/* * linux/fs/proc/base.c * * Copyright (C) 1991, 1992 Linus Torvalds * * proc base directory handling functions * * 1999, Al Viro. Rewritten. Now it covers the whole per-process part. * Instead of using magical inumbers to determine the kind of object * we allocate and fill in-core inodes upon lookup. They don't even * go into icache. We cache the reference to task_struct upon lookup too. * Eventually it should become a filesystem in its own. We don't use the * rest of procfs anymore. * * * Changelog: * 17-Jan-2005 * Allan Bezerra * Bruna Moreira * Edjard Mota * Ilias Biris * Mauricio Lin * * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT * * A new process specific entry (smaps) included in /proc. It shows the * size of rss for each memory area. The maps entry lacks information * about physical memory size (rss) for each mapped file, i.e., * rss information for executables and library files. * This additional information is useful for any tools that need to know * about physical memory consumption for a process specific library. * * Changelog: * 21-Feb-2005 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT * Pud inclusion in the page table walking. * * ChangeLog: * 10-Mar-2005 * 10LE Instituto Nokia de Tecnologia - INdT: * A better way to walks through the page table as suggested by Hugh Dickins. * * Simo Piiroinen : * Smaps information related to shared, private, clean and dirty pages. * * Paul Mundt : * Overall revision about smaps. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "internal.h" /* NOTE: * Implementing inode permission operations in /proc is almost * certainly an error. Permission checks need to happen during * each system call not at open time. The reason is that most of * what we wish to check for permissions in /proc varies at runtime. * * The classic example of a problem is opening file descriptors * in /proc for a task before it execs a suid executable. */ /* Worst case buffer size needed for holding an integer. */ #define PROC_NUMBUF 10 struct pid_entry { int len; char *name; mode_t mode; struct inode_operations *iop; struct file_operations *fop; union proc_op op; }; #define NOD(NAME, MODE, IOP, FOP, OP) { \ .len = sizeof(NAME) - 1, \ .name = (NAME), \ .mode = MODE, \ .iop = IOP, \ .fop = FOP, \ .op = OP, \ } #define DIR(NAME, MODE, OTYPE) \ NOD(NAME, (S_IFDIR|(MODE)), \ &proc_##OTYPE##_inode_operations, &proc_##OTYPE##_operations, \ {} ) #define LNK(NAME, OTYPE) \ NOD(NAME, (S_IFLNK|S_IRWXUGO), \ &proc_pid_link_inode_operations, NULL, \ { .proc_get_link = &proc_##OTYPE##_link } ) #define REG(NAME, MODE, OTYPE) \ NOD(NAME, (S_IFREG|(MODE)), NULL, \ &proc_##OTYPE##_operations, {}) #define INF(NAME, MODE, OTYPE) \ NOD(NAME, (S_IFREG|(MODE)), \ NULL, &proc_info_file_operations, \ { .proc_read = &proc_##OTYPE } ) static struct fs_struct *get_fs_struct(struct task_struct *task) { struct fs_struct *fs; task_lock(task); fs = task->fs; if(fs) atomic_inc(&fs->count); task_unlock(task); return fs; } static int get_nr_threads(struct task_struct *tsk) { /* Must be called with the rcu_read_lock held */ unsigned long flags; int count = 0; if (lock_task_sighand(tsk, &flags)) { count = atomic_read(&tsk->signal->count); unlock_task_sighand(tsk, &flags); } return count; } static int proc_cwd_link(struct inode *inode, struct dentry **dentry, struct vfsmount **mnt) { struct task_struct *task = get_proc_task(inode); struct fs_struct *fs = NULL; int result = -ENOENT; if (task) { fs = get_fs_struct(task); put_task_struct(task); } if (fs) { read_lock(&fs->lock); *mnt = mntget(fs->pwdmnt); *dentry = dget(fs->pwd); read_unlock(&fs->lock); result = 0; put_fs_struct(fs); } return result; } static int proc_root_link(struct inode *inode, struct dentry **dentry, struct vfsmount **mnt) { struct task_struct *task = get_proc_task(inode); struct fs_struct *fs = NULL; int result = -ENOENT; if (task) { fs = get_fs_struct(task); put_task_struct(task); } if (fs) { read_lock(&fs->lock); *mnt = mntget(fs->rootmnt); *dentry = dget(fs->root); read_unlock(&fs->lock); result = 0; put_fs_struct(fs); } return result; } #define MAY_PTRACE(task) \ (task == current || \ (task->parent == current && \ (task->ptrace & PT_PTRACED) && \ (task->state == TASK_STOPPED || task->state == TASK_TRACED) && \ security_ptrace(current,task) == 0)) static int proc_pid_environ(struct task_struct *task, char * buffer) { int res = 0; struct mm_struct *mm = get_task_mm(task); if (mm) { unsigned int len = mm->env_end - mm->env_start; if (len > PAGE_SIZE) len = PAGE_SIZE; res = access_process_vm(task, mm->env_start, buffer, len, 0); if (!ptrace_may_attach(task)) res = -ESRCH; mmput(mm); } return res; } static int proc_pid_cmdline(struct task_struct *task, char * buffer) { int res = 0; unsigned int len; struct mm_struct *mm = get_task_mm(task); if (!mm) goto out; if (!mm->arg_end) goto out_mm; /* Shh! No looking before we're done */ len = mm->arg_end - mm->arg_start; if (len > PAGE_SIZE) len = PAGE_SIZE; res = access_process_vm(task, mm->arg_start, buffer, len, 0); // If the nul at the end of args has been overwritten, then // assume application is using setproctitle(3). if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) { len = strnlen(buffer, res); if (len < res) { res = len; } else { len = mm->env_end - mm->env_start; if (len > PAGE_SIZE - res) len = PAGE_SIZE - res; res += access_process_vm(task, mm->env_start, buffer+res, len, 0); res = strnlen(buffer, res); } } out_mm: mmput(mm); out: return res; } static int proc_pid_auxv(struct task_struct *task, char *buffer) { int res = 0; struct mm_struct *mm = get_task_mm(task); if (mm) { unsigned int nwords = 0; do nwords += 2; while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */ res = nwords * sizeof(mm->saved_auxv[0]); if (res > PAGE_SIZE) res = PAGE_SIZE; memcpy(buffer, mm->saved_auxv, res); mmput(mm); } return res; } #ifdef CONFIG_KALLSYMS /* * Provides a wchan file via kallsyms in a proper one-value-per-file format. * Returns the resolved symbol. If that fails, simply return the address. */ static int proc_pid_wchan(struct task_struct *task, char *buffer) { char *modname; const char *sym_name; unsigned long wchan, size, offset; char namebuf[KSYM_NAME_LEN+1]; wchan = get_wchan(task); sym_name = kallsyms_lookup(wchan, &size, &offset, &modname, namebuf); if (sym_name) return sprintf(buffer, "%s", sym_name); return sprintf(buffer, "%lu", wchan); } #endif /* CONFIG_KALLSYMS */ #ifdef CONFIG_SCHEDSTATS /* * Provides /proc/PID/schedstat */ static int proc_pid_schedstat(struct task_struct *task, char *buffer) { return sprintf(buffer, "%lu %lu %lu\n", task->sched_info.cpu_time, task->sched_info.run_delay, task->sched_info.pcnt); } #endif /* The badness from the OOM killer */ unsigned long badness(struct task_struct *p, unsigned long uptime); static int proc_oom_score(struct task_struct *task, char *buffer) { unsigned long points; struct timespec uptime; do_posix_clock_monotonic_gettime(&uptime); points = badness(task, uptime.tv_sec); return sprintf(buffer, "%lu\n", points); } /************************************************************************/ /* Here the fs part begins */ /************************************************************************/ /* permission checks */ static int proc_fd_access_allowed(struct inode *inode) { struct task_struct *task; int allowed = 0; /* Allow access to a task's file descriptors if it is us or we * may use ptrace attach to the process and find out that * information. */ task = get_proc_task(inode); if (task) { allowed = ptrace_may_attach(task); put_task_struct(task); } return allowed; } static int proc_setattr(struct dentry *dentry, struct iattr *attr) { int error; struct inode *inode = dentry->d_inode; if (attr->ia_valid & ATTR_MODE) return -EPERM; error = inode_change_ok(inode, attr); if (!error) { error = security_inode_setattr(dentry, attr); if (!error) error = inode_setattr(inode, attr); } return error; } static struct inode_operations proc_def_inode_operations = { .setattr = proc_setattr, }; extern struct seq_operations mounts_op; struct proc_mounts { struct seq_file m; int event; }; static int mounts_open(struct inode *inode, struct file *file) { struct task_struct *task = get_proc_task(inode); struct namespace *namespace = NULL; struct proc_mounts *p; int ret = -EINVAL; if (task) { task_lock(task); namespace = task->nsproxy->namespace; if (namespace) get_namespace(namespace); task_unlock(task); put_task_struct(task); } if (namespace) { ret = -ENOMEM; p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL); if (p) { file->private_data = &p->m; ret = seq_open(file, &mounts_op); if (!ret) { p->m.private = namespace; p->event = namespace->event; return 0; } kfree(p); } put_namespace(namespace); } return ret; } static int mounts_release(struct inode *inode, struct file *file) { struct seq_file *m = file->private_data; struct namespace *namespace = m->private; put_namespace(namespace); return seq_release(inode, file); } static unsigned mounts_poll(struct file *file, poll_table *wait) { struct proc_mounts *p = file->private_data; struct namespace *ns = p->m.private; unsigned res = 0; poll_wait(file, &ns->poll, wait); spin_lock(&vfsmount_lock); if (p->event != ns->event) { p->event = ns->event; res = POLLERR; } spin_unlock(&vfsmount_lock); return res; } static struct file_operations proc_mounts_operations = { .open = mounts_open, .read = seq_read, .llseek = seq_lseek, .release = mounts_release, .poll = mounts_poll, }; extern struct seq_operations mountstats_op; static int mountstats_open(struct inode *inode, struct file *file) { int ret = seq_open(file, &mountstats_op); if (!ret) { struct seq_file *m = file->private_data; struct namespace *namespace = NULL; struct task_struct *task = get_proc_task(inode); if (task) { task_lock(task); namespace = task->nsproxy->namespace; if (namespace) get_namespace(namespace); task_unlock(task); put_task_struct(task); } if (namespace) m->private = namespace; else { seq_release(inode, file); ret = -EINVAL; } } return ret; } static struct file_operations proc_mountstats_operations = { .open = mountstats_open, .read = seq_read, .llseek = seq_lseek, .release = mounts_release, }; #define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */ static ssize_t proc_info_read(struct file * file, char __user * buf, size_t count, loff_t *ppos) { struct inode * inode = file->f_dentry->d_inode; unsigned long page; ssize_t length; struct task_struct *task = get_proc_task(inode); length = -ESRCH; if (!task) goto out_no_task; if (count > PROC_BLOCK_SIZE) count = PROC_BLOCK_SIZE; length = -ENOMEM; if (!(page = __get_free_page(GFP_KERNEL))) goto out; length = PROC_I(inode)->op.proc_read(task, (char*)page); if (length >= 0) length = simple_read_from_buffer(buf, count, ppos, (char *)page, length); free_page(page); out: put_task_struct(task); out_no_task: return length; } static struct file_operations proc_info_file_operations = { .read = proc_info_read, }; static int mem_open(struct inode* inode, struct file* file) { file->private_data = (void*)((long)current->self_exec_id); return 0; } static ssize_t mem_read(struct file * file, char __user * buf, size_t count, loff_t *ppos) { struct task_struct *task = get_proc_task(file->f_dentry->d_inode); char *page; unsigned long src = *ppos; int ret = -ESRCH; struct mm_struct *mm; if (!task) goto out_no_task; if (!MAY_PTRACE(task) || !ptrace_may_attach(task)) goto out; ret = -ENOMEM; page = (char *)__get_free_page(GFP_USER); if (!page) goto out; ret = 0; mm = get_task_mm(task); if (!mm) goto out_free; ret = -EIO; if (file->private_data != (void*)((long)current->self_exec_id)) goto out_put; ret = 0; while (count > 0) { int this_len, retval; this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count; retval = access_process_vm(task, src, page, this_len, 0); if (!retval || !MAY_PTRACE(task) || !ptrace_may_attach(task)) { if (!ret) ret = -EIO; break; } if (copy_to_user(buf, page, retval)) { ret = -EFAULT; break; } ret += retval; src += retval; buf += retval; count -= retval; } *ppos = src; out_put: mmput(mm); out_free: free_page((unsigned long) page); out: put_task_struct(task); out_no_task: return ret; } #define mem_write NULL #ifndef mem_write /* This is a security hazard */ static ssize_t mem_write(struct file * file, const char * buf, size_t count, loff_t *ppos) { int copied; char *page; struct task_struct *task = get_proc_task(file->f_dentry->d_inode); unsigned long dst = *ppos; copied = -ESRCH; if (!task) goto out_no_task; if (!MAY_PTRACE(task) || !ptrace_may_attach(task)) goto out; copied = -ENOMEM; page = (char *)__get_free_page(GFP_USER); if (!page) goto out; copied = 0; while (count > 0) { int this_len, retval; this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count; if (copy_from_user(page, buf, this_len)) { copied = -EFAULT; break; } retval = access_process_vm(task, dst, page, this_len, 1); if (!retval) { if (!copied) copied = -EIO; break; } copied += retval; buf += retval; dst += retval; count -= retval; } *ppos = dst; free_page((unsigned long) page); out: put_task_struct(task); out_no_task: return copied; } #endif static loff_t mem_lseek(struct file * file, loff_t offset, int orig) { switch (orig) { case 0: file->f_pos = offset; break; case 1: file->f_pos += offset; break; default: return -EINVAL; } force_successful_syscall_return(); return file->f_pos; } static struct file_operations proc_mem_operations = { .llseek = mem_lseek, .read = mem_read, .write = mem_write, .open = mem_open, }; static ssize_t oom_adjust_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) { struct task_struct *task = get_proc_task(file->f_dentry->d_inode); char buffer[PROC_NUMBUF]; size_t len; int oom_adjust; loff_t __ppos = *ppos; if (!task) return -ESRCH; oom_adjust = task->oomkilladj; put_task_struct(task); len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust); if (__ppos >= len) return 0; if (count > len-__ppos) count = len-__ppos; if (copy_to_user(buf, buffer + __ppos, count)) return -EFAULT; *ppos = __ppos + count; return count; } static ssize_t oom_adjust_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { struct task_struct *task; char buffer[PROC_NUMBUF], *end; int oom_adjust; if (!capable(CAP_SYS_RESOURCE)) return -EPERM; memset(buffer, 0, sizeof(buffer)); if (count > sizeof(buffer) - 1) count = sizeof(buffer) - 1; if (copy_from_user(buffer, buf, count)) return -EFAULT; oom_adjust = simple_strtol(buffer, &end, 0); if ((oom_adjust < -16 || oom_adjust > 15) && oom_adjust != OOM_DISABLE) return -EINVAL; if (*end == '\n') end++; task = get_proc_task(file->f_dentry->d_inode); if (!task) return -ESRCH; task->oomkilladj = oom_adjust; put_task_struct(task); if (end - buffer == 0) return -EIO; return end - buffer; } static struct file_operations proc_oom_adjust_operations = { .read = oom_adjust_read, .write = oom_adjust_write, }; #ifdef CONFIG_AUDITSYSCALL #define TMPBUFLEN 21 static ssize_t proc_loginuid_read(struct file * file, char __user * buf, size_t count, loff_t *ppos) { struct inode * inode = file->f_dentry->d_inode; struct task_struct *task = get_proc_task(inode); ssize_t length; char tmpbuf[TMPBUFLEN]; if (!task) return -ESRCH; length = scnprintf(tmpbuf, TMPBUFLEN, "%u", audit_get_loginuid(task->audit_context)); put_task_struct(task); return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); } static ssize_t proc_loginuid_write(struct file * file, const char __user * buf, size_t count, loff_t *ppos) { struct inode * inode = file->f_dentry->d_inode; char *page, *tmp; ssize_t length; uid_t loginuid; if (!capable(CAP_AUDIT_CONTROL)) return -EPERM; if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) return -EPERM; if (count >= PAGE_SIZE) count = PAGE_SIZE - 1; if (*ppos != 0) { /* No partial writes. */ return -EINVAL; } page = (char*)__get_free_page(GFP_USER); if (!page) return -ENOMEM; length = -EFAULT; if (copy_from_user(page, buf, count)) goto out_free_page; page[count] = '\0'; loginuid = simple_strtoul(page, &tmp, 10); if (tmp == page) { length = -EINVAL; goto out_free_page; } length = audit_set_loginuid(current, loginuid); if (likely(length == 0)) length = count; out_free_page: free_page((unsigned long) page); return length; } static struct file_operations proc_loginuid_operations = { .read = proc_loginuid_read, .write = proc_loginuid_write, }; #endif #ifdef CONFIG_SECCOMP static ssize_t seccomp_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) { struct task_struct *tsk = get_proc_task(file->f_dentry->d_inode); char __buf[20]; loff_t __ppos = *ppos; size_t len; if (!tsk) return -ESRCH; /* no need to print the trailing zero, so use only len */ len = sprintf(__buf, "%u\n", tsk->seccomp.mode); put_task_struct(tsk); if (__ppos >= len) return 0; if (count > len - __ppos) count = len - __ppos; if (copy_to_user(buf, __buf + __ppos, count)) return -EFAULT; *ppos = __ppos + count; return count; } static ssize_t seccomp_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { struct task_struct *tsk = get_proc_task(file->f_dentry->d_inode); char __buf[20], *end; unsigned int seccomp_mode; ssize_t result; result = -ESRCH; if (!tsk) goto out_no_task; /* can set it only once to be even more secure */ result = -EPERM; if (unlikely(tsk->seccomp.mode)) goto out; result = -EFAULT; memset(__buf, 0, sizeof(__buf)); count = min(count, sizeof(__buf) - 1); if (copy_from_user(__buf, buf, count)) goto out; seccomp_mode = simple_strtoul(__buf, &end, 0); if (*end == '\n') end++; result = -EINVAL; if (seccomp_mode && seccomp_mode <= NR_SECCOMP_MODES) { tsk->seccomp.mode = seccomp_mode; set_tsk_thread_flag(tsk, TIF_SECCOMP); } else goto out; result = -EIO; if (unlikely(!(end - __buf))) goto out; result = end - __buf; out: put_task_struct(tsk); out_no_task: return result; } static struct file_operations proc_seccomp_operations = { .read = seccomp_read, .write = seccomp_write, }; #endif /* CONFIG_SECCOMP */ static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd) { struct inode *inode = dentry->d_inode; int error = -EACCES; /* We don't need a base pointer in the /proc filesystem */ path_release(nd); /* Are we allowed to snoop on the tasks file descriptors? */ if (!proc_fd_access_allowed(inode)) goto out; error = PROC_I(inode)->op.proc_get_link(inode, &nd->dentry, &nd->mnt); nd->last_type = LAST_BIND; out: return ERR_PTR(error); } static int do_proc_readlink(struct dentry *dentry, struct vfsmount *mnt, char __user *buffer, int buflen) { struct inode * inode; char *tmp = (char*)__get_free_page(GFP_KERNEL), *path; int len; if (!tmp) return -ENOMEM; inode = dentry->d_inode; path = d_path(dentry, mnt, tmp, PAGE_SIZE); len = PTR_ERR(path); if (IS_ERR(path)) goto out; len = tmp + PAGE_SIZE - 1 - path; if (len > buflen) len = buflen; if (copy_to_user(buffer, path, len)) len = -EFAULT; out: free_page((unsigned long)tmp); return len; } static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen) { int error = -EACCES; struct inode *inode = dentry->d_inode; struct dentry *de; struct vfsmount *mnt = NULL; /* Are we allowed to snoop on the tasks file descriptors? */ if (!proc_fd_access_allowed(inode)) goto out; error = PROC_I(inode)->op.proc_get_link(inode, &de, &mnt); if (error) goto out; error = do_proc_readlink(de, mnt, buffer, buflen); dput(de); mntput(mnt); out: return error; } static struct inode_operations proc_pid_link_inode_operations = { .readlink = proc_pid_readlink, .follow_link = proc_pid_follow_link, .setattr = proc_setattr, }; /* building an inode */ static int task_dumpable(struct task_struct *task) { int dumpable = 0; struct mm_struct *mm; task_lock(task); mm = task->mm; if (mm) dumpable = mm->dumpable; task_unlock(task); if(dumpable == 1) return 1; return 0; } static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task) { struct inode * inode; struct proc_inode *ei; /* We need a new inode */ inode = new_inode(sb); if (!inode) goto out; /* Common stuff */ ei = PROC_I(inode); inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; inode->i_op = &proc_def_inode_operations; /* * grab the reference to task. */ ei->pid = get_pid(task->pids[PIDTYPE_PID].pid); if (!ei->pid) goto out_unlock; inode->i_uid = 0; inode->i_gid = 0; if (task_dumpable(task)) { inode->i_uid = task->euid; inode->i_gid = task->egid; } security_task_to_inode(task, inode); out: return inode; out_unlock: iput(inode); return NULL; } static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat) { struct inode *inode = dentry->d_inode; struct task_struct *task; generic_fillattr(inode, stat); rcu_read_lock(); stat->uid = 0; stat->gid = 0; task = pid_task(proc_pid(inode), PIDTYPE_PID); if (task) { if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) || task_dumpable(task)) { stat->uid = task->euid; stat->gid = task->egid; } } rcu_read_unlock(); return 0; } /* dentry stuff */ /* * Exceptional case: normally we are not allowed to unhash a busy * directory. In this case, however, we can do it - no aliasing problems * due to the way we treat inodes. * * Rewrite the inode's ownerships here because the owning task may have * performed a setuid(), etc. * * Before the /proc/pid/status file was created the only way to read * the effective uid of a /process was to stat /proc/pid. Reading * /proc/pid/status is slow enough that procps and other packages * kept stating /proc/pid. To keep the rules in /proc simple I have * made this apply to all per process world readable and executable * directories. */ static int pid_revalidate(struct dentry *dentry, struct nameidata *nd) { struct inode *inode = dentry->d_inode; struct task_struct *task = get_proc_task(inode); if (task) { if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) || task_dumpable(task)) { inode->i_uid = task->euid; inode->i_gid = task->egid; } else { inode->i_uid = 0; inode->i_gid = 0; } inode->i_mode &= ~(S_ISUID | S_ISGID); security_task_to_inode(task, inode); put_task_struct(task); return 1; } d_drop(dentry); return 0; } static int pid_delete_dentry(struct dentry * dentry) { /* Is the task we represent dead? * If so, then don't put the dentry on the lru list, * kill it immediately. */ return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first; } static struct dentry_operations pid_dentry_operations = { .d_revalidate = pid_revalidate, .d_delete = pid_delete_dentry, }; /* Lookups */ typedef struct dentry *instantiate_t(struct inode *, struct dentry *, struct task_struct *, void *); static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir, char *name, int len, instantiate_t instantiate, struct task_struct *task, void *ptr) { struct dentry *child, *dir = filp->f_dentry; struct inode *inode; struct qstr qname; ino_t ino = 0; unsigned type = DT_UNKNOWN; qname.name = name; qname.len = len; qname.hash = full_name_hash(name, len); child = d_lookup(dir, &qname); if (!child) { struct dentry *new; new = d_alloc(dir, &qname); if (new) { child = instantiate(dir->d_inode, new, task, ptr); if (child) dput(new); else child = new; } } if (!child || IS_ERR(child) || !child->d_inode) goto end_instantiate; inode = child->d_inode; if (inode) { ino = inode->i_ino; type = inode->i_mode >> 12; } dput(child); end_instantiate: if (!ino) ino = find_inode_number(dir, &qname); if (!ino) ino = 1; return filldir(dirent, name, len, filp->f_pos, ino, type); } static unsigned name_to_int(struct dentry *dentry) { const char *name = dentry->d_name.name; int len = dentry->d_name.len; unsigned n = 0; if (len > 1 && *name == '0') goto out; while (len-- > 0) { unsigned c = *name++ - '0'; if (c > 9) goto out; if (n >= (~0U-9)/10) goto out; n *= 10; n += c; } return n; out: return ~0U; } static int proc_fd_link(struct inode *inode, struct dentry **dentry, struct vfsmount **mnt) { struct task_struct *task = get_proc_task(inode); struct files_struct *files = NULL; struct file *file; int fd = proc_fd(inode); if (task) { files = get_files_struct(task); put_task_struct(task); } if (files) { /* * We are not taking a ref to the file structure, so we must * hold ->file_lock. */ spin_lock(&files->file_lock); file = fcheck_files(files, fd); if (file) { *mnt = mntget(file->f_vfsmnt); *dentry = dget(file->f_dentry); spin_unlock(&files->file_lock); put_files_struct(files); return 0; } spin_unlock(&files->file_lock); put_files_struct(files); } return -ENOENT; } static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd) { struct inode *inode = dentry->d_inode; struct task_struct *task = get_proc_task(inode); int fd = proc_fd(inode); struct files_struct *files; if (task) { files = get_files_struct(task); if (files) { rcu_read_lock(); if (fcheck_files(files, fd)) { rcu_read_unlock(); put_files_struct(files); if (task_dumpable(task)) { inode->i_uid = task->euid; inode->i_gid = task->egid; } else { inode->i_uid = 0; inode->i_gid = 0; } inode->i_mode &= ~(S_ISUID | S_ISGID); security_task_to_inode(task, inode); put_task_struct(task); return 1; } rcu_read_unlock(); put_files_struct(files); } put_task_struct(task); } d_drop(dentry); return 