/* * Copyright (c) 2000-2005 Silicon Graphics, Inc. * All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_sb.h" #include "xfs_ag.h" #include "xfs_mount.h" #include "xfs_da_format.h" #include "xfs_inode.h" #include "xfs_bmap.h" #include "xfs_bmap_util.h" #include "xfs_acl.h" #include "xfs_quota.h" #include "xfs_error.h" #include "xfs_attr.h" #include "xfs_trans.h" #include "xfs_trace.h" #include "xfs_icache.h" #include "xfs_symlink.h" #include "xfs_da_btree.h" #include "xfs_dir2_priv.h" #include "xfs_dinode.h" #include #include #include #include #include #include #include /* * Directories have different lock order w.r.t. mmap_sem compared to regular * files. This is due to readdir potentially triggering page faults on a user * buffer inside filldir(), and this happens with the ilock on the directory * held. For regular files, the lock order is the other way around - the * mmap_sem is taken during the page fault, and then we lock the ilock to do * block mapping. Hence we need a different class for the directory ilock so * that lockdep can tell them apart. */ static struct lock_class_key xfs_nondir_ilock_class; static struct lock_class_key xfs_dir_ilock_class; static int xfs_initxattrs( struct inode *inode, const struct xattr *xattr_array, void *fs_info) { const struct xattr *xattr; struct xfs_inode *ip = XFS_I(inode); int error = 0; for (xattr = xattr_array; xattr->name != NULL; xattr++) { error = xfs_attr_set(ip, xattr->name, xattr->value, xattr->value_len, ATTR_SECURE); if (error < 0) break; } return error; } /* * Hook in SELinux. This is not quite correct yet, what we really need * here (as we do for default ACLs) is a mechanism by which creation of * these attrs can be journalled at inode creation time (along with the * inode, of course, such that log replay can't cause these to be lost). */ STATIC int xfs_init_security( struct inode *inode, struct inode *dir, const struct qstr *qstr) { return security_inode_init_security(inode, dir, qstr, &xfs_initxattrs, NULL); } static void xfs_dentry_to_name( struct xfs_name *namep, struct dentry *dentry, int mode) { namep->name = dentry->d_name.name; namep->len = dentry->d_name.len; namep->type = xfs_mode_to_ftype[(mode & S_IFMT) >> S_SHIFT]; } STATIC void xfs_cleanup_inode( struct inode *dir, struct inode *inode, struct dentry *dentry) { struct xfs_name teardown; /* Oh, the horror. * If we can't add the ACL or we fail in * xfs_init_security we must back out. * ENOSPC can hit here, among other things. */ xfs_dentry_to_name(&teardown, dentry, 0); xfs_remove(XFS_I(dir), &teardown, XFS_I(inode)); iput(inode); } STATIC int xfs_vn_mknod( struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev) { struct inode *inode; struct xfs_inode *ip = NULL; struct posix_acl *default_acl, *acl; struct xfs_name name; int error; /* * Irix uses Missed'em'V split, but doesn't want to see * the upper 5 bits of (14bit) major. */ if (S_ISCHR(mode) || S_ISBLK(mode)) { if (unlikely(!sysv_valid_dev(rdev) || MAJOR(rdev) & ~0x1ff)) return -EINVAL; rdev = sysv_encode_dev(rdev); } else { rdev = 0; } error = posix_acl_create(dir, &mode, &default_acl, &acl); if (error) return error; xfs_dentry_to_name(&name, dentry, mode); error = xfs_create(XFS_I(dir), &name, mode, rdev, &ip); if (unlikely(error)) goto out_free_acl; inode = VFS_I(ip); error = xfs_init_security(inode, dir, &dentry->d_name); if (unlikely(error)) goto out_cleanup_inode; #ifdef CONFIG_XFS_POSIX_ACL if (default_acl) { error = xfs_set_acl(inode, default_acl, ACL_TYPE_DEFAULT); if (error) goto out_cleanup_inode; } if (acl) { error = xfs_set_acl(inode, acl, ACL_TYPE_ACCESS); if (error) goto out_cleanup_inode; } #endif d_instantiate(dentry, inode); out_free_acl: if (default_acl) posix_acl_release(default_acl); if (acl) posix_acl_release(acl); return -error; out_cleanup_inode: xfs_cleanup_inode(dir, inode, dentry); goto out_free_acl; } STATIC int xfs_vn_create( struct inode *dir, struct dentry *dentry, umode_t mode, bool flags) { return xfs_vn_mknod(dir, dentry, mode, 0); } STATIC int xfs_vn_mkdir( struct inode *dir, struct dentry *dentry, umode_t mode) { return xfs_vn_mknod(dir, dentry, mode|S_IFDIR, 0); } STATIC struct dentry * xfs_vn_lookup( struct inode *dir, struct dentry *dentry, unsigned int flags) { struct xfs_inode *cip; struct xfs_name name; int error; if (dentry->d_name.len >= MAXNAMELEN) return ERR_PTR(-ENAMETOOLONG); xfs_dentry_to_name(&name, dentry, 0); error = xfs_lookup(XFS_I(dir), &name, &cip, NULL); if (unlikely(error)) { if (unlikely(error != ENOENT)) return ERR_PTR(-error); d_add(dentry, NULL); return NULL; } return d_splice_alias(VFS_I(cip), dentry); } STATIC struct dentry * xfs_vn_ci_lookup( struct inode *dir, struct dentry *dentry, unsigned int flags) { struct xfs_inode *ip; struct xfs_name xname; struct xfs_name ci_name; struct qstr dname; int error; if (dentry->d_name.len >= MAXNAMELEN) return ERR_PTR(-ENAMETOOLONG); xfs_dentry_to_name(&xname, dentry, 0); error = xfs_lookup(XFS_I(dir), &xname, &ip, &ci_name); if (unlikely(error)) { if (unlikely(error != ENOENT)) return ERR_PTR(-error); /* * call d_add(dentry, NULL) here when d_drop_negative_children * is called in xfs_vn_mknod (ie. allow negative dentries * with CI filesystems). */ return NULL; } /* if exact match, just splice and exit */ if (!ci_name.name) return d_splice_alias(VFS_I(ip), dentry); /* else case-insensitive match... */ dname.name = ci_name.name; dname.len = ci_name.len; dentry = d_add_ci(dentry, VFS_I(ip), &dname); kmem_free(ci_name.name); return dentry; } STATIC int xfs_vn_link( struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) { struct inode *inode = old_dentry->d_inode; struct xfs_name name; int error; xfs_dentry_to_name(&name, dentry, inode->i_mode); error = xfs_link(XFS_I(dir), XFS_I(inode), &name); if (unlikely(error)) return -error; ihold(inode); d_instantiate(dentry, inode); return 0; } STATIC int xfs_vn_unlink( struct inode *dir, struct dentry *dentry) { struct xfs_name name; int error; xfs_dentry_to_name(&name, dentry, 0); error = -xfs_remove(XFS_I(dir), &name, XFS_I(dentry->d_inode)); if (error) return error; /* * With unlink, the VFS makes the dentry "negative": no inode, * but still hashed. This is incompatible with case-insensitive * mode, so invalidate (unhash) the dentry in CI-mode. */ if (xfs_sb_version_hasasciici(&XFS_M(dir->i_sb)->m_sb)) d_invalidate(dentry); return 0; } STATIC int xfs_vn_symlink( struct inode *dir, struct dentry *dentry, const char *symname) { struct inode *inode; struct xfs_inode *cip = NULL; struct xfs_name name; int error; umode_t mode; mode = S_IFLNK | (irix_symlink_mode ? 0777 & ~current_umask() : S_IRWXUGO); xfs_dentry_to_name(&name, dentry, mode); error = xfs_symlink(XFS_I(dir), &name, symname, mode, &cip); if (unlikely(error)) goto out; inode = VFS_I(cip); error = xfs_init_security(inode, dir, &dentry->d_name); if (unlikely(error)) goto out_cleanup_inode; d_instantiate(dentry, inode); return 0; out_cleanup_inode: xfs_cleanup_inode(dir, inode, dentry); out: return -error; } STATIC int xfs_vn_rename( struct inode *odir, struct dentry *odentry, struct inode *ndir, struct dentry *ndentry) { struct inode *new_inode = ndentry->d_inode; struct xfs_name oname; struct xfs_name nname; xfs_dentry_to_name(&oname, odentry, 0); xfs_dentry_to_name(&nname, ndentry, odentry->d_inode->i_mode); return -xfs_rename(XFS_I(odir), &oname, XFS_I(odentry->d_inode), XFS_I(ndir), &nname, new_inode ? XFS_I(new_inode) : NULL); } /* * careful here - this function can get called recursively, so * we need to be very careful about how much stack we use. * uio is kmalloced for this reason... */ STATIC void * xfs_vn_follow_link( struct dentry *dentry, struct nameidata *nd) { char *link; int error = -ENOMEM; link = kmalloc(MAXPATHLEN+1, GFP_KERNEL); if (!link) goto out_err; error = -xfs_readlink(XFS_I(dentry->d_inode), link); if (unlikely(error)) goto out_kfree; nd_set_link(nd, link); return NULL; out_kfree: kfree(link); out_err: nd_set_link(nd, ERR_PTR(error)); return NULL; } STATIC int xfs_vn_getattr( struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat) { struct inode *inode = dentry->d_inode; struct xfs_inode *ip = XFS_I(inode); struct xfs_mount *mp = ip->i_mount; trace_xfs_getattr(ip); if (XFS_FORCED_SHUTDOWN(mp)) return -XFS_ERROR(EIO); stat->size = XFS_ISIZE(ip); stat->dev = inode->i_sb->s_dev; stat->mode = ip->i_d.di_mode; stat->nlink = ip->i_d.di_nlink; stat->uid = inode->i_uid; stat->gid = inode->i_gid; stat->ino = ip->i_ino; stat->atime = inode->i_atime; stat->mtime = inode->i_mtime; stat->ctime = inode->i_ctime; stat->blocks = XFS_FSB_TO_BB(mp, ip->i_d.di_nblocks + ip->i_delayed_blks); switch (inode->i_mode & S_IFMT) { case S_IFBLK: case S_IFCHR: stat->blksize = BLKDEV_IOSIZE; stat->rdev = MKDEV(sysv_major(ip->i_df.if_u2.if_rdev) & 0x1ff, sysv_minor(ip->i_df.if_u2.if_rdev)); break; default: if (XFS_IS_REALTIME_INODE(ip)) { /* * If the file blocks are being allocated from a * realtime volume, then return the inode's realtime * extent size or the realtime volume's extent size. */ stat->blksize = xfs_get_extsz_hint(ip) << mp->m_sb.sb_blocklog; } else stat->blksize = xfs_preferred_iosize(mp); stat->rdev = 0; break; } return 0; } static void xfs_setattr_mode( struct xfs_inode *ip, struct iattr *iattr) { struct inode *inode = VFS_I(ip); umode_t mode = iattr->ia_mode; ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); ip->i_d.di_mode &= S_IFMT; ip->i_d.di_mode |= mode & ~S_IFMT; inode->i_mode &= S_IFMT; inode->i_mode |= mode & ~S_IFMT; } static void xfs_setattr_time( struct xfs_inode *ip, struct iattr *iattr) { struct inode *inode = VFS_I(ip); ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); if (iattr->ia_valid & ATTR_ATIME) { inode->i_atime = iattr->ia_atime; ip->i_d.di_atime.t_sec = iattr->ia_atime.tv_sec; ip->i_d.di_atime.t_nsec = iattr->ia_atime.tv_nsec; } if (iattr->ia_valid & ATTR_CTIME) { inode->i_ctime = iattr->ia_ctime; ip->i_d.di_ctime.t_sec = iattr->ia_ctime.tv_sec; ip->i_d.di_ctime.t_nsec = iattr->ia_ctime.tv_nsec; } if (iattr->ia_valid & ATTR_MTIME) { inode->i_mtime = iattr->ia_mtime; ip->i_d.di_mtime.t_sec = iattr->ia_mtime.tv_sec; ip->i_d.di_mtime.t_nsec = iattr->ia_mtime.tv_nsec; } } int xfs_setattr_nonsize( struct xfs_inode *ip, struct iattr *iattr, int flags) { xfs_mount_t *mp = ip->i_mount; struct inode *inode = VFS_I(ip); int mask = iattr->ia_valid; xfs_trans_t *tp; int error; kuid_t uid = GLOBAL_ROOT_UID, iuid = GLOBAL_ROOT_UID; kgid_t gid = GLOBAL_ROOT_GID, igid = GLOBAL_ROOT_GID; struct xfs_dquot *udqp = NULL, *gdqp = NULL; struct xfs_dquot *olddquot1 = NULL, *olddquot2 = NULL; trace_xfs_setattr(ip); /* If acls are being inherited, we already have this checked */ if (!