#ifndef _ASM_IA64_SYSTEM_H #define _ASM_IA64_SYSTEM_H /* * System defines. Note that this is included both from .c and .S * files, so it does only defines, not any C code. This is based * on information published in the Processor Abstraction Layer * and the System Abstraction Layer manual. * * Copyright (C) 1998-2003 Hewlett-Packard Co * David Mosberger-Tang <davidm@hpl.hp.com> * Copyright (C) 1999 Asit Mallick <asit.k.mallick@intel.com> * Copyright (C) 1999 Don Dugger <don.dugger@intel.com> */ #include <linux/config.h> #include <asm/kregs.h> #include <asm/page.h> #include <asm/pal.h> #include <asm/percpu.h> #define GATE_ADDR __IA64_UL_CONST(0xa000000000000000) /* * 0xa000000000000000+2*PERCPU_PAGE_SIZE * - 0xa000000000000000+3*PERCPU_PAGE_SIZE remain unmapped (guard page) */ #define KERNEL_START __IA64_UL_CONST(0xa000000100000000) #define PERCPU_ADDR (-PERCPU_PAGE_SIZE) #ifndef __ASSEMBLY__ #include <linux/kernel.h> #include <linux/types.h> struct pci_vector_struct { __u16 segment; /* PCI Segment number */ __u16 bus; /* PCI Bus number */ __u32 pci_id; /* ACPI split 16 bits device, 16 bits function (see section 6.1.1) */ __u8 pin; /* PCI PIN (0 = A, 1 = B, 2 = C, 3 = D) */ __u32 irq; /* IRQ assigned */ }; extern struct ia64_boot_param { __u64 command_line; /* physical address of command line arguments */ __u64 efi_systab; /* physical address of EFI system table */ __u64 efi_memmap; /* physical address of EFI memory map */ __u64 efi_memmap_size; /* size of EFI memory map */ __u64 efi_memdesc_size; /* size of an EFI memory map descriptor */ __u32 efi_memdesc_version; /* memory descriptor version */ struct { __u16 num_cols; /* number of columns on console output device */ __u16 num_rows; /* number of rows on console output device */ __u16 orig_x; /* cursor's x position */ __u16 orig_y; /* cursor's y position */ } console_info; __u64 fpswa; /* physical address of the fpswa interface */ __u64 initrd_start; __u64 initrd_size; } *ia64_boot_param; /* * Macros to force memory ordering. In these descriptions, "previous" * and "subsequent" refer to program order; "visible" means that all * architecturally visible effects of a memory access have occurred * (at a minimum, this means the memory has been read or written). * * wmb(): Guarantees that all preceding stores to memory- * like regions are visible before any subsequent * stores and that all following stores will be * visible only after all previous stores. * rmb(): Like wmb(), but for reads. * mb(): wmb()/rmb() combo, i.e., all previous memory * accesses are visible before all subsequent * accesses and vice versa. This is also known as * a "fence." * * Note: "mb()" and its variants cannot be used as a fence to order * accesses to memory mapped I/O registers. For that, mf.a needs to * be used. However, we don't want to always use mf.a because (a) * it's (presumably) much slower than mf and (b) mf.a is supported for * sequential memory pages only. */ #define mb() ia64_mf() #define rmb() mb() #define wmb() mb() #define read_barrier_depends() do { } while(0) #ifdef CONFIG_SMP # define smp_mb() mb() # define smp_rmb() rmb() # define smp_wmb() wmb() # define smp_read_barrier_depends() read_barrier_depends() #else # define smp_mb() barrier() # define smp_rmb() barrier() # define smp_wmb() barrier() # define smp_read_barrier_depends() do { } while(0) #endif /* * XXX check on these---I suspect what Linus really wants here is * acquire vs release semantics but we can't discuss this stuff with * Linus just yet. Grrr... */ #define set_mb(var, value) do { (var) = (value); mb(); } while (0) #define set_wmb(var, value) do { (var) = (value); mb(); } while (0) #define safe_halt() ia64_pal_halt_light() /* PAL_HALT_LIGHT */ /* * The group barrier in front of the rsm & ssm are necessary to ensure * that none of the previous instructions in the same group are * affected by the rsm/ssm. */ /* For spinlocks etc */ /* * - clearing psr.i is implicitly serialized (visible by next insn) * - setting psr.i requires data serialization * - we need a stop-bit before reading PSR because we sometimes * write a floating-point register right before reading the PSR * and that writes to PSR.mfl */ #define __local_irq_save(x) \ do { \ ia64_stop(); \ (x) = ia64_getreg(_IA64_REG_PSR); \ ia64_stop(); \ ia64_rsm(IA64_PSR_I); \ } while (0) #define __local_irq_disable() \ do { \ ia64_stop(); \ ia64_rsm(IA64_PSR_I); \ } while (0) #define __local_irq_restore(x) ia64_intrin_local_irq_restore((x) & IA64_PSR_I) #ifdef CONFIG_IA64_DEBUG_IRQ extern unsigned long last_cli_ip; # define __save_ip() last_cli_ip = ia64_getreg(_IA64_REG_IP) # define local_irq_save(x) \ do { \ unsigned long psr; \ \ __local_irq_save(psr); \ if (psr & IA64_PSR_I) \ __save_ip(); \ (x) = psr; \ } while (0) # define local_irq_disable() do { unsigned long x; local_irq_save(x); } while (0) # define local_irq_restore(x) \ do { \ unsigned long old_psr, psr = (x); \ \ local_save_flags(old_psr); \ __local_irq_restore(psr); \ if ((old_psr & IA64_PSR_I) && !