0; } static struct dentry_operations tid_fd_dentry_operations = { .d_revalidate = tid_fd_revalidate, .d_delete = pid_delete_dentry, }; static struct dentry *proc_fd_instantiate(struct inode *dir, struct dentry *dentry, struct task_struct *task, void *ptr) { unsigned fd = *(unsigned *)ptr; struct file *file; struct files_struct *files; struct inode *inode; struct proc_inode *ei; struct dentry *error = ERR_PTR(-ENOENT); inode = proc_pid_make_inode(dir->i_sb, task); if (!inode) goto out; ei = PROC_I(inode); ei->fd = fd; files = get_files_struct(task); if (!files) goto out_iput; inode->i_mode = S_IFLNK; /* * We are not taking a ref to the file structure, so we must * hold ->file_lock. */ spin_lock(&files->file_lock); file = fcheck_files(files, fd); if (!file) goto out_unlock; if (file->f_mode & 1) inode->i_mode |= S_IRUSR | S_IXUSR; if (file->f_mode & 2) inode->i_mode |= S_IWUSR | S_IXUSR; spin_unlock(&files->file_lock); put_files_struct(files); inode->i_op = &proc_pid_link_inode_operations; inode->i_size = 64; ei->op.proc_get_link = proc_fd_link; dentry->d_op = &tid_fd_dentry_operations; d_add(dentry, inode); /* Close the race of the process dying before we return the dentry */ if (tid_fd_revalidate(dentry, NULL)) error = NULL; out: return error; out_unlock: spin_unlock(&files->file_lock); put_files_struct(files); out_iput: iput(inode); goto out; } /* SMP-safe */ static struct dentry *proc_lookupfd(struct inode * dir, struct dentry * dentry, struct nameidata *nd) { struct task_struct *task = get_proc_task(dir); unsigned fd = name_to_int(dentry); struct dentry *result = ERR_PTR(-ENOENT); if (!task) goto out_no_task; if (fd == ~0U) goto out; result = proc_fd_instantiate(dir, dentry, task, &fd); out: put_task_struct(task); out_no_task: return result; } static int proc_fd_fill_cache(struct file *filp, void *dirent, filldir_t filldir, struct task_struct *task, int fd) { char name[PROC_NUMBUF]; int len = snprintf(name, sizeof(name), "%d", fd); return proc_fill_cache(filp, dirent, filldir, name, len, proc_fd_instantiate, task, &fd); } static int proc_readfd(struct file * filp, void * dirent, filldir_t filldir) { struct dentry *dentry = filp->f_dentry; struct inode *inode = dentry->d_inode; struct task_struct *p = get_proc_task(inode); unsigned int fd, tid, ino; int retval; struct files_struct * files; struct fdtable *fdt; retval = -ENOENT; if (!p) goto out_no_task; retval = 0; tid = p->pid; fd = filp->f_pos; switch (fd) { case 0: if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0) goto out; filp->f_pos++; case 1: ino = parent_ino(dentry); if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0) goto out; filp->f_pos++; default: files = get_files_struct(p); if (!files) goto out; rcu_read_lock(); fdt = files_fdtable(files); for (fd = filp->f_pos-2; fd < fdt->max_fds; fd++, filp->f_pos++) { if (!fcheck_files(files, fd)) continue; rcu_read_unlock(); if (proc_fd_fill_cache(filp, dirent, filldir, p, fd) < 0) { rcu_read_lock(); break; } rcu_read_lock(); } rcu_read_unlock(); put_files_struct(files); } out: put_task_struct(p); out_no_task: return retval; } static struct file_operations proc_fd_operations = { .read = generic_read_dir, .readdir = proc_readfd, }; /* * proc directories can do almost nothing.. */ static struct inode_operations proc_fd_inode_operations = { .lookup = proc_lookupfd, .setattr = proc_setattr, }; static struct dentry *proc_pident_instantiate(struct inode *dir, struct dentry *dentry, struct task_struct *task, void *ptr) { struct pid_entry *p = ptr; struct inode *inode; struct proc_inode *ei; struct dentry *error = ERR_PTR(-EINVAL); inode = proc_pid_make_inode(dir->i_sb, task); if (!inode) goto out; ei = PROC_I(inode); inode->i_mode = p->mode; if (S_ISDIR(inode->i_mode)) inode->i_nlink = 2; /* Use getattr to fix if necessary */ if (p->iop) inode->i_op = p->iop; if (p->fop) inode->i_fop = p->fop; ei->op = p->op; dentry->d_op = &pid_dentry_operations; d_add(dentry, inode); /* Close the race of the process dying before we return the dentry */ if (pid_revalidate(dentry, NULL)) error = NULL; out: return error; } /* SMP-safe */ static struct dentry *proc_pident_lookup(struct inode *dir, struct dentry *dentry, struct pid_entry *ents) { struct inode *inode; struct dentry *error; struct task_struct *task = get_proc_task(dir); struct pid_entry *p; error = ERR_PTR(-ENOENT); inode = NULL; if (!task) goto out_no_task; /* * Yes, it does not scale. And it should not. Don't add * new entries into /proc// without very good reasons. */ for (p = ents; p->name; p++) { if (p->len != dentry->d_name.len) continue; if (!memcmp(dentry->d_name.name, p->name, p->len)) break; } if (!p->name) goto out; error = proc_pident_instantiate(dir, dentry, task, p); out: put_task_struct(task); out_no_task: return error; } static int proc_pident_fill_cache(struct file *filp, void *dirent, filldir_t filldir, struct task_struct *task, struct pid_entry *p) { return proc_fill_cache(filp, dirent, filldir, p->name, p->len, proc_pident_instantiate, task, p); } static int proc_pident_readdir(struct file *filp, void *dirent, filldir_t filldir, struct pid_entry *ents, unsigned int nents) { int i; int pid; struct dentry *dentry = filp->f_dentry; struct inode *inode = dentry->d_inode; struct task_struct *task = get_proc_task(inode); struct pid_entry *p; ino_t ino; int ret; ret = -ENOENT; if (!task) goto out_no_task; ret = 0; pid = task->pid; i = filp->f_pos; switch (i) { case 0: ino = inode->i_ino; if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0) goto out; i++; filp->f_pos++; /* fall through */ case 1: ino = parent_ino(dentry); if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0) goto out; i++; filp->f_pos++; /* fall through */ default: i -= 2; if (i >= nents) { ret = 1; goto out; } p = ents + i; while (p->name) { if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0) goto out; filp->f_pos++; p++; } } ret = 1; out: put_task_struct(task); out_no_task: return ret; } #ifdef CONFIG_SECURITY static ssize_t proc_pid_attr_read(struct file * file, char __user * buf, size_t count, loff_t *ppos) { struct inode * inode = file->f_dentry->d_inode; unsigned long page; ssize_t length; struct task_struct *task = get_proc_task(inode); length = -ESRCH; if (!task) goto out_no_task; if (count > PAGE_SIZE) count = PAGE_SIZE; length = -ENOMEM; if (!