el(path), cpos, find_path_ins, &data); } static void find_leaf_ins(void *data, struct buffer_head *bh) { struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data; struct ocfs2_extent_list *el = &eb->h_list; struct buffer_head **ret = data; /* We want to retain only the leaf block. */ if (le16_to_cpu(el->l_tree_depth) == 0) { get_bh(bh); *ret = bh; } } /* * Find the leaf block in the tree which would contain cpos. No * checking of the actual leaf is done. * * Some paths want to call this instead of allocating a path structure * and calling ocfs2_find_path(). * * This function doesn't handle non btree extent lists. */ int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el, u32 cpos, struct buffer_head **leaf_bh) { int ret; struct buffer_head *bh = NULL; ret = __ocfs2_find_path(inode, root_el, cpos, find_leaf_ins, &bh); if (ret) { mlog_errno(ret); goto out; } *leaf_bh = bh; out: return ret; } /* * Adjust the adjacent records (left_rec, right_rec) involved in a rotation. * * Basically, we've moved stuff around at the bottom of the tree and * we need to fix up the extent records above the changes to reflect * the new changes. * * left_rec: the record on the left. * left_child_el: is the child list pointed to by left_rec * right_rec: the record to the right of left_rec * right_child_el: is the child list pointed to by right_rec * * By definition, this only works on interior nodes. */ static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec, struct ocfs2_extent_list *left_child_el, struct ocfs2_extent_rec *right_rec, struct ocfs2_extent_list *right_child_el) { u32 left_clusters, right_end; /* * Interior nodes never have holes. Their cpos is the cpos of * the leftmost record in their child list. Their cluster * count covers the full theoretical range of their child list * - the range between their cpos and the cpos of the record * immediately to their right. */ left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos); left_clusters -= le32_to_cpu(left_rec->e_cpos); left_rec->e_clusters = cpu_to_le32(left_clusters); /* * Calculate the rightmost cluster count boundary before * moving cpos - we will need to adjust e_clusters after * updating e_cpos to keep the same highest cluster count. */ right_end = le32_to_cpu(right_rec->e_cpos); right_end += le32_to_cpu(right_rec->e_clusters); right_rec->e_cpos = left_rec->e_cpos; le32_add_cpu(&right_rec->e_cpos, left_clusters); right_end -= le32_to_cpu(right_rec->e_cpos); right_rec->e_clusters = cpu_to_le32(right_end); } /* * Adjust the adjacent root node records involved in a * rotation. left_el_blkno is passed in as a key so that we can easily * find it's index in the root list. */ static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el, struct ocfs2_extent_list *left_el, struct ocfs2_extent_list *right_el, u64 left_el_blkno) { int i; BUG_ON(le16_to_cpu(root_el->l_tree_depth) <= le16_to_cpu(left_el->l_tree_depth)); for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) { if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno) break; } /* * The path walking code should have never returned a root and * two paths which are not adjacent. */ BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1)); ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el, &root_el->l_recs[i + 1], right_el); } /* * We've changed a leaf block (in right_path) and need to reflect that * change back up the subtree. * * This happens in multiple places: * - When we've moved an extent record from the left path leaf to the right * path leaf to make room for an empty extent in the left path leaf. * - When our insert into the right path leaf is at the leftmost edge * and requires an update of the path immediately to it's left. This * can occur at the end of some types of rotation and appending inserts. */ static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle, struct ocfs2_path *left_path, struct ocfs2_path *right_path, int subtree_index) { int ret, i, idx; struct ocfs2_extent_list *el, *left_el, *right_el; struct ocfs2_extent_rec *left_rec, *right_rec; struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; /* * Update the counts and position values within all the * interior nodes to reflect the leaf rotation we just did. * * The root node is handled below the loop. * * We begin the loop with right_el and left_el pointing to the * leaf lists and work our way up. * * NOTE: within this loop, left_el and right_el always refer * to the *child* lists. */ left_el = path_leaf_el(left_path); right_el = path_leaf_el(right_path); for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) { mlog(0, "Adjust records at index %u\n", i); /* * One nice property of knowing that all of these * nodes are below the root is that we only deal with * the leftmost right node record and the rightmost * left node record. */ el = left_path->p_node[i].el; idx = le16_to_cpu(left_el->l_next_free_rec) - 1; left_rec = &el->l_recs[idx]; el = right_path->p_node[i].el; right_rec = &el->l_recs[0]; ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec, right_el); ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh); if (ret) mlog_errno(ret); ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh); if (ret) mlog_errno(ret); /* * Setup our list pointers now so that the current * parents become children in the next iteration. */ left_el = left_path->p_node[i].el; right_el = right_path->p_node[i].el; } /* * At the root node, adjust the two adjacent records which * begin our path to the leaves. */ el = left_path->p_node[subtree_index].el; left_el = left_path->p_node[subtree_index + 1].el; right_el = right_path->p_node[subtree_index + 1].el; ocfs2_adjust_root_records(el, left_el, right_el, left_path->p_node[subtree_index + 1].bh->b_blocknr); root_bh = left_path->p_node[subtree_index].bh; ret = ocfs2_journal_dirty(handle, root_bh); if (ret) mlog_errno(ret); } static int ocfs2_rotate_subtree_right(struct inode *inode, handle_t *handle, struct ocfs2_path *left_path, struct ocfs2_path *right_path, int subtree_index) { int ret, i; struct buffer_head *right_leaf_bh; struct buffer_head *left_leaf_bh = NULL; struct buffer_head *root_bh; struct ocfs2_extent_list *right_el, *left_el; struct ocfs2_extent_rec move_rec; left_leaf_bh = path_leaf_bh(left_path); left_el = path_leaf_el(left_path); if (left_el->l_next_free_rec != left_el->l_count) { ocfs2_error(inode->i_sb, "Inode %llu has non-full interior leaf node %llu" "(next free = %u)", (unsigned long long)OCFS2_I(inode)->ip_blkno, (unsigned long long)left_leaf_bh->b_blocknr, le16_to_cpu(left_el->l_next_free_rec)); return -EROFS; } /* * This extent block may already have an empty record, so we * return early if so. */ if (ocfs2_is_empty_extent(&left_el->l_recs[0])) return 0; root_bh = left_path->p_node[subtree_index].bh; BUG_ON(root_bh != right_path->p_node[subtree_index].bh); ret = ocfs2_journal_access(handle, inode, root_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out; } for(i = subtree_index + 1; i < path_num_items(right_path); i++) { ret = ocfs2_journal_access(handle, inode, right_path->p_node[i].bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_journal_access(handle, inode, left_path->p_node[i].bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out; } } right_leaf_bh = path_leaf_bh(right_path); right_el = path_leaf_el(right_path); /* This is a code error, not a disk corruption. */ mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails " "because rightmost leaf block %llu is empty\n", (unsigned long long)OCFS2_I(inode)->ip_blkno, (unsigned long long)right_leaf_bh->b_blocknr); ocfs2_create_empty_extent(right_el); ret = ocfs2_journal_dirty(handle, right_leaf_bh); if (ret) { mlog_errno(ret); goto out; } /* Do the copy now. */ i = le16_to_cpu(left_el->l_next_free_rec) - 1; move_rec = left_el->l_recs[i]; right_el->l_recs[0] = move_rec; /* * Clear out the record we just copied and shift everything * over, leaving an empty extent in the left leaf. * * We