(psr & IA64_PSR_I)) \ __save_ip(); \ } while (0) #else /* !CONFIG_IA64_DEBUG_IRQ */ # define local_irq_save(x) __local_irq_save(x) # define local_irq_disable() __local_irq_disable() # define local_irq_restore(x) __local_irq_restore(x) #endif /* !CONFIG_IA64_DEBUG_IRQ */ #define local_irq_enable() ({ ia64_stop(); ia64_ssm(IA64_PSR_I); ia64_srlz_d(); }) #define local_save_flags(flags) ({ ia64_stop(); (flags) = ia64_getreg(_IA64_REG_PSR); }) #define irqs_disabled() \ ({ \ unsigned long __ia64_id_flags; \ local_save_flags(__ia64_id_flags); \ (__ia64_id_flags & IA64_PSR_I) == 0; \ }) #ifdef __KERNEL__ #ifdef CONFIG_IA32_SUPPORT # define IS_IA32_PROCESS(regs) (ia64_psr(regs)->is != 0) #else # define IS_IA32_PROCESS(regs) 0 struct task_struct; static inline void ia32_save_state(struct task_struct *t __attribute__((unused))){} static inline void ia32_load_state(struct task_struct *t __attribute__((unused))){} #endif /* * Context switch from one thread to another. If the two threads have * different address spaces, schedule() has already taken care of * switching to the new address space by calling switch_mm(). * * Disabling access to the fph partition and the debug-register * context switch MUST be done before calling ia64_switch_to() since a * newly created thread returns directly to * ia64_ret_from_syscall_clear_r8. */ extern struct task_struct *ia64_switch_to (void *next_task); struct task_struct; extern void ia64_save_extra (struct task_struct *task); extern void ia64_load_extra (struct task_struct *task); #ifdef CONFIG_PERFMON DECLARE_PER_CPU(unsigned long, pfm_syst_info); # define PERFMON_IS_SYSWIDE() (__get_cpu_var(pfm_syst_info) & 0x1) #else # define PERFMON_IS_SYSWIDE() (0) #endif #define IA64_HAS_EXTRA_STATE(t) \ ((t)->thread.flags & (IA64_THREAD_DBG_VALID|IA64_THREAD_PM_VALID) \ || IS_IA32_PROCESS(ia64_task_regs(t)) || PERFMON_IS_SYSWIDE()) #define __switch_to(prev,next,last) do { \ if (IA64_HAS_EXTRA_STATE(prev)) \ ia64_save_extra(prev); \ if (IA64_HAS_EXTRA_STATE(next)) \ ia64_load_extra(next); \ ia64_psr(ia64_task_regs(next))->dfh = !ia64_is_local_fpu_owner(next); \ (last) = ia64_switch_to((next)); \ } while (0) #ifdef CONFIG_SMP /* * In the SMP case, we save the fph state when context-switching away from a thread that * modified fph. This way, when the thread gets scheduled on another CPU, the CPU can * pick up the state from task->thread.fph, avoiding the complication of having to fetch * the latest fph state from another CPU. In other words: eager save, lazy restore. */ # define switch_to(prev,next,last) do { \ if (ia64_psr(ia64_task_regs(prev))->mfh && ia64_is_local_fpu_owner(prev)) { \ ia64_psr(ia64_task_regs(prev))->mfh = 0; \ (prev)->thread.flags |= IA64_THREAD_FPH_VALID; \ __ia64_save_fpu((prev)->thread.fph); \ } \ __switch_to(prev, next, last); \ } while (0) #else # define switch_to(prev,next,last) __switch_to(prev, next, last) #endif /* * On IA-64, we don't want to hold the runqueue's lock during the low-level context-switch, * because that could cause a deadlock. Here is an example by Erich Focht: * * Example: * CPU#0: * schedule() * -> spin_lock_irq(&rq->lock) * -> context_switch() * -> wrap_mmu_context() * -> read_lock(&tasklist_lock) * * CPU#1: * sys_wait4() or release_task() or forget_original_parent() * -> write_lock(&tasklist_lock) * -> do_notify_parent() * -> wake_up_parent() * -> try_to_wake_up() * -> spin_lock_irq(&parent_rq->lock) * * If the parent's rq happens to be on CPU#0, we'll wait for the rq->lock * of that CPU which will not be released, because there we wait for the * tasklist_lock to become available. */ #define __ARCH_WANT_UNLOCKED_CTXSW #define ia64_platform_is(x) (strcmp(x, platform_name) == 0) void cpu_idle_wait(void); #define arch_align_stack(x) (x) #endif /* __KERNEL__ */ #endif /* __ASSEMBLY__ */ #endif /* _ASM_IA64_SYSTEM_H */