(page = __get_free_page(GFP_KERNEL))) goto out; length = security_getprocattr(task, (char*)file->f_dentry->d_name.name, (void*)page, count); if (length >= 0) length = simple_read_from_buffer(buf, count, ppos, (char *)page, length); free_page(page); out: put_task_struct(task); out_no_task: return length; } static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf, size_t count, loff_t *ppos) { struct inode * inode = file->f_dentry->d_inode; char *page; ssize_t length; struct task_struct *task = get_proc_task(inode); length = -ESRCH; if (!task) goto out_no_task; if (count > PAGE_SIZE) count = PAGE_SIZE; /* No partial writes. */ length = -EINVAL; if (*ppos != 0) goto out; length = -ENOMEM; page = (char*)__get_free_page(GFP_USER); if (!page) goto out; length = -EFAULT; if (copy_from_user(page, buf, count)) goto out_free; length = security_setprocattr(task, (char*)file->f_dentry->d_name.name, (void*)page, count); out_free: free_page((unsigned long) page); out: put_task_struct(task); out_no_task: return length; } static struct file_operations proc_pid_attr_operations = { .read = proc_pid_attr_read, .write = proc_pid_attr_write, }; static struct pid_entry attr_dir_stuff[] = { REG("current", S_IRUGO|S_IWUGO, pid_attr), REG("prev", S_IRUGO, pid_attr), REG("exec", S_IRUGO|S_IWUGO, pid_attr), REG("fscreate", S_IRUGO|S_IWUGO, pid_attr), REG("keycreate", S_IRUGO|S_IWUGO, pid_attr), REG("sockcreate", S_IRUGO|S_IWUGO, pid_attr), {} }; static int proc_attr_dir_readdir(struct file * filp, void * dirent, filldir_t filldir) { return proc_pident_readdir(filp,dirent,filldir, attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff)); } static struct file_operations proc_attr_dir_operations = { .read = generic_read_dir, .readdir = proc_attr_dir_readdir, }; static struct dentry *proc_attr_dir_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd) { return proc_pident_lookup(dir, dentry, attr_dir_stuff); } static struct inode_operations proc_attr_dir_inode_operations = { .lookup = proc_attr_dir_lookup, .getattr = pid_getattr, .setattr = proc_setattr, }; #endif /* * /proc/self: */ static int proc_self_readlink(struct dentry *dentry, char __user *buffer, int buflen) { char tmp[PROC_NUMBUF]; sprintf(tmp, "%d", current->tgid); return vfs_readlink(dentry,buffer,buflen,tmp); } static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd) { char tmp[PROC_NUMBUF]; sprintf(tmp, "%d", current->tgid); return ERR_PTR(vfs_follow_link(nd,tmp)); } static struct inode_operations proc_self_inode_operations = { .readlink = proc_self_readlink, .follow_link = proc_self_follow_link, }; /* * proc base * * These are the directory entries in the root directory of /proc * that properly belong to the /proc filesystem, as they describe * describe something that is process related. */ static struct pid_entry proc_base_stuff[] = { NOD("self", S_IFLNK|S_IRWXUGO, &proc_self_inode_operations, NULL, {}), {} }; /* * Exceptional case: normally we are not allowed to unhash a busy * directory. In this case, however, we can do it - no aliasing problems * due to the way we treat inodes. */ static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd) { struct inode *inode = dentry->d_inode; struct task_struct *task = get_proc_task(inode); if (task) { put_task_struct(task); return 1; } d_drop(dentry); return 0; } static struct dentry_operations proc_base_dentry_operations = { .d_revalidate = proc_base_revalidate, .d_delete = pid_delete_dentry, }; static struct dentry *proc_base_instantiate(struct inode *dir, struct dentry *dentry, struct task_struct *task, void *ptr) { struct pid_entry *p = ptr; struct inode *inode; struct proc_inode *ei; struct dentry *error = ERR_PTR(-EINVAL); /* Allocate the inode */ error = ERR_PTR(-ENOMEM); inode = new_inode(dir->i_sb); if (!inode) goto out; /* Initialize the inode */ ei = PROC_I(inode); inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; /* * grab the reference to the task. */ ei->pid = get_pid(task_pid(task)); if (!ei->pid) goto out_iput; inode->i_uid = 0; inode->i_gid = 0; inode->i_mode = p->mode; if (S_ISDIR(inode->i_mode)) inode->i_nlink = 2; if (S_ISLNK(inode->i_mode)) inode->i_size = 64; if (p->iop) inode->i_op = p->iop; if (p->fop) inode->i_fop = p->fop; ei->op = p->op; dentry->d_op = &proc_base_dentry_operations; d_add(dentry, inode); error = NULL; out: return error; out_iput: iput(inode); goto out; } static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry) { struct dentry *error; struct task_struct *task = get_proc_task(dir); struct pid_entry *p; error = ERR_PTR(-ENOENT); if (!task) goto out_no_task; /* Lookup the directory entry */ for (p = proc_base_stuff; p->name; p++) { if (p->len != dentry->d_name.len) continue; if (!memcmp(dentry->d_name.name, p->name, p->len)) break; } if (!p->name) goto out; error = proc_base_instantiate(dir, dentry, task, p); out: put_task_struct(task); out_no_task: return error; } static int proc_base_fill_cache(struct file *filp, void *dirent, filldir_t filldir, struct task_struct *task, struct pid_entry *p) { return proc_fill_cache(filp, dirent, filldir, p->name, p->len, proc_base_instantiate, task, p); } /* * Thread groups */ static struct file_operations proc_task_operations; static struct inode_operations proc_task_inode_operations; static struct pid_entry tgid_base_stuff[] = { DIR("task", S_IRUGO|S_IXUGO, task), DIR("fd", S_IRUSR|S_IXUSR, fd), INF("environ", S_IRUSR, pid_environ), INF("auxv", S_IRUSR, pid_auxv), INF("status", S_IRUGO, pid_status), INF("cmdline", S_IRUGO, pid_cmdline), INF("stat", S_IRUGO, tgid_stat), INF("statm", S_IRUGO, pid_statm), REG("maps", S_IRUGO, maps), #ifdef CONFIG_NUMA REG("numa_maps", S_IRUGO, numa_maps), #endif REG("mem", S_IRUSR|S_IWUSR, mem), #ifdef CONFIG_SECCOMP REG("seccomp", S_IRUSR|S_IWUSR, seccomp), #endif LNK("cwd", cwd), LNK("root", root), LNK("exe", exe), REG("mounts", S_IRUGO, mounts), REG("mountstats", S_IRUSR, mountstats), #ifdef CONFIG_MMU REG("smaps", S_IRUGO, smaps), #endif #ifdef CONFIG_SECURITY DIR("attr", S_IRUGO|S_IXUGO, attr_dir), #endif #ifdef CONFIG_KALLSYMS INF("wchan", S_IRUGO, pid_wchan), #endif #ifdef CONFIG_SCHEDSTATS