#ifndef __X86_64_UACCESS_H #define __X86_64_UACCESS_H /* * User space memory access functions */ #include #include #include #include #define VERIFY_READ 0 #define VERIFY_WRITE 1 /* * The fs value determines whether argument validity checking should be * performed or not. If get_fs() == USER_DS, checking is performed, with * get_fs() == KERNEL_DS, checking is bypassed. * * For historical reasons, these macros are grossly misnamed. */ #define MAKE_MM_SEG(s) ((mm_segment_t) { (s) }) #define KERNEL_DS MAKE_MM_SEG(0xFFFFFFFFFFFFFFFFUL) #define USER_DS MAKE_MM_SEG(PAGE_OFFSET) #define get_ds() (KERNEL_DS) #define get_fs() (current_thread_info()->addr_limit) #define set_fs(x) (current_thread_info()->addr_limit = (x)) #define segment_eq(a, b) ((a).seg == (b).seg) #define __addr_ok(addr) (!((unsigned long)(addr) & \ (current_thread_info()->addr_limit.seg))) /* * Uhhuh, this needs 65-bit arithmetic. We have a carry.. */ #define __range_not_ok(addr, size) \ ({ \ unsigned long flag, roksum; \ __chk_user_ptr(addr); \ asm("add %3,%1 ; sbb %0,%0 ; cmp %1,%4 ; sbb $0,%0" \ : "=&r" (flag), "=r" (roksum) \ : "1" (addr), "g" ((long)(size)), \ "rm" (current_thread_info()->addr_limit.seg)); \ flag; \ }) #define access_ok(type, addr, size) (likely(__range_not_ok(addr, size) == 0)) /* * The exception table consists of pairs of addresses: the first is the * address of an instruction that is allowed to fault, and the second is * the address at which the program should continue. No registers are * modified, so it is entirely up to the continuation code to figure out * what to do. * * All the routines below use bits of fixup code that are out of line * with the main instruction path. This means when everything is well, * we don't even have to jump over them. Further, they do not intrude * on our cache or tlb entries. */ struct exception_table_entry { unsigned long insn, fixup; }; extern int fixup_exception(struct pt_regs *regs); #define ARCH_HAS_SEARCH_EXTABLE /* * These are the main single-value transfer routines. They automatically * use the right size if we just have the right pointer type. * * This gets kind of ugly. We want to return _two_ values in "get_user()" * and yet we don't want to do any pointers, because that is too much * of a performance impact. Thus we have a few rather ugly macros here, * and hide all the ugliness from the user. * * The "__xxx" versions of the user access functions are versions that * do not verify the address space, that must have been done previously * with a separate "access_ok()" call (this is used when we do multiple * accesses to the same area of user memory). */ #define __get_user_x(size, ret, x, ptr) \ asm volatile("call __get_user_" #size \ : "=a" (ret),"=d" (x) \ : "0" (ptr)) \ /* Careful: we have to cast the result to the type of the pointer * for sign reasons */ #define get_user(x, ptr) \ ({ \ unsigned long __val_gu; \ int __ret_gu; \ __chk_user_ptr(ptr); \ switch (sizeof(*(ptr))) { \ case 1: \ __get_user_x(1, __ret_gu, __val_gu, ptr); \ break; \ case 2: \ __get_user_x(2, __ret_gu, __val_gu, ptr); \ break; \ case 4: \ __get_user_x(4, __ret_gu, __val_gu, ptr); \ break; \ case 8: \ __get_user_x(8, __ret_gu, __val_gu, ptr); \ break; \ default: \ __get_user_bad(); \ break; \ } \ (x) = (__force typeof(*(ptr)))__val_gu; \ __ret_gu; \ }) extern void __put_user_1(void); extern void __put_user_2(void); extern void __put_user_4(void); extern void __put_user_8(void); extern void __put_user_bad(void); #define __put_user_x(size, ret, x, ptr) \ asm volatile("call __put_user_" #size \ :"=a" (ret) \ :"c" (ptr),"a" (x) \ :"ebx") #define put_user(x, ptr) \ __put_user_check((__typeof__(*(ptr)))(x), (ptr), sizeof(*(ptr))) #define __get_user(x, ptr) \ __get_user_nocheck((x), (ptr), sizeof(*(ptr))) #define __put_user(x, ptr) \ __put_user_nocheck((__typeof__(*(ptr)))(x), (ptr), sizeof(*(ptr))) #define __get_user_unaligned __get_user #define __put_user_unaligned __put_user #define __put_user_nocheck(x, ptr, size) \ ({ \ int __pu_err; \ __put_user_size((x), (ptr), (size), __pu_err); \ __pu_err; \ }) #define __put_user_check(x, ptr, size) \ ({ \ int __pu_err; \ typeof(*(ptr)) __user *__pu_addr = (ptr); \ switch (size) { \ case 1: \ __put_user_x(1, __pu_err, x, __pu_addr); \ break; \ case 2: \ __put_user_x(2, __pu_err, x, __pu_addr); \ break; \ case 4: \ __put_user_x(4, __pu_err, x, __pu_addr); \ break; \ case 8: \ __put_user_x(8, __pu_err, x, __pu_addr); \ break; \ default: \ __put_user_bad(); \ } \ __pu_err; \ }) #define __put_user_size(x, ptr, size, retval) \ do { \ retval = 0; \ __chk_user_ptr(ptr); \ switch (size) { \ case 1: \ __put_user_asm(x, ptr, retval, "b", "b", "iq", -EFAULT);\ break; \ case 2: \ __put_user_asm(x, ptr, retval, "w", "w", "ir", -EFAULT);\ break; \ case 4: \ __put_user_asm(x, ptr, retval, "l", "k", "ir", -EFAULT);\ break; \ case 8: \ __put_user_asm(x, ptr, retval, "q", "", "Zr", -EFAULT); \ break; \ default: \ __put_user_bad(); \ } \ } while (0) /* FIXME: this hack is definitely wrong -AK */ struct __large_struct { unsigned long buf[100]; }; #define __m(x) (*(struct __large_struct __user *)(x)) /* * Tell gcc we read from memory instead of writing: this is because * we do not write to any memory gcc knows about, so there are no * aliasing issues. */ #define __put_user_asm(x, addr, err, itype, rtype, ltype, errno) \ asm volatile("1: mov"itype" %"rtype"1,%2\n" \ "2:\n" \ ".section .fixup, \"ax\"\n" \ "3: mov %3,%0\n" \ " jmp 2b\n" \ ".previous\n" \ _ASM_EXTABLE(1b, 3b) \ : "=r"(err) \ : ltype (x), "m" (__m(addr)), "i" (errno), "0" (err)) #define __get_user_nocheck(x, ptr, size) \ ({ \ int __gu_err; \ unsigned long __gu_val; \ __get_user_size(__gu_val, (ptr), (size), __gu_err); \ (x) = (__force typeof(*(ptr)))__gu_val; \ __gu_err; \ }) extern int __get_user_1(void); extern int __get_user_2(void); extern int __get_user_4(void); extern int __get_user_8(void); extern int __get_user_bad(void); #define __get_user_size(x, ptr, size, retval) \ do { \ retval = 0; \ __chk_user_ptr(ptr); \ switch (size) { \ case 1: \ __get_user_asm(x, ptr, retval, "b", "b", "=q", -EFAULT);\ break; \ case 2: \ __get_user_asm(x, ptr, retval, "w", "w", "=r", -EFAULT);\ break; \ case 4: \ __get_user_asm(x, ptr, retval, "l", "k", "=r", -EFAULT);\ break; \ case 8: \ __get_user_asm(x, ptr, retval, "q", "", "=r", -EFAULT); \ break; \ default: \ (x) = __get_user_bad(); \ } \ } while (0) #define __get_user_asm(x, addr, err, itype, rtype, ltype, errno) \ asm volatile("1: mov"itype" %2,%"rtype"1\n" \ "2:\n" \ ".section .fixup, \"ax\"\n" \ "3: mov %3,%0\n" \ " xor"itype" %"rtype"1,%"rtype"1\n" \ " jmp 2b\n" \ ".previous\n" \ _ASM_EXTABLE(1b, 3b) \ : "=r" (err), ltype (x) \ : "m" (__m(addr)), "i"(errno), "0"(err)) /* * Copy To/From Userspace */ /* Handles exceptions in both to and from, but doesn't do access_ok */ __must_check unsigned long copy_user_generic(void *to, const void *from, unsigned len); __must_check unsigned long copy_to_user(void __user *to, const void *from, unsigned len); __must_check unsigned long copy_from_user(void *to, const void __user *from, unsigned len); __must_check unsigned long copy_in_user(void __user *to, const void __user *from, unsigned len); static __always_inline __must_check int __copy_from_user(void *dst, const void __user *src, unsigned size) { int ret = 0; if (!