temporarily subtract from next_free_rec so that the * shift will lose the tail record (which is now defunct). */ le16_add_cpu(&left_el->l_next_free_rec, -1); ocfs2_shift_records_right(left_el); memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); le16_add_cpu(&left_el->l_next_free_rec, 1); ret = ocfs2_journal_dirty(handle, left_leaf_bh); if (ret) { mlog_errno(ret); goto out; } ocfs2_complete_edge_insert(inode, handle, left_path, right_path, subtree_index); out: return ret; } /* * Given a full path, determine what cpos value would return us a path * containing the leaf immediately to the left of the current one. * * Will return zero if the path passed in is already the leftmost path. */ static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb, struct ocfs2_path *path, u32 *cpos) { int i, j, ret = 0; u64 blkno; struct ocfs2_extent_list *el; *cpos = 0; blkno = path_leaf_bh(path)->b_blocknr; /* Start at the tree node just above the leaf and work our way up. */ i = path->p_tree_depth - 1; while (i >= 0) { el = path->p_node[i].el; /* * Find the extent record just before the one in our * path. */ for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { if (j == 0) { if (i == 0) { /* * We've determined that the * path specified is already * the leftmost one - return a * cpos of zero. */ goto out; } /* * The leftmost record points to our * leaf - we need to travel up the * tree one level. */ goto next_node; } *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos); *cpos = *cpos + le32_to_cpu(el->l_recs[j - 1].e_clusters) - 1; goto out; } } /* * If we got here, we never found a valid node where * the tree indicated one should be. */ ocfs2_error(sb, "Invalid extent tree at extent block %llu\n", (unsigned long long)blkno); ret = -EROFS; goto out; next_node: blkno = path->p_node[i].bh->b_blocknr; i--; } out: return ret; } static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth, struct ocfs2_path *path) { int credits = (path->p_tree_depth - subtree_depth) * 2 + 1; if (handle->h_buffer_credits < credits) return ocfs2_extend_trans(handle, credits); return 0; } /* * Trap the case where we're inserting into the theoretical range past * the _actual_ left leaf range. Otherwise, we'll rotate a record * whose cpos is less than ours into the right leaf. * * It's only necessary to look at the rightmost record of the left * leaf because the logic that calls us should ensure that the * theoretical ranges in the path components above the leaves are * correct. */ static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path, u32 insert_cpos) { struct ocfs2_extent_list *left_el; struct ocfs2_extent_rec *rec; int next_free; left_el = path_leaf_el(left_path); next_free = le16_to_cpu(left_el->l_next_free_rec); rec = &left_el->l_recs[next_free - 1]; if (insert_cpos > le32_to_cpu(rec->e_cpos)) return 1; return 0; } /* * Rotate all the records in a btree right one record, starting at insert_cpos. * * The path to the rightmost leaf should be passed in. * * The array is assumed to be large enough to hold an entire path (tree depth). * * Upon succesful return from this function: * * - The 'right_path' array will contain a path to the leaf block * whose range contains e_cpos. * - That leaf block will have a single empty extent in list index 0. * - In the case that the rotation requires a post-insert update, * *ret_left_path will contain a valid path which can be passed to * ocfs2_insert_path(). */ static int ocfs2_rotate_tree_right(struct inode *inode, handle_t *handle, u32 insert_cpos, struct ocfs2_path *right_path, struct ocfs2_path **ret_left_path) { int ret, start; u32 cpos; struct ocfs2_path *left_path = NULL; *ret_left_path = NULL; left_path = ocfs2_new_path(path_root_bh(right_path), path_root_el(right_path)); if (!left_path) { ret = -ENOMEM; mlog_errno(ret); goto out; } ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos); if (ret) { mlog_errno(ret); goto out; } mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos); /* * What we want to do here is: * * 1) Start with the rightmost path. * * 2) Determine a path to the leaf block directly to the left * of that leaf. * * 3) Determine the 'subtree root' - the lowest level tree node * which contains a path to both leaves. * * 4) Rotate the subtree. * * 5) Find the next subtree by considering the left path to be * the new right path. * * The check at the top of this while loop also accepts * insert_cpos == cpos because cpos is only a _theoretical_ * value to get us the left path - insert_cpos might very well * be filling that hole. * * Stop at a cpos of '0' because we either started at the * leftmost branch (i.e., a tree with one branch and a * rotation inside of it), or we've gone as far as we can in * rotating subtrees. */ while (cpos && insert_cpos <= cpos) { mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n", insert_cpos, cpos); ret = ocfs2_find_path(inode, left_path, cpos); if (ret) { mlog_errno(ret); goto out; } mlog_bug_on_msg(path_leaf_bh(left_path) == path_leaf_bh(right_path), "Inode %lu: error during insert of %u " "(left path cpos %u) results in two identical " "paths ending at %llu\n", inode->i_ino, insert_cpos, cpos, (unsigned long long) path_leaf_bh(left_path)->b_blocknr); if (ocfs2_rotate_requires_path_adjustment(left_path, insert_cpos)) { mlog(0, "Path adjustment required\n"); /* * We've rotated the tree as much as we * should. The rest is up to * ocfs2_insert_path() to complete, after the * record insertion. We indicate this * situation by returning the left path. * * The reason we don't adjust the records here * before the record insert is that an error * later might break the rule where a parent * record e_cpos will reflect the actual * e_cpos of the 1st nonempty record of the * child list. */ *ret_left_path = left_path; goto out_ret_path; } start = ocfs2_find_subtree_root(inode, left_path, right_path); mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n", start, (unsigned long long) right_path->p_node[start].bh->b_blocknr, right_path->p_tree_depth); ret = ocfs2_extend_rotate_transaction(handle, start, right_path); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_rotate_subtree_right(inode, handle, left_path, right_path, start); if (ret) { mlog_errno(ret); goto out; } /* * There is no need to re-read the next right path * as we know that it'll be our current left * path. Optimize by copying values instead. */ ocfs2_mv_path(right_path, left_path); ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos); if (ret) { mlog_errno(ret); goto out; } } out: ocfs2_free_path(left_path); out_ret_path: return ret; } /* * Do the final bits of extent record insertion at the target leaf * list. If this leaf is part of an allocation tree, it is assumed * that the tree above has been prepared. */ static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec, struct ocfs2_extent_list *el, struct ocfs2_insert_type *insert, struct inode *inode) { int i = insert->ins_contig_index; unsigned int range; struct ocfs2_extent_rec *rec; BUG_ON(el->l_tree_depth); /* * Contiguous insert - either left or right. */ if (insert->ins_contig != CONTIG_NONE) { rec = &el->l_recs[i]; if (insert->ins_contig == CONTIG_LEFT) { rec->e_blkno = insert_rec->e_blkno; rec->e_cpos = insert_rec->e_cpos; } le32_add_cpu(&rec->e_clusters, le32_to_cpu(insert_rec->e_clusters)); return; } /* * Handle insert into an empty leaf. */ if (le16_to_cpu(el->l_next_free_rec) == 0 || ((le16_to_cpu(el->l_next_free_rec) == 1) && ocfs2_is_empty_extent(&el->l_recs[0]))) { el->l_recs[0] = *insert_rec; el->l_next_free_rec = cpu_to_le16(1); return; } /* * Appending insert. */ if (insert->ins_appending == APPEND_TAIL) { i = le16_to_cpu(el->l_next_free_rec) - 1; rec = &el->l_recs[i]; range = le32_to_cpu(rec->e_cpos) + le32_to_cpu(rec->e_clusters); BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range); mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >= le16_to_cpu(el->l_count), "inode %lu, depth %u, count %u, next free %u, " "rec.cpos %u, rec.clusters %u, " "insert.cpos %u, insert.clusters %u\n", inode->i_ino, le16_to_cpu(el->l_tree_depth), le16_to_cpu(el->l_count), le16_to_cpu(el->l_next_free_rec), le32_to_cpu(el->l_recs[i].e_cpos), le32_to_cpu(el->l_recs[i].e_clusters), le32_to_cpu(insert_rec->e_cpos), le32_to_cpu(insert_rec->e_clusters)); i++; el->l_recs[i] = *insert_rec; le16_add_cpu(&el->l_next_free_rec, 1); return; } /* * Ok, we have to rotate. * * At this point, it is safe to assume that inserting into an * empty leaf and appending to a leaf have both been handled * above. * * This leaf needs to have space, either by the empty 1st * extent record, or by virtue of an l_next_rec < l_count. */ ocfs2_rotate_leaf(el, insert_rec); } static inline void ocfs2_update_dinode_clusters(struct inode *inode, struct ocfs2_dinode *di, u32 clusters) { le32_add_cpu(&di->i_clusters, clusters); spin_lock(&OCFS2_I(inode)->ip_lock); OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters); spin_unlock(&OCFS2_I(inode)->ip_lock); } static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle, struct ocfs2_extent_rec *insert_rec, struct ocfs2_path *right_path, struct ocfs2_path **ret_left_path) { int ret, i, next_free; struct buffer_head *bh; struct ocfs2_extent_list *el; struct ocfs2_path *left_path = NULL; *ret_left_path = NULL; /* * If our appending insert is at the leftmost edge of a leaf, * then we might need to update the rightmost records of the * neighboring path. */ el = path_leaf_el(right_path); next_free = le16_to_cpu(el->l_next_free_rec); if (next_free == 0 || (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) { u32 left_cpos; ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &left_cpos); if (ret) { mlog_errno(ret); goto out; } mlog(0, "Append may need a left path update. cpos: %u, " "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos), left_cpos); /* * No need to worry if the append is already in the * leftmost leaf. */ if (left_cpos) { left_path = ocfs2_new_path(path_root_bh(right_path), path_root_el(right_path)); if (!left_path) { ret = -ENOMEM; mlog_errno(ret); goto out; } ret = ocfs2_find_path(inode, left_path, left_cpos); if (ret) { mlog_errno(ret); goto out; } /* * ocfs2_insert_path() will pass the left_path to the * journal for us. */ } } ret = ocfs2_journal_access_path(inode, handle, right_path); if (ret) { mlog_errno(ret); goto out; } el = path_root_el(right_path); bh = path_root_bh(right_path); i = 0; while (1) { next_free = le16_to_cpu(el->l_next_free_rec); if (next_free == 0) { ocfs2_error(inode->i_sb, "Dinode %llu has a bad extent list", (unsigned long long)OCFS2_I(inode)->ip_blkno); ret = -EIO; goto out; } el->l_recs[next_free - 1].e_clusters = insert_rec->e_cpos; le32_add_cpu(&el->l_recs[next_free - 1].e_clusters, le32_to_cpu(insert_rec->e_clusters)); le32_add_cpu(&el->l_recs[next_free - 1].e_clusters, -le32_to_cpu(el->l_recs[next_free - 1].e_cpos)); ret = ocfs2_journal_dirty(handle, bh); if (ret) mlog_errno(ret); if (++i >= right_path->p_tree_depth) break; bh = right_path->p_node[i].bh; el = right_path->p_node[i].el; } *ret_left_path = left_path; ret = 0; out: if (ret != 0) ocfs2_free_path(left_path); return ret; } /* * This function only does inserts on an allocation b-tree. For dinode * lists, ocfs2_insert_at_leaf() is called directly. * * right_path is the path we want to do the actual insert * in. left_path should only be passed in if we need to update that * portion of the tree after an edge insert. */ static int ocfs2_insert_path(struct inode *inode, handle_t *handle, struct ocfs2_path *left_path, struct ocfs2_path *right_path, struct ocfs2_extent_rec *insert_rec, struct ocfs2_insert_type *insert) { int ret, subtree_index; struct buffer_head *leaf_bh = path_leaf_bh(right_path); struct ocfs2_extent_list *el; /* * Pass both paths to the journal. The majority of inserts * will be touching all components anyway. */ ret = ocfs2_journal_access_path(inode, handle, right_path); if (ret < 0) { mlog_errno(ret); goto out; } if (left_path) { int credits = handle->h_buffer_credits; /* * There's a chance that left_path got passed back to * us without being accounted for in the * journal. Extend our transaction here to be sure we * can change those blocks. */ credits += left_path->p_tree_depth; ret = ocfs2_extend_trans(handle, credits); if (ret < 0) { mlog_errno(ret); goto out; } ret = ocfs2_journal_access_path(inode, handle, left_path); if (ret < 0) { mlog_errno(ret); goto out; } } el = path_leaf_el(right_path); ocfs2_insert_at_leaf(insert_rec, el, insert, inode); ret = ocfs2_journal_dirty(handle, leaf_bh); if (ret) mlog_errno(ret); if (left_path) { /* * The rotate code has indicated that we need to fix * up portions of the tree after the insert. * * XXX: Should we extend the transaction here? */ subtree_index = ocfs2_find_subtree_root(inode, left_path, right_path); ocfs2_complete_edge_insert(inode, handle, left_path, right_path, subtree_index); } ret = 0; out: return ret; } static int ocfs2_do_insert_extent(struct inode *inode, handle_t *handle, struct buffer_head *di_bh, struct ocfs2_extent_rec *insert_rec, struct ocfs2_insert_type *type) { int ret, rotate = 0; u32 cpos; struct ocfs2_path *right_path = NULL; struct ocfs2_path *left_path = NULL; struct ocfs2_dinode *di; struct ocfs2_extent_list *el; di = (struct ocfs2_dinode *) di_bh->b_data; el = &di->id2.i_list; ret = ocfs2_journal_access(handle, inode, di_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out; } if (le16_to_cpu(el->l_tree_depth) == 0) { ocfs2_insert_at_leaf(insert_rec, el, type, inode); goto out_update_clusters; } right_path = ocfs2_new_inode_path(di_bh); if (!right_path) { ret = -ENOMEM; mlog_errno(ret); goto out; } /* * Determine the path to start with. Rotations need the * rightmost path, everything else can go directly to the * target leaf. */ cpos = le32_to_cpu(insert_rec->e_cpos); if (type->ins_appending == APPEND_NONE && type->ins_contig == CONTIG_NONE) { rotate = 1; cpos = UINT_MAX; } ret = ocfs2_find_path(inode, right_path, cpos); if (ret) { mlog_errno(ret); goto out; } /* * Rotations and appends need special treatment - they modify * parts of the tree's above them. * * Both might pass back a path immediate to the left of the * one being inserted to. This will be cause * ocfs2_insert_path() to modify the rightmost records of * left_path to account for an edge insert. * * XXX: When modifying this code, keep in mind that an insert * can wind up skipping both of these two special cases... */ if (rotate) { ret = ocfs2_rotate_tree_right(inode, handle, le32_to_cpu(insert_rec->e_cpos), right_path, &left_path); if (ret) { mlog_errno(ret); goto out; } } else if (type->ins_appending == APPEND_TAIL && type->ins_contig != CONTIG_LEFT) { ret = ocfs2_append_rec_to_path(inode, handle, insert_rec, right_path, &left_path); if (ret) { mlog_errno(ret); goto out; } } ret = ocfs2_insert_path(inode, handle, left_path, right_path, insert_rec, type); if (ret) { mlog_errno(ret); goto out; } out_update_clusters: ocfs2_update_dinode_clusters(inode, di, le32_to_cpu(insert_rec->e_clusters)); ret = ocfs2_journal_dirty(handle, di_bh); if (ret) mlog_errno(ret); out: ocfs2_free_path(left_path); ocfs2_free_path(right_path); return ret; } static void ocfs2_figure_contig_type(struct inode *inode, struct ocfs2_insert_type *insert, struct ocfs2_extent_list *el, struct ocfs2_extent_rec *insert_rec) { int i; enum ocfs2_contig_type contig_type = CONTIG_NONE; for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { contig_type = ocfs2_extent_contig(inode, &el->l_recs[i], insert_rec); if (contig_type != CONTIG_NONE) { insert->ins_contig_index = i; break; } } insert->ins_contig = contig_type; } /* * This should only be called against the righmost leaf extent list. * * ocfs2_figure_appending_type() will figure out whether we'll have to * insert at the tail of the rightmost leaf. * * This should also work against the dinode list