(flags & XFS_ATTR_NOACL)) { if (mp->m_flags & XFS_MOUNT_RDONLY) return XFS_ERROR(EROFS); if (XFS_FORCED_SHUTDOWN(mp)) return XFS_ERROR(EIO); error = -inode_change_ok(inode, iattr); if (error) return XFS_ERROR(error); } ASSERT((mask & ATTR_SIZE) == 0); /* * If disk quotas is on, we make sure that the dquots do exist on disk, * before we start any other transactions. Trying to do this later * is messy. We don't care to take a readlock to look at the ids * in inode here, because we can't hold it across the trans_reserve. * If the IDs do change before we take the ilock, we're covered * because the i_*dquot fields will get updated anyway. */ if (XFS_IS_QUOTA_ON(mp) && (mask & (ATTR_UID|ATTR_GID))) { uint qflags = 0; if ((mask & ATTR_UID) && XFS_IS_UQUOTA_ON(mp)) { uid = iattr->ia_uid; qflags |= XFS_QMOPT_UQUOTA; } else { uid = inode->i_uid; } if ((mask & ATTR_GID) && XFS_IS_GQUOTA_ON(mp)) { gid = iattr->ia_gid; qflags |= XFS_QMOPT_GQUOTA; } else { gid = inode->i_gid; } /* * We take a reference when we initialize udqp and gdqp, * so it is important that we never blindly double trip on * the same variable. See xfs_create() for an example. */ ASSERT(udqp == NULL); ASSERT(gdqp == NULL); error = xfs_qm_vop_dqalloc(ip, xfs_kuid_to_uid(uid), xfs_kgid_to_gid(gid), xfs_get_projid(ip), qflags, &udqp, &gdqp, NULL); if (error) return error; } tp = xfs_trans_alloc(mp, XFS_TRANS_SETATTR_NOT_SIZE); error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ichange, 0, 0); if (error) goto out_dqrele; xfs_ilock(ip, XFS_ILOCK_EXCL); /* * Change file ownership. Must be the owner or privileged. */ if (mask & (ATTR_UID|ATTR_GID)) { /* * These IDs could have changed since we last looked at them. * But, we're assured that if the ownership did change * while we didn't have the inode locked, inode's dquot(s) * would have changed also. */ iuid = inode->i_uid; igid = inode->i_gid; gid = (mask & ATTR_GID) ? iattr->ia_gid : igid; uid = (mask & ATTR_UID) ? iattr->ia_uid : iuid; /* * Do a quota reservation only if uid/gid is actually * going to change. */ if (XFS_IS_QUOTA_RUNNING(mp) && ((XFS_IS_UQUOTA_ON(mp) && !uid_eq(iuid, uid)) || (XFS_IS_GQUOTA_ON(mp) && !gid_eq(igid, gid)))) { ASSERT(tp); error = xfs_qm_vop_chown_reserve(tp, ip, udqp, gdqp, NULL, capable(CAP_FOWNER) ? XFS_QMOPT_FORCE_RES : 0); if (error) /* out of quota */ goto out_trans_cancel; } } xfs_trans_ijoin(tp, ip, 0); /* * Change file ownership. Must be the owner or privileged. */ if (mask & (ATTR_UID|ATTR_GID)) { /* * CAP_FSETID overrides the following restrictions: * * The set-user-ID and set-group-ID bits of a file will be * cleared upon successful return from chown() */ if ((ip->i_d.di_mode & (S_ISUID|S_ISGID)) && !capable(CAP_FSETID)) ip->i_d.di_mode &= ~(S_ISUID|S_ISGID); /* * Change the ownerships and register quota modifications * in the transaction. */ if (!uid_eq(iuid, uid)) { if (XFS_IS_QUOTA_RUNNING(mp) && XFS_IS_UQUOTA_ON(mp)) { ASSERT(mask & ATTR_UID); ASSERT(udqp); olddquot1 = xfs_qm_vop_chown(tp, ip, &ip->i_udquot, udqp); } ip->i_d.di_uid = xfs_kuid_to_uid(uid); inode->i_uid = uid; } if (!gid_eq(igid, gid)) { if (XFS_IS_QUOTA_RUNNING(mp) && XFS_IS_GQUOTA_ON(mp)) { ASSERT(xfs_sb_version_has_pquotino(&mp->m_sb) || !XFS_IS_PQUOTA_ON(mp)); ASSERT(mask & ATTR_GID); ASSERT(gdqp); olddquot2 = xfs_qm_vop_chown(tp, ip, &ip->i_gdquot, gdqp); } ip->i_d.di_gid = xfs_kgid_to_gid(gid); inode->i_gid = gid; } } if (mask & ATTR_MODE) xfs_setattr_mode(ip, iattr); if (mask & (ATTR_ATIME|ATTR_CTIME|ATTR_MTIME)) xfs_setattr_time(ip, iattr); xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); XFS_STATS_INC(xs_ig_attrchg); if (mp->m_flags & XFS_MOUNT_WSYNC) xfs_trans_set_sync(tp); error = xfs_trans_commit(tp, 0); xfs_iunlock(ip, XFS_ILOCK_EXCL); /* * Release any dquot(s) the inode had kept before chown. */ xfs_qm_dqrele(olddquot1); xfs_qm_dqrele(olddquot2); xfs_qm_dqrele(udqp); xfs_qm_dqrele(gdqp); if (error) return XFS_ERROR(error); /* * XXX(hch): Updating the ACL entries is not atomic vs the i_mode * update. We could avoid this with linked transactions * and passing down the transaction pointer all the way * to attr_set. No previous user of the generic * Posix ACL code seems to care about this issue either. */ if ((mask & ATTR_MODE) && !