INF("schedstat", S_IRUGO, pid_schedstat), #endif #ifdef CONFIG_CPUSETS REG("cpuset", S_IRUGO, cpuset), #endif INF("oom_score", S_IRUGO, oom_score), REG("oom_adj", S_IRUGO|S_IWUSR, oom_adjust), #ifdef CONFIG_AUDITSYSCALL REG("loginuid", S_IWUSR|S_IRUGO, loginuid), #endif {} }; static int proc_tgid_base_readdir(struct file * filp, void * dirent, filldir_t filldir) { return proc_pident_readdir(filp,dirent,filldir, tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff)); } static struct file_operations proc_tgid_base_operations = { .read = generic_read_dir, .readdir = proc_tgid_base_readdir, }; static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){ return proc_pident_lookup(dir, dentry, tgid_base_stuff); } static struct inode_operations proc_tgid_base_inode_operations = { .lookup = proc_tgid_base_lookup, .getattr = pid_getattr, .setattr = proc_setattr, }; /** * proc_flush_task - Remove dcache entries for @task from the /proc dcache. * * @task: task that should be flushed. * * Looks in the dcache for * /proc/@pid * /proc/@tgid/task/@pid * if either directory is present flushes it and all of it'ts children * from the dcache. * * It is safe and reasonable to cache /proc entries for a task until * that task exits. After that they just clog up the dcache with * useless entries, possibly causing useful dcache entries to be * flushed instead. This routine is proved to flush those useless * dcache entries at process exit time. * * NOTE: This routine is just an optimization so it does not guarantee * that no dcache entries will exist at process exit time it * just makes it very unlikely that any will persist. */ void proc_flush_task(struct task_struct *task) { struct dentry *dentry, *leader, *dir; char buf[PROC_NUMBUF]; struct qstr name; name.name = buf; name.len = snprintf(buf, sizeof(buf), "%d", task->pid); dentry = d_hash_and_lookup(proc_mnt->mnt_root, &name); if (dentry) { shrink_dcache_parent(dentry); d_drop(dentry); dput(dentry); } if (thread_group_leader(task)) goto out; name.name = buf; name.len = snprintf(buf, sizeof(buf), "%d", task->tgid); leader = d_hash_and_lookup(proc_mnt->mnt_root, &name); if (!leader) goto out; name.name = "task"; name.len = strlen(name.name); dir = d_hash_and_lookup(leader, &name); if (!dir) goto out_put_leader; name.name = buf; name.len = snprintf(buf, sizeof(buf), "%d", task->pid); dentry = d_hash_and_lookup(dir, &name); if (dentry) { shrink_dcache_parent(dentry); d_drop(dentry); dput(dentry); } dput(dir); out_put_leader: dput(leader); out: return; } struct dentry *proc_pid_instantiate(struct inode *dir, struct dentry * dentry, struct task_struct *task, void *ptr) { struct dentry *error = ERR_PTR(-ENOENT); struct inode *inode; inode = proc_pid_make_inode(dir->i_sb, task); if (!inode) goto out; inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO; inode->i_op = &proc_tgid_base_inode_operations; inode->i_fop = &proc_tgid_base_operations; inode->i_flags|=S_IMMUTABLE; inode->i_nlink = 4; #ifdef CONFIG_SECURITY inode->i_nlink += 1; #endif dentry->d_op = &pid_dentry_operations; d_add(dentry, inode); /* Close the race of the process dying before we return the dentry */ if (pid_revalidate(dentry, NULL)) error = NULL; out: return error; } /* SMP-safe */ struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd) { struct dentry *result = ERR_PTR(-ENOENT); struct task_struct *task; unsigned tgid; result = proc_base_lookup(dir, dentry); if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT) goto out; tgid = name_to_int(dentry); if (tgid == ~0U) goto out; rcu_read_lock(); task = find_task_by_pid(tgid); if (task) get_task_struct(task); rcu_read_unlock(); if (!task) goto out; result = proc_pid_instantiate(dir, dentry, task, NULL); put_task_struct(task); out: return result; } /* * Find the first task with tgid >= tgid * */ static struct task_struct *next_tgid(unsigned int tgid) { struct task_struct *task; struct pid *pid; rcu_read_lock(); retry: task = NULL; pid = find_ge_pid(tgid); if (pid) { tgid = pid->nr + 1; task = pid_task(pid, PIDTYPE_PID); /* What we to know is if the pid we have find is the * pid of a thread_group_leader. Testing for task * being a thread_group_leader is the obvious thing * todo but there is a window when it fails, due to * the pid transfer logic in de_thread. * * So we perform the straight forward test of seeing * if the pid we have found is the pid of a thread * group leader, and don't worry if the task we have * found doesn't happen to be a thread group leader. * As we don't care in the case of readdir. */ if (!task || !has_group_leader_pid(task)) goto retry; get_task_struct(task); } rcu_read_unlock(); return task; } #define TGID_OFFSET (FIRST_PROCESS_ENTRY + (1 /* /proc/self */)) static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir, struct task_struct *task, int tgid) { char name[PROC_NUMBUF]; int len = snprintf(name, sizeof(name), "%d", tgid); return proc_fill_cache(filp, dirent, filldir, name, len, proc_pid_instantiate, task, NULL); } /* for the /proc/ directory itself, after non-process stuff has been done */ int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir) { unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY; struct task_struct *reaper = get_proc_task(filp->f_dentry->d_inode); struct task_struct *task; int tgid; if (!reaper) goto out_no_task; for (; nr < (ARRAY_SIZE(proc_base_stuff) - 1); filp->f_pos++, nr++) { struct pid_entry *p = &proc_base_stuff[nr]; if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0) goto out; } tgid = filp->f_pos - TGID_OFFSET; for (task = next_tgid(tgid); task; put_task_struct(task), task = next_tgid(tgid + 1)) { tgid = task->pid; filp->f_pos = tgid + TGID_OFFSET; if (proc_pid_fill_cache(filp, dirent, filldir, task, tgid) < 0) { put_task_struct(task); goto out; } } filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET; out: put_task_struct(reaper); out_no_task: return 0; } /* * Tasks */ static struct pid_entry tid_base_stuff[] = { DIR("fd", S_IRUSR|S_IXUSR, fd), INF("environ", S_IRUSR, pid_environ), INF("auxv", S_IRUSR, pid_auxv), INF("status", S_IRUGO, pid_status), INF("cmdline", S_IRUGO, pid_cmdline), INF("stat", S_IRUGO, tid_stat), INF("statm", S_IRUGO, pid_statm), REG("maps", S_IRUGO, maps), #ifdef