for tree's with 0 * depth. If we consider the dinode list to be the rightmost leaf node * then the logic here makes sense. */ static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert, struct ocfs2_extent_list *el, struct ocfs2_extent_rec *insert_rec) { int i; u32 cpos = le32_to_cpu(insert_rec->e_cpos); struct ocfs2_extent_rec *rec; insert->ins_appending = APPEND_NONE; BUG_ON(el->l_tree_depth); if (!el->l_next_free_rec) goto set_tail_append; if (ocfs2_is_empty_extent(&el->l_recs[0])) { /* Were all records empty? */ if (le16_to_cpu(el->l_next_free_rec) == 1) goto set_tail_append; } i = le16_to_cpu(el->l_next_free_rec) - 1; rec = &el->l_recs[i]; if (cpos >= (le32_to_cpu(rec->e_cpos) + le32_to_cpu(rec->e_clusters))) goto set_tail_append; return; set_tail_append: insert->ins_appending = APPEND_TAIL; } /* * Helper function called at the begining of an insert. * * This computes a few things that are commonly used in the process of * inserting into the btree: * - Whether the new extent is contiguous with an existing one. * - The current tree depth. * - Whether the insert is an appending one. * - The total # of free records in the tree. * * All of the information is stored on the ocfs2_insert_type * structure. */ static int ocfs2_figure_insert_type(struct inode *inode, struct buffer_head *di_bh, struct buffer_head **last_eb_bh, struct ocfs2_extent_rec *insert_rec, struct ocfs2_insert_type *insert) { int ret; struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; struct ocfs2_extent_block *eb; struct ocfs2_extent_list *el; struct ocfs2_path *path = NULL; struct buffer_head *bh = NULL; el = &di->id2.i_list; insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth); if (el->l_tree_depth) { /* * If we have tree depth, we read in the * rightmost extent block ahead of time as * ocfs2_figure_insert_type() and ocfs2_add_branch() * may want it later. */ ret = ocfs2_read_block(OCFS2_SB(inode->i_sb), le64_to_cpu(di->i_last_eb_blk), &bh, OCFS2_BH_CACHED, inode); if (ret) { mlog_exit(ret); goto out; } eb = (struct ocfs2_extent_block *) bh->b_data; el = &eb->h_list; } /* * Unless we have a contiguous insert, we'll need to know if * there is room left in our allocation tree for another * extent record. * * XXX: This test is simplistic, we can search for empty * extent records too. */ insert->ins_free_records = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec); if (!insert->ins_tree_depth) { ocfs2_figure_contig_type(inode, insert, el, insert_rec); ocfs2_figure_appending_type(insert, el, insert_rec); return 0; } path = ocfs2_new_inode_path(di_bh); if (!path) { ret = -ENOMEM; mlog_errno(ret); goto out; } /* * In the case that we're inserting past what the tree * currently accounts for, ocfs2_find_path() will return for * us the rightmost tree path. This is accounted for below in * the appending code. */ ret = ocfs2_find_path(inode, path, le32_to_cpu(insert_rec->e_cpos)); if (ret) { mlog_errno(ret); goto out; } el = path_leaf_el(path); /* * Now that we have the path, there's two things we want to determine: * 1) Contiguousness (also set contig_index if this is so) * * 2) Are we doing an append? We can trivially break this up * into two types of appends: simple record append, or a * rotate inside the tail leaf. */ ocfs2_figure_contig_type(inode, insert, el, insert_rec); /* * The insert code isn't quite ready to deal with all cases of * left contiguousness. Specifically, if it's an insert into * the 1st record in a leaf, it will require the adjustment of * e_clusters on the last record of the path directly to it's * left. For now, just catch that case and fool the layers * above us. This works just fine for tree_depth == 0, which * is why we allow that above. */ if (insert->ins_contig == CONTIG_LEFT && insert->ins_contig_index == 0) insert->ins_contig = CONTIG_NONE; /* * Ok, so we can simply compare against last_eb to figure out * whether the path doesn't exist. This will only happen in * the case that we're doing a tail append, so maybe we can * take advantage of that information somehow. */ if (le64_to_cpu(di->i_last_eb_blk) == path_leaf_bh(path)->b_blocknr) { /* * Ok, ocfs2_find_path() returned us the rightmost * tree path. This might be an appending insert. There are * two cases: * 1) We're doing a true append at the tail: * -This might even be off the end of the leaf * 2) We're "appending" by rotating in the tail */ ocfs2_figure_appending_type(insert, el, insert_rec); } out: ocfs2_free_path(path); if (ret == 0) *last_eb_bh = bh; else brelse(bh); return ret; } /* * Insert an extent into an inode btree. * * The caller needs to update fe->i_clusters */ int ocfs2_insert_extent(struct ocfs2_super *osb, handle_t *handle, struct inode *inode, struct buffer_head *fe_bh, u32 cpos, u64 start_blk, u32 new_clusters, struct ocfs2_alloc_context *meta_ac) { int status, shift; struct buffer_head *last_eb_bh = NULL; struct buffer_head *bh = NULL; struct ocfs2_insert_type insert = {0, }; struct ocfs2_extent_rec rec; mlog(0, "add %u clusters at position %u to inode %llu\n", new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno); mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) && (OCFS2_I(inode)->ip_clusters != cpos), "Device %s, asking for sparse allocation: inode %llu, " "cpos %u, clusters %u\n", osb->dev_str, (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, OCFS2_I(inode)->ip_clusters); rec.e_cpos = cpu_to_le32(cpos); rec.e_blkno = cpu_to_le64(start_blk); rec.e_clusters = cpu_to_le32(new_clusters); status = ocfs2_figure_insert_type(inode, fe_bh, &last_eb_bh, &rec, &insert); if (status < 0) { mlog_errno(status); goto bail; } mlog(0, "Insert.appending: %u, Insert.Contig: %u, " "Insert.contig_index: %d, Insert.free_records: %d, " "Insert.tree_depth: %d\n", insert.ins_appending, insert.ins_contig, insert.ins_contig_index, insert.ins_free_records, insert.ins_tree_depth); /* * Avoid growing the tree unless we're out of records and the * insert type requres one. */ if (insert.ins_contig != CONTIG_NONE || insert.ins_free_records) goto out_add; shift = ocfs2_find_branch_target(osb, inode, fe_bh, &bh); if (shift < 0) { status = shift; mlog_errno(status); goto bail; } /* We traveled all the way to the bottom of the allocation tree * and didn't find room for any more extents - we need to add * another tree level */ if (shift) { BUG_ON(bh); mlog(0, "need to shift tree depth " "(current = %d)\n", insert.ins_tree_depth); /* ocfs2_shift_tree_depth will return us a buffer with * the new extent block (so we can pass that to * ocfs2_add_branch). */ status = ocfs2_shift_tree_depth(osb, handle, inode, fe_bh, meta_ac, &bh); if (status < 0) { mlog_errno(status); goto bail; } insert.ins_tree_depth++; /* Special case: we have room now if we shifted from * tree_depth 0 */ if (insert.ins_tree_depth == 1) goto out_add; } /* call ocfs2_add_branch to add the final part of the tree with * the new data. */ mlog(0, "add branch. bh = %p\n", bh); status = ocfs2_add_branch(osb, handle, inode, fe_bh, bh, last_eb_bh, meta_ac); if (status < 0) { mlog_errno(status); goto bail; } out_add: /* Finally, we can add clusters. This might rotate the tree for us. */ status = ocfs2_do_insert_extent(inode, handle, fe_bh, &rec, &insert); if (status < 0) mlog_errno(status); bail: if (bh) brelse(bh); if (last_eb_bh) brelse(last_eb_bh); mlog_exit(status); return status; } static inline int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb) { struct buffer_head *tl_bh = osb->osb_tl_bh; struct ocfs2_dinode *di; struct ocfs2_truncate_log *tl; di = (struct ocfs2_dinode *) tl_bh->b_data; tl = &di->id2.i_dealloc; mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count), "slot %d, invalid truncate log parameters: used = " "%u, count = %u\n", osb->slot_num, le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count)); return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count); } static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl, unsigned int