(flags & XFS_ATTR_NOACL)) { error = -posix_acl_chmod(inode, inode->i_mode); if (error) return XFS_ERROR(error); } return 0; out_trans_cancel: xfs_trans_cancel(tp, 0); xfs_iunlock(ip, XFS_ILOCK_EXCL); out_dqrele: xfs_qm_dqrele(udqp); xfs_qm_dqrele(gdqp); return error; } /* * Truncate file. Must have write permission and not be a directory. */ int xfs_setattr_size( struct xfs_inode *ip, struct iattr *iattr) { struct xfs_mount *mp = ip->i_mount; struct inode *inode = VFS_I(ip); xfs_off_t oldsize, newsize; struct xfs_trans *tp; int error; uint lock_flags = 0; uint commit_flags = 0; trace_xfs_setattr(ip); if (mp->m_flags & XFS_MOUNT_RDONLY) return XFS_ERROR(EROFS); if (XFS_FORCED_SHUTDOWN(mp)) return XFS_ERROR(EIO); error = -inode_change_ok(inode, iattr); if (error) return XFS_ERROR(error); ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); ASSERT(S_ISREG(ip->i_d.di_mode)); ASSERT((iattr->ia_valid & (ATTR_UID|ATTR_GID|ATTR_ATIME|ATTR_ATIME_SET| ATTR_MTIME_SET|ATTR_KILL_PRIV|ATTR_TIMES_SET)) == 0); oldsize = inode->i_size; newsize = iattr->ia_size; /* * Short circuit the truncate case for zero length files. */ if (newsize == 0 && oldsize == 0 && ip->i_d.di_nextents == 0) { if (!(iattr->ia_valid & (ATTR_CTIME|ATTR_MTIME))) return 0; /* * Use the regular setattr path to update the timestamps. */ iattr->ia_valid &= ~ATTR_SIZE; return xfs_setattr_nonsize(ip, iattr, 0); } /* * Make sure that the dquots are attached to the inode. */ error = xfs_qm_dqattach(ip, 0); if (error) return error; /* * Now we can make the changes. Before we join the inode to the * transaction, take care of the part of the truncation that must be * done without the inode lock. This needs to be done before joining * the inode to the transaction, because the inode cannot be unlocked * once it is a part of the transaction. */ if (newsize > oldsize) { /* * Do the first part of growing a file: zero any data in the * last block that is beyond the old EOF. We need to do this * before the inode is joined to the transaction to modify * i_size. */ error = xfs_zero_eof(ip, newsize, oldsize); if (error) return error; } /* * We are going to log the inode size change in this transaction so * any previous writes that are beyond the on disk EOF and the new * EOF that have not been written out need to be written here. If we * do not write the data out, we expose ourselves to the null files * problem. * * Only flush from the on disk size to the smaller of the in memory * file size or the new size as that's the range we really care about * here and prevents waiting for other data not within the range we * care about here. */ if (oldsize != ip->i_d.di_size && newsize > ip->i_d.di_size) { error = -filemap_write_and_wait_range(VFS_I(ip)->i_mapping, ip->i_d.di_size, newsize); if (error) return error; } /* * Wait for all direct I/O to complete. */ inode_dio_wait(inode); error = -block_truncate_page(inode->i_mapping, newsize, xfs_get_blocks); if (error) return error; tp = xfs_trans_alloc(mp, XFS_TRANS_SETATTR_SIZE); error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0); if (error) goto out_trans_cancel; truncate_setsize(inode, newsize); commit_flags = XFS_TRANS_RELEASE_LOG_RES; lock_flags |= XFS_ILOCK_EXCL; xfs_ilock(ip, XFS_ILOCK_EXCL); xfs_trans_ijoin(tp, ip, 0); /* * Only change the c/mtime if we are changing the size or we are * explicitly asked to change it. This handles the semantic difference * between truncate() and ftruncate() as implemented in the VFS. * * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a * special case where we need to update the times despite not having * these flags set. For all other operations the VFS set these flags * explicitly if it wants a timestamp update. */ if (newsize != oldsize && !