__builtin_constant_p(size)) return copy_user_generic(dst, (__force void *)src, size); switch (size) { case 1:__get_user_asm(*(u8 *)dst, (u8 __user *)src, ret, "b", "b", "=q", 1); return ret; case 2:__get_user_asm(*(u16 *)dst, (u16 __user *)src, ret, "w", "w", "=r", 2); return ret; case 4:__get_user_asm(*(u32 *)dst, (u32 __user *)src, ret, "l", "k", "=r", 4); return ret; case 8:__get_user_asm(*(u64 *)dst, (u64 __user *)src, ret, "q", "", "=r", 8); return ret; case 10: __get_user_asm(*(u64 *)dst, (u64 __user *)src, ret, "q", "", "=r", 16); if (unlikely(ret)) return ret; __get_user_asm(*(u16 *)(8 + (char *)dst), (u16 __user *)(8 + (char __user *)src), ret, "w", "w", "=r", 2); return ret; case 16: __get_user_asm(*(u64 *)dst, (u64 __user *)src, ret, "q", "", "=r", 16); if (unlikely(ret)) return ret; __get_user_asm(*(u64 *)(8 + (char *)dst), (u64 __user *)(8 + (char __user *)src), ret, "q", "", "=r", 8); return ret; default: return copy_user_generic(dst, (__force void *)src, size); } } static __always_inline __must_check int __copy_to_user(void __user *dst, const void *src, unsigned size) { int ret = 0; if (!__builtin_constant_p(size)) return copy_user_generic((__force void *)dst, src, size); switch (size) { case 1:__put_user_asm(*(u8 *)src, (u8 __user *)dst, ret, "b", "b", "iq", 1); return ret; case 2:__put_user_asm(*(u16 *)src, (u16 __user *)dst, ret, "w", "w", "ir", 2); return ret; case 4:__put_user_asm(*(u32 *)src, (u32 __user *)dst, ret, "l", "k", "ir", 4); return ret; case 8:__put_user_asm(*(u64 *)src, (u64 __user *)dst, ret, "q", "", "ir", 8); return ret; case 10: __put_user_asm(*(u64 *)src, (u64 __user *)dst, ret, "q", "", "ir", 10); if (unlikely(ret)) return ret; asm("":::"memory"); __put_user_asm(4[(u16 *)src], 4 + (u16 __user *)dst, ret, "w", "w", "ir", 2); return ret; case 16: __put_user_asm(*(u64 *)src, (u64 __user *)dst, ret, "q", "", "ir", 16); if (unlikely(ret)) return ret; asm("":::"memory"); __put_user_asm(1[(u64 *)src], 1 + (u64 __user *)dst, ret, "q", "", "ir", 8); return ret; default: return copy_user_generic((__force void *)dst, src, size); } } static __always_inline __must_check int __copy_in_user(void __user *dst, const void __user *src, unsigned size) { int ret = 0; if (!__builtin_constant_p(size)) return copy_user_generic((__force void *)dst, (__force void *)src, size); switch (size) { case 1: { u8 tmp; __get_user_asm(tmp, (u8 __user *)src, ret, "b", "b", "=q", 1); if (likely(!ret)) __put_user_asm(tmp, (u8 __user *)dst, ret, "b", "b", "iq", 1); return ret; } case 2: { u16 tmp; __get_user_asm(tmp, (u16 __user *)src, ret, "w", "w", "=r", 2); if (likely(!ret)) __put_user_asm(tmp, (u16 __user *)dst, ret, "w", "w", "ir", 2); return ret; } case 4: { u32 tmp; __get_user_asm(tmp, (u32 __user *)src, ret, "l", "k", "=r", 4); if (likely(!ret)) __put_user_asm(tmp, (u32 __user *)dst, ret, "l", "k", "ir", 4); return ret; } case 8: { u64 tmp; __get_user_asm(tmp, (u64 __user *)src, ret, "q", "", "=r", 8); if (likely(!ret)) __put_user_asm(tmp, (u64 __user *)dst, ret, "q", "", "ir", 8); return ret; } default: return copy_user_generic((__force void *)dst, (__force void *)src, size); } } __must_check long strncpy_from_user(char *dst, const char __user *src, long count); __must_check long __strncpy_from_user(char *dst, const char __user *src, long count); __must_check long strnlen_user(const char __user *str, long n); __must_check long __strnlen_user(const char __user *str, long n); __must_check long strlen_user(const char __user *str); __must_check unsigned long clear_user(void __user *mem, unsigned long len); __must_check unsigned long __clear_user(void __user *mem, unsigned long len); __must_check long __copy_from_user_inatomic(void *dst, const void __user *src, unsigned size); static __must_check __always_inline int __copy_to_user_inatomic(void __user *dst, const void *src, unsigned size) { return copy_user_generic((__force void *)dst, src, size); } #define ARCH_HAS_NOCACHE_UACCESS 1 extern long __copy_user_nocache(void *dst, const void __user *src, unsigned size, int zerorest); static inline int __copy_from_user_nocache(void *dst, const void __user *src, unsigned size) { might_sleep(); return __copy_user_nocache(dst, src, size, 1); } static inline int __copy_from_user_inatomic_nocache(void *dst, const void __user *src, unsigned size) { return __copy_user_nocache(dst, src, size, 0); } #endif /* __X86_64_UACCESS_H */