new_start) { unsigned int tail_index; unsigned int current_tail; /* No records, nothing to coalesce */ if (!le16_to_cpu(tl->tl_used)) return 0; tail_index = le16_to_cpu(tl->tl_used) - 1; current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start); current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters); return current_tail == new_start; } static int ocfs2_truncate_log_append(struct ocfs2_super *osb, handle_t *handle, u64 start_blk, unsigned int num_clusters) { int status, index; unsigned int start_cluster, tl_count; struct inode *tl_inode = osb->osb_tl_inode; struct buffer_head *tl_bh = osb->osb_tl_bh; struct ocfs2_dinode *di; struct ocfs2_truncate_log *tl; mlog_entry("start_blk = %llu, num_clusters = %u\n", (unsigned long long)start_blk, num_clusters); BUG_ON(mutex_trylock(&tl_inode->i_mutex)); start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk); di = (struct ocfs2_dinode *) tl_bh->b_data; tl = &di->id2.i_dealloc; if (!OCFS2_IS_VALID_DINODE(di)) { OCFS2_RO_ON_INVALID_DINODE(osb->sb, di); status = -EIO; goto bail; } tl_count = le16_to_cpu(tl->tl_count); mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) || tl_count == 0, "Truncate record count on #%llu invalid " "wanted %u, actual %u\n", (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, ocfs2_truncate_recs_per_inode(osb->sb), le16_to_cpu(tl->tl_count)); /* Caller should have known to flush before calling us. */ index = le16_to_cpu(tl->tl_used); if (index >= tl_count) { status = -ENOSPC; mlog_errno(status); goto bail; } status = ocfs2_journal_access(handle, tl_inode, tl_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); goto bail; } mlog(0, "Log truncate of %u clusters starting at cluster %u to " "%llu (index = %d)\n", num_clusters, start_cluster, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index); if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) { /* * Move index back to the record we are coalescing with. * ocfs2_truncate_log_can_coalesce() guarantees nonzero */ index--; num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters); mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n", index, le32_to_cpu(tl->tl_recs[index].t_start), num_clusters); } else { tl->tl_recs[index].t_start = cpu_to_le32(start_cluster); tl->tl_used = cpu_to_le16(index + 1); } tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters); status = ocfs2_journal_dirty(handle, tl_bh); if (status < 0) { mlog_errno(status); goto bail; } bail: mlog_exit(status); return status; } static int ocfs2_replay_truncate_records(struct ocfs2_super *osb, handle_t *handle, struct inode *data_alloc_inode, struct buffer_head *data_alloc_bh) { int status = 0; int i; unsigned int num_clusters; u64 start_blk; struct ocfs2_truncate_rec rec; struct ocfs2_dinode *di; struct ocfs2_truncate_log *tl; struct inode *tl_inode = osb->osb_tl_inode; struct buffer_head *tl_bh = osb->osb_tl_bh; mlog_entry_void(); di = (struct ocfs2_dinode *) tl_bh->b_data; tl = &di->id2.i_dealloc; i = le16_to_cpu(tl->tl_used) - 1; while (i >= 0) { /* Caller has given us at least enough credits to * update the truncate log dinode */ status = ocfs2_journal_access(handle, tl_inode, tl_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); goto bail; } tl->tl_used = cpu_to_le16(i); status = ocfs2_journal_dirty(handle, tl_bh); if (status < 0) { mlog_errno(status); goto bail; } /* TODO: Perhaps we can calculate the bulk of the * credits up front rather than extending like * this. */ status = ocfs2_extend_trans(handle, OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC); if (status < 0) { mlog_errno(status); goto bail; } rec = tl->tl_recs[i]; start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb, le32_to_cpu(rec.t_start)); num_clusters = le32_to_cpu(rec.t_clusters); /* if start_blk is not set, we ignore the record as * invalid. */ if (start_blk) { mlog(0, "free record %d, start = %u, clusters = %u\n", i, le32_to_cpu(rec.t_start), num_clusters); status = ocfs2_free_clusters(handle, data_alloc_inode, data_alloc_bh, start_blk, num_clusters); if (status < 0) { mlog_errno(status); goto bail; } } i--; } bail: mlog_exit(status); return status; } /* Expects you to already be holding tl_inode->i_mutex */ static int __ocfs2_flush_truncate_log(struct ocfs2_super *osb) { int status; unsigned int num_to_flush; handle_t *handle; struct inode *tl_inode = osb->osb_tl_inode; struct inode *data_alloc_inode = NULL; struct buffer_head *tl_bh = osb->osb_tl_bh; struct buffer_head *data_alloc_bh = NULL; struct ocfs2_dinode *di; struct ocfs2_truncate_log *tl; mlog_entry_void(); BUG_ON(mutex_trylock(&tl_inode->i_mutex)); di = (struct ocfs2_dinode *) tl_bh->b_data; tl = &di->id2.i_dealloc; if (!OCFS2_IS_VALID_DINODE(di)) { OCFS2_RO_ON_INVALID_DINODE(osb->sb, di); status = -EIO; goto out; } num_to_flush = le16_to_cpu(tl->tl_used); mlog(0, "Flush %u records from truncate log #%llu\n", num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno); if (!num_to_flush) { status = 0; goto out; } data_alloc_inode = ocfs2_get_system_file_inode(osb, GLOBAL_BITMAP_SYSTEM_INODE, OCFS2_INVALID_SLOT); if (!data_alloc_inode) { status = -EINVAL; mlog(ML_ERROR, "Could not get bitmap inode!\n"); goto out; } mutex_lock(&data_alloc_inode->i_mutex); status = ocfs2_meta_lock(data_alloc_inode, &data_alloc_bh, 1); if (status < 0) { mlog_errno(status); goto out_mutex; } handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); if (IS_ERR(handle)) { status = PTR_ERR(handle); mlog_errno(status); goto out_unlock; } status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode, data_alloc_bh); if (status < 0) mlog_errno(status); ocfs2_commit_trans(osb, handle); out_unlock: brelse(data_alloc_bh); ocfs2_meta_unlock(data_alloc_inode, 1); out_mutex: mutex_unlock(&data_alloc_inode->i_mutex); iput(data_alloc_inode); out: mlog_exit(status); return status; } int ocfs2_flush_truncate_log(struct ocfs2_super *osb) { int status; struct inode *tl_inode = osb->osb_tl_inode; mutex_lock(&tl_inode->i_mutex); status = __ocfs2_flush_truncate_log(osb); mutex_unlock(&tl_inode->i_mutex); return status; } static void ocfs2_truncate_log_worker(struct work_struct *work) { int status; struct ocfs2_super *osb = container_of(work, struct ocfs2_super, osb_truncate_log_wq.work); mlog_entry_void(); status = ocfs2_flush_truncate_log(osb); if (status < 0) mlog_errno(status); mlog_exit(status); } #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ) void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb, int cancel) { if (osb->osb_tl_inode) { /* We want to push off log flushes while truncates are * still running. */ if (cancel) cancel_delayed_work(&osb->osb_truncate_log_wq); queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq, OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL); } } static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb, int slot_num, struct inode **tl_inode, struct buffer_head **tl_bh) { int status; struct inode *inode = NULL; struct buffer_head *bh = NULL; inode = ocfs2_get_system_file_inode(osb, TRUNCATE_LOG_SYSTEM_INODE, slot_num); if (!inode) { status = -EINVAL; mlog(ML_ERROR, "Could not get load truncate log inode!\n"); goto bail; } status = ocfs2_read_block(osb, OCFS2_I(inode)->ip_blkno, &bh, OCFS2_BH_CACHED, inode); if (status < 0) { iput(inode); mlog_errno(status); goto bail; } *tl_inode = inode; *tl_bh = bh; bail: mlog_exit(status); return status; } /* called during the 1st stage of node recovery. we stamp a clean * truncate log and pass back a copy for processing later. if the * truncate log does not require processing, a *tl_copy is set to * NULL. */ int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb, int slot_num, struct ocfs2_dinode **tl_copy) { int status; struct inode *tl_inode = NULL; struct buffer_head *tl_bh = NULL; struct ocfs2_dinode *di; struct ocfs2_truncate_log *tl; *tl_copy = NULL; mlog(0, "recover truncate log from slot %d\n", slot_num); status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh); if (status < 0) { mlog_errno(status); goto bail; } di = (struct ocfs2_dinode *) tl_bh->b_data; tl = &di->id2.i_dealloc; if (!OCFS2_IS_VALID_DINODE(di)) { OCFS2_RO_ON_INVALID_DINODE(tl_inode->i_sb, di); status = -EIO; goto bail; } if (le16_to_cpu(tl->tl_used)) { mlog(0, "We'll have %u logs to recover\n", le16_to_cpu(tl->tl_used)); *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL); if (!