CONFIG_NUMA REG("numa_maps", S_IRUGO, numa_maps), #endif REG("mem", S_IRUSR|S_IWUSR, mem), #ifdef CONFIG_SECCOMP REG("seccomp", S_IRUSR|S_IWUSR, seccomp), #endif LNK("cwd", cwd), LNK("root", root), LNK("exe", exe), REG("mounts", S_IRUGO, mounts), #ifdef CONFIG_MMU REG("smaps", S_IRUGO, smaps), #endif #ifdef CONFIG_SECURITY DIR("attr", S_IRUGO|S_IXUGO, attr_dir), #endif #ifdef CONFIG_KALLSYMS INF("wchan", S_IRUGO, pid_wchan), #endif #ifdef CONFIG_SCHEDSTATS INF("schedstat", S_IRUGO, pid_schedstat), #endif #ifdef CONFIG_CPUSETS REG("cpuset", S_IRUGO, cpuset), #endif INF("oom_score", S_IRUGO, oom_score), REG("oom_adj", S_IRUGO|S_IWUSR, oom_adjust), #ifdef CONFIG_AUDITSYSCALL REG("loginuid", S_IWUSR|S_IRUGO, loginuid), #endif {} }; static int proc_tid_base_readdir(struct file * filp, void * dirent, filldir_t filldir) { return proc_pident_readdir(filp,dirent,filldir, tid_base_stuff,ARRAY_SIZE(tid_base_stuff)); } static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){ return proc_pident_lookup(dir, dentry, tid_base_stuff); } static struct file_operations proc_tid_base_operations = { .read = generic_read_dir, .readdir = proc_tid_base_readdir, }; static struct inode_operations proc_tid_base_inode_operations = { .lookup = proc_tid_base_lookup, .getattr = pid_getattr, .setattr = proc_setattr, }; static struct dentry *proc_task_instantiate(struct inode *dir, struct dentry *dentry, struct task_struct *task, void *ptr) { struct dentry *error = ERR_PTR(-ENOENT); struct inode *inode; inode = proc_pid_make_inode(dir->i_sb, task); if (!inode) goto out; inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO; inode->i_op = &proc_tid_base_inode_operations; inode->i_fop = &proc_tid_base_operations; inode->i_flags|=S_IMMUTABLE; inode->i_nlink = 3; #ifdef CONFIG_SECURITY inode->i_nlink += 1; #endif dentry->d_op = &pid_dentry_operations; d_add(dentry, inode); /* Close the race of the process dying before we return the dentry */ if (pid_revalidate(dentry, NULL)) error = NULL; out: return error; } /* SMP-safe */ static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd) { struct dentry *result = ERR_PTR(-ENOENT); struct task_struct *task; struct task_struct *leader = get_proc_task(dir); unsigned tid; if (!leader) goto out_no_task; tid = name_to_int(dentry); if (tid == ~0U) goto out; rcu_read_lock(); task = find_task_by_pid(tid); if (task) get_task_struct(task); rcu_read_unlock(); if (!task) goto out; if (leader->tgid != task->tgid) goto out_drop_task; result = proc_task_instantiate(dir, dentry, task, NULL); out_drop_task: put_task_struct(task); out: put_task_struct(leader); out_no_task: return result; } /* * Find the first tid of a thread group to return to user space. * * Usually this is just the thread group leader, but if the users * buffer was too small or there was a seek into the middle of the * directory we have more work todo. * * In the case of a short read we start with find_task_by_pid. * * In the case of a seek we start with the leader and walk nr * threads past it. */ static struct task_struct *first_tid(struct task_struct *leader, int tid, int nr) { struct task_struct *pos; rcu_read_lock(); /* Attempt to start with the pid of a thread */ if (tid && (nr > 0)) { pos = find_task_by_pid(tid); if (pos && (pos->group_leader == leader)) goto found; } /* If nr exceeds the number of threads there is nothing todo */ pos = NULL; if (nr && nr >= get_nr_threads(leader)) goto out; /* If we haven't found our starting place yet start * with the leader and walk nr threads forward. */ for (pos = leader; nr > 0; --nr) { pos = next_thread(pos); if (pos == leader) { pos = NULL; goto out; } } found: get_task_struct(pos); out: rcu_read_unlock(); return pos; } /* * Find the next thread in the thread list. * Return NULL if there is an error or no next thread. * * The reference to the input task_struct is released. */ static struct task_struct *next_tid(struct task_struct *start) { struct task_struct *pos = NULL; rcu_read_lock(); if (pid_alive(start)) { pos = next_thread(start); if (thread_group_leader(pos)) pos = NULL; else get_task_struct(pos); } rcu_read_unlock(); put_task_struct(start); return pos; } static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir, struct task_struct *task, int tid) { char name[PROC_NUMBUF]; int len = snprintf(name, sizeof(name), "%d", tid); return proc_fill_cache(filp, dirent, filldir, name, len, proc_task_instantiate, task, NULL); } /* for the /proc/TGID/task/ directories */ static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir) { struct dentry *dentry = filp->f_dentry; struct inode *inode = dentry->d_inode; struct task_struct *leader = get_proc_task(inode); struct task_struct *task; int retval = -ENOENT; ino_t ino; int tid; unsigned long pos = filp->f_pos; /* avoiding "long long" filp->f_pos */ if (!leader) goto out_no_task; retval = 0; switch (pos) { case 0: ino = inode->i_ino; if (filldir(dirent, ".", 1, pos, ino, DT_DIR) < 0) goto out; pos++; /* fall through */ case 1: ino = parent_ino(dentry); if (filldir(dirent, "..", 2, pos, ino, DT_DIR) < 0) goto out; pos++; /* fall through */ } /* f_version caches the tgid value that the last readdir call couldn't * return. lseek aka telldir automagically resets f_version to 0. */ tid = filp->f_version; filp->f_version = 0; for (task = first_tid(leader, tid, pos - 2); task; task = next_tid(task), pos++) { tid = task->pid; if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) { /* returning this tgid failed, save it as the first * pid for the next readir call */ filp->f_version = tid; put_task_struct(task); break; } } out: filp->f_pos = pos; put_task_struct(leader); out_no_task: return retval; } static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat) { struct inode *inode = dentry->d_inode; struct task_struct *p = get_proc_task(inode); generic_fillattr(inode, stat); if (p) { rcu_read_lock(); stat->nlink += get_nr_threads(p); rcu_read_unlock(); put_task_struct(p); } return 0; } static struct inode_operations proc_task_inode_operations = { .lookup = proc_task_lookup, .getattr = proc_task_getattr, .setattr = proc_setattr, }; static struct file_operations proc_task_operations = { .read = generic_read_dir, .readdir = proc_task_readdir, };