#ifndef _LINUX_PAGEMAP_H #define _LINUX_PAGEMAP_H /* * Copyright 1995 Linus Torvalds */ #include <linux/mm.h> #include <linux/fs.h> #include <linux/list.h> #include <linux/highmem.h> #include <linux/compiler.h> #include <asm/uaccess.h> #include <linux/gfp.h> #include <linux/bitops.h> /* * Bits in mapping->flags. The lower __GFP_BITS_SHIFT bits are the page * allocation mode flags. */ #define AS_EIO (__GFP_BITS_SHIFT + 0) /* IO error on async write */ #define AS_ENOSPC (__GFP_BITS_SHIFT + 1) /* ENOSPC on async write */ static inline void mapping_set_error(struct address_space *mapping, int error) { if (error) { if (error == -ENOSPC) set_bit(AS_ENOSPC, &mapping->flags); else set_bit(AS_EIO, &mapping->flags); } } static inline gfp_t mapping_gfp_mask(struct address_space * mapping) { return (__force gfp_t)mapping->flags & __GFP_BITS_MASK; } /* * This is non-atomic. Only to be used before the mapping is activated. * Probably needs a barrier... */ static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask) { m->flags = (m->flags & ~(__force unsigned long)__GFP_BITS_MASK) | (__force unsigned long)mask; } /* * The page cache can done in larger chunks than * one page, because it allows for more efficient * throughput (it can then be mapped into user * space in smaller chunks for same flexibility). * * Or rather, it _will_ be done in larger chunks. */ #define PAGE_CACHE_SHIFT PAGE_SHIFT #define PAGE_CACHE_SIZE PAGE_SIZE #define PAGE_CACHE_MASK PAGE_MASK #define PAGE_CACHE_ALIGN(addr) (((addr)+PAGE_CACHE_SIZE-1)&PAGE_CACHE_MASK) #define page_cache_get(page) get_page(page) #define page_cache_release(page) put_page(page) void release_pages(struct page **pages, int nr, int cold); #ifdef CONFIG_NUMA extern struct page *__page_cache_alloc(gfp_t gfp); #else static inline struct page *__page_cache_alloc(gfp_t gfp) { return alloc_pages(gfp, 0); } #endif static inline struct page *page_cache_alloc(struct address_space *x) { return __page_cache_alloc(mapping_gfp_mask(x)); } static inline struct page *page_cache_alloc_cold(struct address_space *x) { return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD); } typedef int filler_t(void *, struct page *); extern struct page * find_get_page(struct address_space *mapping, unsigned long index); extern struct page * find_lock_page(struct address_space *mapping, unsigned long index); extern struct page * find_or_create_page(struct address_space *mapping, unsigned long index, gfp_t gfp_mask); unsigned find_get_pages(struct address_space *mapping, pgoff_t start, unsigned int nr_pages, struct page **pages); unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start, unsigned int nr_pages, struct page **pages); unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, int tag, unsigned int nr_pages, struct page **pages); /* * Returns locked page at given index in given cache, creating it if needed. */ static inline struct page *grab_cache_page(struct address_space *mapping, unsigned long index) { return find_or_create_page(mapping, index, mapping_gfp_mask(mapping)); } extern struct page * grab_cache_page_nowait(struct address_space *mapping, unsigned long index); extern struct page * read_cache_page_async(struct address_space *mapping, unsigned long index, filler_t *filler, void *data); extern struct page * read_cache_page(struct address_space *mapping, unsigned long index, filler_t *filler, void *data); extern int read_cache_pages(struct address_space *mapping, struct list_head *pages, filler_t *filler, void *data); static inline struct page *read_mapping_page_async( struct address_space *mapping, unsigned long index, void *data) { filler_t *filler = (filler_t *)mapping->a_ops->readpage; return read_cache_page_async(mapping, index, filler, data); } static inline struct page *read_mapping_page(struct address_space *mapping, unsigned long index, void *data) { filler_t *filler = (filler_t *)mapping->a_ops->readpage; return read_cache_page(mapping, index, filler, data); } int add_to_page_cache(struct page *page, struct address_space *mapping, unsigned long index, gfp_t gfp_mask); int add_to_page_cache_lru(struct page *page, struct address_space *mapping, unsigned long index, gfp_t gfp_mask); extern void remove_from_page_cache(struct page *page); extern void __remove_from_page_cache(struct page *page); /* * Return byte-offset into filesystem object for page. */ static inline loff_t page_offset(struct page *page) { return ((loff_t)page->index) << PAGE_CACHE_SHIFT; } static inline pgoff_t linear_page_index(struct vm_area_struct *vma, unsigned long address) { pgoff_t pgoff = (address - vma->vm_start) >> PAGE_SHIFT; pgoff += vma->vm_pgoff; return pgoff >> (PAGE_CACHE_SHIFT - PAGE_SHIFT); } extern void FASTCALL(__lock_page(struct page *page)); extern void FASTCALL(__lock_page_nosync(struct page *page)); extern void FASTCALL(unlock_page(struct page *page)); /* * lock_page may only be called if we have the page's inode pinned. */ static inline void lock_page(struct page *page) { might_sleep(); if (TestSetPageLocked(page)) __lock_page(page); } /* * lock_page_nosync should only be used if we can't pin the page's inode. * Doesn't play quite so well with block device plugging. */ static inline void lock_page_nosync(struct page *page) { might_sleep(); if (TestSetPageLocked(page)) __lock_page_nosync(page); } /* * This is exported only for wait_on_page_locked/wait_on_page_writeback. * Never use this directly! */ extern void FASTCALL(wait_on_page_bit(struct page *page, int bit_nr)); /* * Wait for a page to be unlocked. * * This must be called with the caller "holding" the page, * ie with increased "page->count" so that the page won't * go away during the wait.. */ static inline void wait_on_page_locked(struct page *page) { if (PageLocked(page)) wait_on_page_bit(page, PG_locked); } /* * Wait for a page to complete writeback */ static inline void wait_on_page_writeback(struct page *page) { if (PageWriteback(page)) wait_on_page_bit(page, PG_writeback); } extern void end_page_writeback(struct page *page); /* * Fault a userspace page into pagetables. Return non-zero on a fault. * * This assumes that two userspace pages are always sufficient. That's * not true if PAGE_CACHE_SIZE > PAGE_SIZE. */ static inline int fault_in_pages_writeable(char __user *uaddr, int size) { int ret; /* * Writing zeroes into userspace here is OK, because we know that if * the zero gets there, we'll be overwriting it. */ ret = __put_user(0, uaddr); if (ret == 0) { char __user *end = uaddr + size - 1; /* * If the page was already mapped, this will get a cache miss * for sure, so try to avoid doing it. */ if (((unsigned long)uaddr & PAGE_MASK) != ((unsigned long)end & PAGE_MASK)) ret = __put_user(0, end); } return ret; } static inline void fault_in_pages_readable(const char __user *uaddr, int size) { volatile char c; int ret; ret = __get_user(c, uaddr); if (ret == 0) { const char __user *end = uaddr + size - 1; if (((unsigned long)uaddr & PAGE_MASK) != ((unsigned long)end & PAGE_MASK)) __get_user(c, end); } } #endif /* _LINUX_PAGEMAP_H */