(*tl_copy)) { status = -ENOMEM; mlog_errno(status); goto bail; } /* Assuming the write-out below goes well, this copy * will be passed back to recovery for processing. */ memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size); /* All we need to do to clear the truncate log is set * tl_used. */ tl->tl_used = 0; status = ocfs2_write_block(osb, tl_bh, tl_inode); if (status < 0) { mlog_errno(status); goto bail; } } bail: if (tl_inode) iput(tl_inode); if (tl_bh) brelse(tl_bh); if (status < 0 && (*tl_copy)) { kfree(*tl_copy); *tl_copy = NULL; } mlog_exit(status); return status; } int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb, struct ocfs2_dinode *tl_copy) { int status = 0; int i; unsigned int clusters, num_recs, start_cluster; u64 start_blk; handle_t *handle; struct inode *tl_inode = osb->osb_tl_inode; struct ocfs2_truncate_log *tl; mlog_entry_void(); if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) { mlog(ML_ERROR, "Asked to recover my own truncate log!\n"); return -EINVAL; } tl = &tl_copy->id2.i_dealloc; num_recs = le16_to_cpu(tl->tl_used); mlog(0, "cleanup %u records from %llu\n", num_recs, (unsigned long long)tl_copy->i_blkno); mutex_lock(&tl_inode->i_mutex); for(i = 0; i < num_recs; i++) { if (ocfs2_truncate_log_needs_flush(osb)) { status = __ocfs2_flush_truncate_log(osb); if (status < 0) { mlog_errno(status); goto bail_up; } } handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); if (IS_ERR(handle)) { status = PTR_ERR(handle); mlog_errno(status); goto bail_up; } clusters = le32_to_cpu(tl->tl_recs[i].t_clusters); start_cluster = le32_to_cpu(tl->tl_recs[i].t_start); start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster); status = ocfs2_truncate_log_append(osb, handle, start_blk, clusters); ocfs2_commit_trans(osb, handle); if (status < 0) { mlog_errno(status); goto bail_up; } } bail_up: mutex_unlock(&tl_inode->i_mutex); mlog_exit(status); return status; } void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb) { int status; struct inode *tl_inode = osb->osb_tl_inode; mlog_entry_void(); if (tl_inode) { cancel_delayed_work(&osb->osb_truncate_log_wq); flush_workqueue(ocfs2_wq); status = ocfs2_flush_truncate_log(osb); if (status < 0) mlog_errno(status); brelse(osb->osb_tl_bh); iput(osb->osb_tl_inode); } mlog_exit_void(); } int ocfs2_truncate_log_init(struct ocfs2_super *osb) { int status; struct inode *tl_inode = NULL; struct buffer_head *tl_bh = NULL; mlog_entry_void(); status = ocfs2_get_truncate_log_info(osb, osb->slot_num, &tl_inode, &tl_bh); if (status < 0) mlog_errno(status); /* ocfs2_truncate_log_shutdown keys on the existence of * osb->osb_tl_inode so we don't set any of the osb variables * until we're sure all is well. */ INIT_DELAYED_WORK(&osb->osb_truncate_log_wq, ocfs2_truncate_log_worker); osb->osb_tl_bh = tl_bh; osb->osb_tl_inode = tl_inode; mlog_exit(status); return status; } /* This function will figure out whether the currently last extent * block will be deleted, and if it will, what the new last extent * block will be so we can update his h_next_leaf_blk field, as well * as the dinodes i_last_eb_blk */ static int ocfs2_find_new_last_ext_blk(struct inode *inode, unsigned int clusters_to_del, struct ocfs2_path *path, struct buffer_head **new_last_eb) { int next_free, ret = 0; u32 cpos; struct ocfs2_extent_rec *rec; struct ocfs2_extent_block *eb; struct ocfs2_extent_list *el; struct buffer_head *bh = NULL; *new_last_eb = NULL; /* we have no tree, so of course, no last_eb. */ if (!path->p_tree_depth) goto out; /* trunc to zero special case - this makes tree_depth = 0 * regardless of what it is. */ if (OCFS2_I(inode)->ip_clusters == clusters_to_del) goto out; el = path_leaf_el(path); BUG_ON(!el->l_next_free_rec); /* * Make sure that this extent list will actually be empty * after we clear away the data. We can shortcut out if * there's more than one non-empty extent in the * list. Otherwise, a check of the remaining extent is * necessary. */ next_free = le16_to_cpu(el->l_next_free_rec); rec = NULL; if (ocfs2_is_empty_extent(&el->l_recs[0])) { if (next_free > 2) goto out; /* We may have a valid extent in index 1, check it. */ if (next_free == 2) rec = &el->l_recs[1]; /* * Fall through - no more nonempty extents, so we want * to delete this leaf. */ } else { if (next_free > 1) goto out; rec = &el->l_recs[0]; } if (rec) { /* * Check it we'll only be trimming off the end of this * cluster. */ if (le16_to_cpu(rec->e_clusters) > clusters_to_del) goto out; } ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_find_leaf(inode, path_root_el(path), cpos, &bh); if (ret) { mlog_errno(ret); goto out; } eb = (struct ocfs2_extent_block *) bh->b_data; el = &eb->h_list; if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb); ret = -EROFS; goto out; } *new_last_eb = bh; get_bh(*new_last_eb); mlog(0, "returning block %llu, (cpos: %u)\n", (unsigned long long)le64_to_cpu(eb->h_blkno), cpos); out: brelse(bh); return ret; } /* * Trim some clusters off the rightmost edge of a tree. Only called * during truncate. * * The caller needs to: * - start journaling of each path component. * - compute and fully set up any new last ext block */ static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path, handle_t *handle, struct ocfs2_truncate_context *tc, u32 clusters_to_del, u64 *delete_start) { int ret, i, index = path->p_tree_depth; u32 new_edge = 0; u64 deleted_eb = 0; struct buffer_head *bh; struct ocfs2_extent_list *el; struct ocfs2_extent_rec *rec; *delete_start = 0; while (index >= 0) { bh = path->p_node[index].bh; el = path->p_node[index].el; mlog(0, "traveling tree (index = %d, block = %llu)\n", index, (unsigned long long)bh->b_blocknr); BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0); if (index != (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) { ocfs2_error(inode->i_sb, "Inode %lu has invalid ext. block %llu", inode->i_ino, (unsigned long long)bh->b_blocknr); ret = -EROFS; goto out; } find_tail_record: i = le16_to_cpu(el->l_next_free_rec) - 1; rec = &el->l_recs[i]; mlog(0, "Extent list before: record %d: (%u, %u, %llu), " "next = %u\n", i, le32_to_cpu(rec->e_cpos), le32_to_cpu(rec->e_clusters), (unsigned long long)le64_to_cpu(rec->e_blkno), le16_to_cpu(el->l_next_free_rec)); BUG_ON(le32_to_cpu(rec->e_clusters) < clusters_to_del); if (le16_to_cpu(el->l_tree_depth) == 0) { /* * If the leaf block contains a single empty * extent and no records, we can just remove * the block. */ if (i == 0 && ocfs2_is_empty_extent(rec)) { memset(rec, 0, sizeof(struct ocfs2_extent_rec)); el->l_next_free_rec = cpu_to_le16(0); goto delete; } /* * Remove any empty extents by shifting things * left. That should make life much easier on * the code below. This condition is rare * enough that we shouldn't see a performance * hit. */ if (ocfs2_is_empty_extent(&el->l_recs[0])) { le16_add_cpu(&el->l_next_free_rec, -1); for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) el->l_recs[i] = el->l_recs[i + 1]; memset(&el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); /* * We've modified our extent list. The * simplest way to handle this change * is to being the search from the * start again. */ goto find_tail_record; } le32_add_cpu(&rec->e_clusters, -clusters_to_del); /* * We'll use "new_edge" on our way back up the * tree to know what our rightmost cpos is. */ new_edge = le32_to_cpu(rec->e_clusters); new_edge += le32_to_cpu(rec->e_cpos); /* * The caller will use this to delete data blocks. */ *delete_start = le64_to_cpu(rec->e_blkno) + ocfs2_clusters_to_blocks(inode->i_sb, le32_to_cpu(rec->e_clusters)); /* * If it's now empty, remove this record. */ if (le32_to_cpu(rec->e_clusters) == 0) { memset(rec, 0, sizeof(struct ocfs2_extent_rec)); le16_add_cpu(&el->l_next_free_rec, -1); } } else { if (le64_to_cpu(rec->e_blkno) == deleted_eb) { memset(rec, 0, sizeof(struct ocfs2_extent_rec)); le16_add_cpu(&el->l_next_free_rec, -1); goto delete; } /* Can this actually happen? */ if (le16_to_cpu(el->l_next_free_rec) == 0) goto delete; /* * We never actually deleted any clusters * because our leaf was empty. There's no * reason to adjust the rightmost edge then. */ if (new_edge == 0) goto delete; rec->e_clusters = cpu_to_le32(new_edge); le32_add_cpu(&rec->e_clusters, -le32_to_cpu(rec->e_cpos)); /* * A deleted child record should have been * caught above. */ BUG_ON(le32_to_cpu(rec->e_clusters) == 0); } delete: ret = ocfs2_journal_dirty(handle, bh); if (ret) { mlog_errno(ret); goto out; } mlog(0, "extent list container %llu, after: record %d: " "(%u, %u, %llu), next = %u.