(iattr->ia_valid & (ATTR_CTIME | ATTR_MTIME))) { iattr->ia_ctime = iattr->ia_mtime = current_fs_time(inode->i_sb); iattr->ia_valid |= ATTR_CTIME | ATTR_MTIME; } /* * The first thing we do is set the size to new_size permanently on * disk. This way we don't have to worry about anyone ever being able * to look at the data being freed even in the face of a crash. * What we're getting around here is the case where we free a block, it * is allocated to another file, it is written to, and then we crash. * If the new data gets written to the file but the log buffers * containing the free and reallocation don't, then we'd end up with * garbage in the blocks being freed. As long as we make the new size * permanent before actually freeing any blocks it doesn't matter if * they get written to. */ ip->i_d.di_size = newsize; xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); if (newsize <= oldsize) { error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, newsize); if (error) goto out_trans_abort; /* * Truncated "down", so we're removing references to old data * here - if we delay flushing for a long time, we expose * ourselves unduly to the notorious NULL files problem. So, * we mark this inode and flush it when the file is closed, * and do not wait the usual (long) time for writeout. */ xfs_iflags_set(ip, XFS_ITRUNCATED); /* A truncate down always removes post-EOF blocks. */ xfs_inode_clear_eofblocks_tag(ip); } if (iattr->ia_valid & ATTR_MODE) xfs_setattr_mode(ip, iattr); if (iattr->ia_valid & (ATTR_ATIME|ATTR_CTIME|ATTR_MTIME)) xfs_setattr_time(ip, iattr); xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); XFS_STATS_INC(xs_ig_attrchg); if (mp->m_flags & XFS_MOUNT_WSYNC) xfs_trans_set_sync(tp); error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); out_unlock: if (lock_flags) xfs_iunlock(ip, lock_flags); return error; out_trans_abort: commit_flags |= XFS_TRANS_ABORT; out_trans_cancel: xfs_trans_cancel(tp, commit_flags); goto out_unlock; } STATIC int xfs_vn_setattr( struct dentry *dentry, struct iattr *iattr) { struct xfs_inode *ip = XFS_I(dentry->d_inode); int error; if (iattr->ia_valid & ATTR_SIZE) { xfs_ilock(ip, XFS_IOLOCK_EXCL); error = xfs_setattr_size(ip, iattr); xfs_iunlock(ip, XFS_IOLOCK_EXCL); } else { error = xfs_setattr_nonsize(ip, iattr, 0); } return -error; } STATIC int xfs_vn_update_time( struct inode *inode, struct timespec *now, int flags) { struct xfs_inode *ip = XFS_I(inode); struct xfs_mount *mp = ip->i_mount; struct xfs_trans *tp; int error; trace_xfs_update_time(ip); tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS); error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0); if (error) { xfs_trans_cancel(tp, 0); return -error; } xfs_ilock(ip, XFS_ILOCK_EXCL); if (flags & S_CTIME) { inode->i_ctime = *now; ip->i_d.di_ctime.t_sec = (__int32_t)now->tv_sec; ip->i_d.di_ctime.t_nsec = (__int32_t)now->tv_nsec; } if (flags & S_MTIME) { inode->i_mtime = *now; ip->i_d.di_mtime.t_sec = (__int32_t)now->tv_sec; ip->i_d.di_mtime.t_nsec = (__int32_t)now->tv_nsec; } if (flags & S_ATIME) { inode->i_atime = *now; ip->i_d.di_atime.t_sec = (__int32_t)now->tv_sec; ip->i_d.di_atime.t_nsec = (__int32_t)now->tv_nsec; } xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); xfs_trans_log_inode(tp, ip, XFS_ILOG_TIMESTAMP); return -xfs_trans_commit(tp, 0); } #define XFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR) /* * Call fiemap helper to fill in user data. * Returns positive errors to xfs_getbmap. */ STATIC int xfs_fiemap_format( void **arg, struct getbmapx *bmv, int *full) { int error; struct fiemap_extent_info *fieinfo = *arg; u32 fiemap_flags = 0; u64 logical, physical, length; /* Do nothing for a hole */ if (bmv->bmv_block == -1LL) return 0; logical = BBTOB(bmv->bmv_offset); physical = BBTOB(bmv->bmv_block); length = BBTOB(bmv->bmv_length); if (bmv->bmv_oflags & BMV_OF_PREALLOC) fiemap_flags |= FIEMAP_EXTENT_UNWRITTEN; else if (bmv->bmv_oflags & BMV_OF_DELALLOC) { fiemap_flags |= (FIEMAP_EXTENT_DELALLOC | FIEMAP_EXTENT_UNKNOWN); physical = 0; /* no block yet */ } if (bmv->bmv_oflags & BMV_OF_LAST) fiemap_flags |= FIEMAP_EXTENT_LAST; error = fiemap_fill_next_extent(fieinfo, logical, physical, length, fiemap_flags); if (error > 0) { error = 0; *full = 1; /* user array now full */ } return -error; } STATIC int xfs_vn_fiemap( struct inode *inode, struct fiemap_extent_info *fieinfo, u64 start, u64 length) { xfs_inode_t *ip = XFS_I(inode); struct getbmapx bm; int error; error = fiemap_check_flags(fieinfo, XFS_FIEMAP_FLAGS); if (error) return error; /* Set up bmap header for xfs internal routine */ bm.bmv_offset = BTOBB(start); /* Special case for whole file */ if (length == FIEMAP_MAX_OFFSET) bm.bmv_length = -1LL; else bm.bmv_length = BTOBB(length); /* We add one because in getbmap world count includes the header */ bm.bmv_count = !fieinfo->fi_extents_max ? MAXEXTNUM : fieinfo->fi_extents_max + 1; bm.bmv_count = min_t(__s32, bm.bmv_count, (PAGE_SIZE * 16 / sizeof(struct getbmapx))); bm.bmv_iflags = BMV_IF_PREALLOC | BMV_IF_NO_HOLES; if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) bm.bmv_iflags |= BMV_IF_ATTRFORK; if (!(fieinfo->fi_flags & FIEMAP_FLAG_SYNC)) bm.bmv_iflags |= BMV_IF_DELALLOC; error = xfs_getbmap(ip, &bm, xfs_fiemap_format, fieinfo); if (error) return -error; return 0; } static const struct inode_operations xfs_inode_operations = { .get_acl = xfs_get_acl, .set_acl = xfs_set_acl, .getattr = xfs_vn_getattr, .setattr = xfs_vn_setattr, .setxattr = generic_setxattr, .getxattr = generic_getxattr, .removexattr = generic_removexattr, .listxattr = xfs_vn_listxattr, .fiemap = xfs_vn_fiemap, .update_time = xfs_vn_update_time, }; static const struct inode_operations xfs_dir_inode_operations = { .create = xfs_vn_create, .lookup = xfs_vn_lookup, .link = xfs_vn_link, .unlink = xfs_vn_unlink, .symlink = xfs_vn_symlink, .mkdir = xfs_vn_mkdir, /* * Yes, XFS uses the same method for rmdir and unlink. * * There are some subtile differences deeper in the code, * but we use S_ISDIR to check for those. */ .rmdir = xfs_vn_unlink, .mknod = xfs_vn_mknod, .rename = xfs_vn_rename, .get_acl = xfs_get_acl, .set_acl = xfs_set_acl, .getattr = xfs_vn_getattr, .setattr = xfs_vn_setattr, .setxattr = generic_setxattr, .getxattr = generic_getxattr, .removexattr = generic_removexattr, .listxattr = xfs_vn_listxattr, .update_time = xfs_vn_update_time, }; static const struct inode_operations xfs_dir_ci_inode_operations = { .create = xfs_vn_create, .lookup = xfs_vn_ci_lookup, .link = xfs_vn_link, .unlink = xfs_vn_unlink, .symlink = xfs_vn_symlink, .mkdir = xfs_vn_mkdir, /* * Yes, XFS uses the same method for rmdir and unlink. * * There are some subtile differences deeper in the code, * but we use S_ISDIR to check for those. */ .rmdir = xfs_vn_unlink, .mknod = xfs_vn_mknod, .rename = xfs_vn_rename, .get_acl = xfs_get_acl, .set_acl = xfs_set_acl, .getattr = xfs_vn_getattr, .setattr = xfs_vn_setattr, .setxattr = generic_setxattr, .getxattr = generic_getxattr, .removexattr = generic_removexattr, .listxattr = xfs_vn_listxattr, .update_time = xfs_vn_update_time, }; static const struct inode_operations xfs_symlink_inode_operations = { .readlink = generic_readlink, .follow_link = xfs_vn_follow_link, .put_link = kfree_put_link, .getattr = xfs_vn_getattr, .setattr = xfs_vn_setattr, .setxattr = generic_setxattr, .getxattr = generic_getxattr, .removexattr = generic_removexattr, .listxattr = xfs_vn_listxattr, .update_time = xfs_vn_update_time, }; STATIC void xfs_diflags_to_iflags( struct inode *inode, struct xfs_inode *ip) { if (ip->i_d.di_flags & XFS_DIFLAG_IMMUTABLE) inode->i_flags |= S_IMMUTABLE; else inode->i_flags &= ~S_IMMUTABLE; if (ip->i_d.di_flags & XFS_DIFLAG_APPEND) inode->i_flags |= S_APPEND; else inode->i_flags &= ~S_APPEND; if (ip->i_d.di_flags & XFS_DIFLAG_SYNC) inode->i_flags |= S_SYNC; else inode->i_flags &= ~S_SYNC; if (ip->i_d.di_flags & XFS_DIFLAG_NOATIME) inode->i_flags |= S_NOATIME; else inode->i_flags &= ~S_NOATIME; } /* * Initialize the Linux inode, set up the operation vectors and * unlock the inode. * * When reading existing inodes from disk this is called directly * from xfs_iget, when creating a new inode it is called from * xfs_ialloc after setting up the inode. * * We are always called with an uninitialised linux inode here. * We need to initialise the necessary fields and take a reference * on it. */ void xfs_setup_inode( struct xfs_inode *ip) { struct inode *inode = &ip->i_vnode; gfp_t gfp_mask; inode->i_ino = ip->i_ino; inode->i_state = I_NEW; inode_sb_list_add(inode); /* make the inode look hashed for the writeback code */ hlist_add_fake(&inode->i_hash); inode->i_mode = ip->i_d.di_mode; set_nlink(inode, ip->i_d.di_nlink); inode->i_uid = xfs_uid_to_kuid(ip->i_d.di_uid); inode->i_gid = xfs_gid_to_kgid(ip->i_d.di_gid); switch (inode->i_mode & S_IFMT) { case S_IFBLK: case S_IFCHR: inode->i_rdev = MKDEV(sysv_major(ip->i_df.if_u2.if_rdev) & 0x1ff, sysv_minor(ip->i_df.if_u2.if_rdev)); break; default: inode->i_rdev = 0; break; } inode->i_generation = ip->i_d.di_gen; i_size_write(inode, ip->i_d.di_size); inode->i_atime.tv_sec = ip->i_d.di_atime.t_sec; inode->i_atime.tv_nsec = ip->i_d.di_atime.t_nsec; inode->i_mtime.tv_sec = ip->i_d.di_mtime.t_sec; inode->i_mtime.tv_nsec = ip->i_d.di_mtime.t_nsec; inode->i_ctime.tv_sec = ip->i_d.di_ctime.t_sec; inode->i_ctime.tv_nsec = ip->i_d.di_ctime.t_nsec; xfs_diflags_to_iflags(inode, ip); ip->d_ops = ip->i_mount->m_nondir_inode_ops; lockdep_set_class(&ip->i_lock.mr_lock, &xfs_nondir_ilock_class); switch (inode->i_mode & S_IFMT) { case S_IFREG: inode->i_op = &xfs_inode_operations; inode->i_fop = &xfs_file_operations; inode->i_mapping->a_ops = &xfs_address_space_operations; break; case S_IFDIR: lockdep_set_class(&ip->i_lock.mr_lock, &xfs_dir_ilock_class); if (xfs_sb_version_hasasciici(&XFS_M(inode->i_sb)->m_sb)) inode->i_op = &xfs_dir_ci_inode_operations; else inode->i_op = &xfs_dir_inode_operations; inode->i_fop = &xfs_dir_file_operations; ip->d_ops = ip->i_mount->m_dir_inode_ops; break; case S_IFLNK: inode->i_op = &xfs_symlink_inode_operations; if (!(ip->i_df.if_flags & XFS_IFINLINE)) inode->i_mapping->a_ops = &xfs_address_space_operations; break; default: inode->i_op = &xfs_inode_operations; init_special_inode(inode, inode->i_mode, inode->i_rdev); break; } /* * Ensure all page cache allocations are done from GFP_NOFS context to * prevent direct reclaim recursion back into the filesystem and blowing * stacks or deadlocking. */ gfp_mask = mapping_gfp_mask(inode->i_mapping); mapping_set_gfp_mask(inode->i_mapping, (gfp_mask & ~(__GFP_FS))); /* * If there is no attribute fork no ACL can exist on this inode, * and it can't have any file capabilities attached to it either. */ if (!XFS_IFORK_Q(ip)) { inode_has_no_xattr(inode); cache_no_acl(inode); } xfs_iflags_clear(ip, XFS_INEW); barrier(); unlock_new_inode(inode); }