\n", (unsigned long long)bh->b_blocknr, i, le32_to_cpu(rec->e_cpos), le32_to_cpu(rec->e_clusters), (unsigned long long)le64_to_cpu(rec->e_blkno), le16_to_cpu(el->l_next_free_rec)); /* * We must be careful to only attempt delete of an * extent block (and not the root inode block). */ if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) { struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)bh->b_data; /* * Save this for use when processing the * parent block. */ deleted_eb = le64_to_cpu(eb->h_blkno); mlog(0, "deleting this extent block.\n"); ocfs2_remove_from_cache(inode, bh); BUG_ON(le32_to_cpu(el->l_recs[0].e_clusters)); BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos)); BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno)); if (le16_to_cpu(eb->h_suballoc_slot) == 0) { /* * This code only understands how to * lock the suballocator in slot 0, * which is fine because allocation is * only ever done out of that * suballocator too. A future version * might change that however, so avoid * a free if we don't know how to * handle it. This way an fs incompat * bit will not be necessary. */ ret = ocfs2_free_extent_block(handle, tc->tc_ext_alloc_inode, tc->tc_ext_alloc_bh, eb); /* An error here is not fatal. */ if (ret < 0) mlog_errno(ret); } } else { deleted_eb = 0; } index--; } ret = 0; out: return ret; } static int ocfs2_do_truncate(struct ocfs2_super *osb, unsigned int clusters_to_del, struct inode *inode, struct buffer_head *fe_bh, handle_t *handle, struct ocfs2_truncate_context *tc, struct ocfs2_path *path) { int status; struct ocfs2_dinode *fe; struct ocfs2_extent_block *last_eb = NULL; struct ocfs2_extent_list *el; struct buffer_head *last_eb_bh = NULL; u64 delete_blk = 0; fe = (struct ocfs2_dinode *) fe_bh->b_data; status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del, path, &last_eb_bh); if (status < 0) { mlog_errno(status); goto bail; } /* * Each component will be touched, so we might as well journal * here to avoid having to handle errors later. */ status = ocfs2_journal_access_path(inode, handle, path); if (status < 0) { mlog_errno(status); goto bail; } if (last_eb_bh) { status = ocfs2_journal_access(handle, inode, last_eb_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); goto bail; } last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; } el = &(fe->id2.i_list); /* * Lower levels depend on this never happening, but it's best * to check it up here before changing the tree. */ if (el->l_tree_depth && ocfs2_is_empty_extent(&el->l_recs[0])) { ocfs2_error(inode->i_sb, "Inode %lu has an empty extent record, depth %u\n", inode->i_ino, le16_to_cpu(el->l_tree_depth)); status = -EROFS; goto bail; } spin_lock(&OCFS2_I(inode)->ip_lock); OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) - clusters_to_del; spin_unlock(&OCFS2_I(inode)->ip_lock); le32_add_cpu(&fe->i_clusters, -clusters_to_del); status = ocfs2_trim_tree(inode, path, handle, tc, clusters_to_del, &delete_blk); if (status) { mlog_errno(status); goto bail; } if (le32_to_cpu(fe->i_clusters) == 0) { /* trunc to zero is a special case. */ el->l_tree_depth = 0; fe->i_last_eb_blk = 0; } else if (last_eb) fe->i_last_eb_blk = last_eb->h_blkno; status = ocfs2_journal_dirty(handle, fe_bh); if (status < 0) { mlog_errno(status); goto bail; } if (last_eb) { /* If there will be a new last extent block, then by * definition, there cannot be any leaves to the right of * him. */ last_eb->h_next_leaf_blk = 0; status = ocfs2_journal_dirty(handle, last_eb_bh); if (status < 0) { mlog_errno(status); goto bail; } } if (delete_blk) { status = ocfs2_truncate_log_append(osb, handle, delete_blk, clusters_to_del); if (status < 0) { mlog_errno(status); goto bail; } } status = 0; bail: mlog_exit(status); return status; } static int ocfs2_writeback_zero_func(handle_t *handle, struct buffer_head *bh) { set_buffer_uptodate(bh); mark_buffer_dirty(bh); return 0; } static int ocfs2_ordered_zero_func(handle_t *handle, struct buffer_head *bh) { set_buffer_uptodate(bh); mark_buffer_dirty(bh); return ocfs2_journal_dirty_data(handle, bh); } static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t isize, struct page **pages, int numpages, u64 phys, handle_t *handle) { int i, ret, partial = 0; void *kaddr; struct page *page; unsigned int from, to = PAGE_CACHE_SIZE; struct super_block *sb = inode->i_sb; BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb))); if (numpages == 0) goto out; from = isize & (PAGE_CACHE_SIZE - 1); /* 1st page offset */ if (PAGE_CACHE_SHIFT > OCFS2_SB(sb)->s_clustersize_bits) { /* * Since 'from' has been capped to a value below page * size, this calculation won't be able to overflow * 'to' */ to = ocfs2_align_bytes_to_clusters(sb, from); /* * The truncate tail in this case should never contain * more than one page at maximum. The loop below also * assumes this. */ BUG_ON(numpages != 1); } for(i = 0; i < numpages; i++) { page = pages[i]; BUG_ON(from > PAGE_CACHE_SIZE); BUG_ON(to > PAGE_CACHE_SIZE); ret = ocfs2_map_page_blocks(page, &phys, inode, from, to, 0); if (ret) mlog_errno(ret); kaddr = kmap_atomic(page, KM_USER0); memset(kaddr + from, 0, to - from); kunmap_atomic(kaddr, KM_USER0); /* * Need to set the buffers we zero'd into uptodate * here if they aren't - ocfs2_map_page_blocks() * might've skipped some */ if (ocfs2_should_order_data(inode)) { ret = walk_page_buffers(handle, page_buffers(page), from, to, &partial, ocfs2_ordered_zero_func); if (ret < 0) mlog_errno(ret); } else { ret = walk_page_buffers(handle, page_buffers(page), from, to, &partial, ocfs2_writeback_zero_func); if (ret < 0) mlog_errno(ret); } if (!partial) SetPageUptodate(page); flush_dcache_page(page); /* * Every page after the 1st one should be completely zero'd. */ from = 0; } out: if (pages) { for (i = 0; i < numpages; i++) { page = pages[i]; unlock_page(page); mark_page_accessed(page); page_cache_release(page); } } } static int ocfs2_grab_eof_pages(struct inode *inode, loff_t isize, struct page **pages, int *num, u64 *phys) { int i, numpages = 0, ret = 0; unsigned int csize = OCFS2_SB(inode->i_sb)->s_clustersize; struct super_block *sb = inode->i_sb; struct address_space *mapping = inode->i_mapping; unsigned long index; u64 next_cluster_bytes; BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb))); /* Cluster boundary, so we don't need to grab any pages. */ if ((isize & (csize - 1)) == 0) goto out; ret = ocfs2_extent_map_get_blocks(inode, isize >> sb->s_blocksize_bits, phys, NULL); if (ret) { mlog_errno(ret); goto out; } /* Tail is a hole. */ if (*phys == 0) goto out; next_cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, isize); index = isize >> PAGE_CACHE_SHIFT; do { pages[numpages] = grab_cache_page(mapping, index); if (!pages[numpages]) { ret = -ENOMEM; mlog_errno(ret); goto out; } numpages++; index++; } while (index < (next_cluster_bytes >> PAGE_CACHE_SHIFT)); out: if (ret != 0) { if (pages) { for (i = 0; i < numpages; i++) { if (pages[i]) { unlock_page(pages[i]); page_cache_release(pages[i]); } } } numpages = 0; } *num = numpages; return ret; } /* * Zero the area past i_size but still within an allocated * cluster. This avoids exposing nonzero data on subsequent file * extends. * * We need to call this before i_size is updated on the inode because * otherwise block_write_full_page() will skip writeout of pages past * i_size. The new_i_size parameter is passed for this reason. */ int ocfs2_zero_tail_for_truncate(struct inode *inode, handle_t *handle, u64 new_i_size) { int ret, numpages; loff_t endbyte; struct page **pages = NULL; u64 phys; /* * File systems which don't support sparse files zero on every * extend. */ if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) return 0; pages = kcalloc(ocfs2_pages_per_cluster(inode->i_sb), sizeof(struct page *), GFP_NOFS); if (pages == NULL) { ret = -ENOMEM; mlog_errno(ret); goto out; } ret = ocfs2_grab_eof_pages(inode, new_i_size, pages, &numpages, &phys); if (ret) { mlog_errno(ret); goto out; } /* * Truncate on an i_size boundary - nothing more to do. */ if (numpages == 0) goto out; ocfs2_zero_cluster_pages(inode, new_i_size, pages, numpages, phys, handle); /* * Initiate writeout of the pages we zero'd here. We don't * wait on them - the truncate_inode_pages() call later will * do that for us. */ endbyte = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size); ret = do_sync_mapping_range(inode->i_mapping, new_i_size, endbyte - 1, SYNC_FILE_RANGE_WRITE); if (ret) mlog_errno(ret); out: if (pages) kfree(pages); return ret; } /* * It is expected, that by the time you call this function, * inode->i_size and fe->i_size have been adjusted. * * WARNING: This will kfree the truncate context */ int ocfs2_commit_truncate(struct ocfs2_super *osb, struct inode *inode, struct buffer_head *fe_bh, struct ocfs2_truncate_context *tc) { int status, i, credits, tl_sem = 0; u32 clusters_to_del, new_highest_cpos, range; struct ocfs2_extent_list *el; handle_t *handle = NULL; struct inode *tl_inode = osb->osb_tl_inode; struct ocfs2_path *path = NULL; mlog_entry_void(); down_write(&OCFS2_I(inode)->ip_alloc_sem); new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb, i_size_read(inode)); path = ocfs2_new_inode_path(fe_bh); if (!path) { status = -ENOMEM; mlog_errno(status); goto bail; } start: /* * Check that we still have allocation to delete. */ if (OCFS2_I(inode)->ip_clusters == 0) { status = 0; goto bail; } /* * Truncate always works against the rightmost tree branch. */ status = ocfs2_find_path(inode, path, UINT_MAX); if (status) { mlog_errno(status); goto bail; } mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n", OCFS2_I(inode)->ip_clusters, path->p_tree_depth); /* * By now, el will point to the extent list on the bottom most * portion of this tree. Only the tail record is considered in * each pass. * * We handle the following cases, in order: * - empty extent: delete the remaining branch * - remove the entire record * - remove a partial record * - no record needs to be removed (truncate has completed) */ el = path_leaf_el(path); if (le16_to_cpu(el->l_next_free_rec) == 0) { ocfs2_error(inode->i_sb, "Inode %llu has empty extent block at %llu\n", (unsigned long long)OCFS2_I(inode)->ip_blkno, (unsigned long long)path_leaf_bh(path)->b_blocknr); status = -EROFS; goto bail; } i = le16_to_cpu(el->l_next_free_rec) - 1; range = le32_to_cpu(el->l_recs[i].e_cpos) + le32_to_cpu(el->l_recs[i].e_clusters); if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) { clusters_to_del = 0; } else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) { clusters_to_del = le32_to_cpu(el->l_recs[i].e_clusters); } else if (range > new_highest_cpos) { clusters_to_del = (le32_to_cpu(el->l_recs[i].e_clusters) + le32_to_cpu(el->l_recs[i].e_cpos)) - new_highest_cpos; } else { status = 0; goto bail; } mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n", clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr); BUG_ON(clusters_to_del == 0); mutex_lock(&tl_inode->i_mutex); tl_sem = 1; /* ocfs2_truncate_log_needs_flush guarantees us at least one * record is free for use. If there isn't any, we flush to get * an empty truncate log. */ if (ocfs2_truncate_log_needs_flush(osb)) { status = __ocfs2_flush_truncate_log(osb); if (status < 0) { mlog_errno(status); goto bail; } } credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del, (struct ocfs2_dinode *)fe_bh->b_data, el); handle = ocfs2_start_trans(osb, credits); if (IS_ERR(handle)) { status = PTR_ERR(handle); handle = NULL; mlog_errno(status); goto bail; } status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle, tc, path); if (status < 0) { mlog_errno(status); goto bail; } mutex_unlock(&tl_inode->i_mutex); tl_sem = 0; ocfs2_commit_trans(osb, handle); handle = NULL; ocfs2_reinit_path(path, 1); /* * The check above will catch the case where we've truncated * away all allocation. */ goto start; bail: up_write(&OCFS2_I(inode)->ip_alloc_sem); ocfs2_schedule_truncate_log_flush(osb, 1); if (tl_sem) mutex_unlock(&tl_inode->i_mutex); if (handle) ocfs2_commit_trans(osb, handle); ocfs2_free_path(path); /* This will drop the ext_alloc cluster lock for us */ ocfs2_free_truncate_context(tc); mlog_exit(status); return status; } /* * Expects the inode to already be locked. This will figure out which * inodes need to be locked and will put them on the returned truncate * context. */ int ocfs2_prepare_truncate(struct ocfs2_super *osb, struct inode *inode, struct buffer_head *fe_bh, struct ocfs2_truncate_context **tc) { int status, metadata_delete, i; unsigned int new_i_clusters; struct ocfs2_dinode *fe; struct ocfs2_extent_block *eb; struct ocfs2_extent_list *el; struct buffer_head *last_eb_bh = NULL; struct inode *ext_alloc_inode = NULL; struct buffer_head *ext_alloc_bh = NULL; mlog_entry_void(); *tc = NULL; new_i_clusters = ocfs2_clusters_for_bytes(osb->sb, i_size_read(inode)); fe = (struct ocfs2_dinode *) fe_bh->b_data; mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size =" "%llu\n", fe->i_clusters, new_i_clusters, (unsigned long long)fe->i_size); *tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL); if (!(*tc)) { status = -ENOMEM; mlog_errno(status); goto bail; } metadata_delete = 0; if (fe->id2.i_list.l_tree_depth) { /* If we have a tree, then the truncate may result in * metadata deletes. Figure this out from the * rightmost leaf block.*/ status = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk), &last_eb_bh, OCFS2_BH_CACHED, inode); if (status < 0) { mlog_errno(status); goto bail; } eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb); brelse(last_eb_bh); status = -EIO; goto bail; } el = &(eb->h_list); i = 0; if (ocfs2_is_empty_extent(&el->l_recs[0])) i = 1; /* * XXX: Should we check that next_free_rec contains * the extent? */ if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_i_clusters) metadata_delete = 1; } (*tc)->tc_last_eb_bh = last_eb_bh; if (metadata_delete) { mlog(0, "Will have to delete metadata for this trunc. " "locking allocator.\n"); ext_alloc_inode = ocfs2_get_system_file_inode(osb, EXTENT_ALLOC_SYSTEM_INODE, 0); if (!ext_alloc_inode) { status = -ENOMEM; mlog_errno(status); goto bail; } mutex_lock(&ext_alloc_inode->i_mutex); (*tc)->tc_ext_alloc_inode = ext_alloc_inode; status = ocfs2_meta_lock(ext_alloc_inode, &ext_alloc_bh, 1); if (status < 0) { mlog_errno(status); goto bail; } (*tc)->tc_ext_alloc_bh = ext_alloc_bh; (*tc)->tc_ext_alloc_locked = 1; } status = 0; bail: if (status < 0) { if (*tc) ocfs2_free_truncate_context(*tc); *tc = NULL; } mlog_exit_void(); return status; } static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc) { if (tc->tc_ext_alloc_inode) { if (tc->tc_ext_alloc_locked) ocfs2_meta_unlock(tc->tc_ext_alloc_inode, 1); mutex_unlock(&tc->tc_ext_alloc_inode->i_mutex); iput(tc->tc_ext_alloc_inode); } if (tc->tc_ext_alloc_bh) brelse(tc->tc_ext_alloc_bh); if (tc->tc_last_eb_bh) brelse(tc->tc_last_eb_bh); kfree(tc); }