#ifndef __NET_CFG80211_H #define __NET_CFG80211_H /* * 802.11 device and configuration interface * * Copyright 2006-2010 Johannes Berg * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include /** * DOC: Introduction * * cfg80211 is the configuration API for 802.11 devices in Linux. It bridges * userspace and drivers, and offers some utility functionality associated * with 802.11. cfg80211 must, directly or indirectly via mac80211, be used * by all modern wireless drivers in Linux, so that they offer a consistent * API through nl80211. For backward compatibility, cfg80211 also offers * wireless extensions to userspace, but hides them from drivers completely. * * Additionally, cfg80211 contains code to help enforce regulatory spectrum * use restrictions. */ /** * DOC: Device registration * * In order for a driver to use cfg80211, it must register the hardware device * with cfg80211. This happens through a number of hardware capability structs * described below. * * The fundamental structure for each device is the 'wiphy', of which each * instance describes a physical wireless device connected to the system. Each * such wiphy can have zero, one, or many virtual interfaces associated with * it, which need to be identified as such by pointing the network interface's * @ieee80211_ptr pointer to a &struct wireless_dev which further describes * the wireless part of the interface, normally this struct is embedded in the * network interface's private data area. Drivers can optionally allow creating * or destroying virtual interfaces on the fly, but without at least one or the * ability to create some the wireless device isn't useful. * * Each wiphy structure contains device capability information, and also has * a pointer to the various operations the driver offers. The definitions and * structures here describe these capabilities in detail. */ struct wiphy; /* * wireless hardware capability structures */ /** * enum ieee80211_band - supported frequency bands * * The bands are assigned this way because the supported * bitrates differ in these bands. * * @IEEE80211_BAND_2GHZ: 2.4GHz ISM band * @IEEE80211_BAND_5GHZ: around 5GHz band (4.9-5.7) * @IEEE80211_BAND_60GHZ: around 60 GHz band (58.32 - 64.80 GHz) * @IEEE80211_NUM_BANDS: number of defined bands */ enum ieee80211_band { IEEE80211_BAND_2GHZ = NL80211_BAND_2GHZ, IEEE80211_BAND_5GHZ = NL80211_BAND_5GHZ, IEEE80211_BAND_60GHZ = NL80211_BAND_60GHZ, /* keep last */ IEEE80211_NUM_BANDS }; /** * enum ieee80211_channel_flags - channel flags * * Channel flags set by the regulatory control code. * * @IEEE80211_CHAN_DISABLED: This channel is disabled. * @IEEE80211_CHAN_PASSIVE_SCAN: Only passive scanning is permitted * on this channel. * @IEEE80211_CHAN_NO_IBSS: IBSS is not allowed on this channel. * @IEEE80211_CHAN_RADAR: Radar detection is required on this channel. * @IEEE80211_CHAN_NO_HT40PLUS: extension channel above this channel * is not permitted. * @IEEE80211_CHAN_NO_HT40MINUS: extension channel below this channel * is not permitted. * @IEEE80211_CHAN_NO_OFDM: OFDM is not allowed on this channel. * @IEEE80211_CHAN_NO_80MHZ: If the driver supports 80 MHz on the band, * this flag indicates that an 80 MHz channel cannot use this * channel as the control or any of the secondary channels. * This may be due to the driver or due to regulatory bandwidth * restrictions. * @IEEE80211_CHAN_NO_160MHZ: If the driver supports 160 MHz on the band, * this flag indicates that an 160 MHz channel cannot use this * channel as the control or any of the secondary channels. * This may be due to the driver or due to regulatory bandwidth * restrictions. */ enum ieee80211_channel_flags { IEEE80211_CHAN_DISABLED = 1<<0, IEEE80211_CHAN_PASSIVE_SCAN = 1<<1, IEEE80211_CHAN_NO_IBSS = 1<<2, IEEE80211_CHAN_RADAR = 1<<3, IEEE80211_CHAN_NO_HT40PLUS = 1<<4, IEEE80211_CHAN_NO_HT40MINUS = 1<<5, IEEE80211_CHAN_NO_OFDM = 1<<6, IEEE80211_CHAN_NO_80MHZ = 1<<7, IEEE80211_CHAN_NO_160MHZ = 1<<8, }; #define IEEE80211_CHAN_NO_HT40 \ (IEEE80211_CHAN_NO_HT40PLUS | IEEE80211_CHAN_NO_HT40MINUS) #define IEEE80211_DFS_MIN_CAC_TIME_MS 60000 #define IEEE80211_DFS_MIN_NOP_TIME_MS (30 * 60 * 1000) /** * struct ieee80211_channel - channel definition * * This structure describes a single channel for use * with cfg80211. * * @center_freq: center frequency in MHz * @hw_value: hardware-specific value for the channel * @flags: channel flags from &enum ieee80211_channel_flags. * @orig_flags: channel flags at registration time, used by regulatory * code to support devices with additional restrictions * @band: band this channel belongs to. * @max_antenna_gain: maximum antenna gain in dBi * @max_power: maximum transmission power (in dBm) * @max_reg_power: maximum regulatory transmission power (in dBm) * @beacon_found: helper to regulatory code to indicate when a beacon * has been found on this channel. Use regulatory_hint_found_beacon() * to enable this, this is useful only on 5 GHz band. * @orig_mag: internal use * @orig_mpwr: internal use * @dfs_state: current state of this channel. Only relevant if radar is required * on this channel. * @dfs_state_entered: timestamp (jiffies) when the dfs state was entered. */ struct ieee80211_channel { enum ieee80211_band band; u16 center_freq; u16 hw_value; u32 flags; int max_antenna_gain; int max_power; int max_reg_power; bool beacon_found; u32 orig_flags; int orig_mag, orig_mpwr; enum nl80211_dfs_state dfs_state; unsigned long dfs_state_entered; }; /** * enum ieee80211_rate_flags - rate flags * * Hardware/specification flags for rates. These are structured * in a way that allows using the same bitrate structure for * different bands/PHY modes. * * @IEEE80211_RATE_SHORT_PREAMBLE: Hardware can send with short * preamble on this bitrate; only relevant in 2.4GHz band and * with CCK rates. * @IEEE80211_RATE_MANDATORY_A: This bitrate is a mandatory rate * when used with 802.11a (on the 5 GHz band); filled by the * core code when registering the wiphy. * @IEEE80211_RATE_MANDATORY_B: This bitrate is a mandatory rate * when used with 802.11b (on the 2.4 GHz band); filled by the * core code when registering the wiphy. * @IEEE80211_RATE_MANDATORY_G: This bitrate is a mandatory rate * when used with 802.11g (on the 2.4 GHz band); filled by the * core code when registering the wiphy. * @IEEE80211_RATE_ERP_G: This is an ERP rate in 802.11g mode. * @IEEE80211_RATE_SUPPORTS_5MHZ: Rate can be used in 5 MHz mode * @IEEE80211_RATE_SUPPORTS_10MHZ: Rate can be used in 10 MHz mode */ enum ieee80211_rate_flags { IEEE80211_RATE_SHORT_PREAMBLE = 1<<0, IEEE80211_RATE_MANDATORY_A = 1<<1, IEEE80211_RATE_MANDATORY_B = 1<<2, IEEE80211_RATE_MANDATORY_G = 1<<3, IEEE80211_RATE_ERP_G = 1<<4, IEEE80211_RATE_SUPPORTS_5MHZ = 1<<5, IEEE80211_RATE_SUPPORTS_10MHZ = 1<<6, }; /** * struct ieee80211_rate - bitrate definition * * This structure describes a bitrate that an 802.11 PHY can * operate with. The two values @hw_value and @hw_value_short * are only for driver use when pointers to this structure are * passed around. * * @flags: rate-specific flags * @bitrate: bitrate in units of 100 Kbps * @hw_value: driver/hardware value for this rate * @hw_value_short: driver/hardware value for this rate when * short preamble is used */ struct ieee80211_rate { u32 flags; u16 bitrate; u16 hw_value, hw_value_short; }; /** * struct ieee80211_sta_ht_cap - STA's HT capabilities * * This structure describes most essential parameters needed * to describe 802.11n HT capabilities for an STA. * * @ht_supported: is HT supported by the STA * @cap: HT capabilities map as described in 802.11n spec * @ampdu_factor: Maximum A-MPDU length factor * @ampdu_density: Minimum A-MPDU spacing * @mcs: Supported MCS rates */ struct ieee80211_sta_ht_cap { u16 cap; /* use IEEE80211_HT_CAP_ */ bool ht_supported; u8 ampdu_factor; u8 ampdu_density; struct ieee80211_mcs_info mcs; }; /** * struct ieee80211_sta_vht_cap - STA's VHT capabilities * * This structure describes most essential parameters needed * to describe 802.11ac VHT capabilities for an STA. * * @vht_supported: is VHT supported by the STA * @cap: VHT capabilities map as described in 802.11ac spec * @vht_mcs: Supported VHT MCS rates */ struct ieee80211_sta_vht_cap { bool vht_supported; u32 cap; /* use IEEE80211_VHT_CAP_ */ struct ieee80211_vht_mcs_info vht_mcs; }; /** * struct ieee80211_supported_band - frequency band definition * * This structure describes a frequency band a wiphy * is able to operate in. * * @channels: Array of channels the hardware can operate in * in this band. * @band: the band this structure represents * @n_channels: Number of channels in @channels * @bitrates: Array of bitrates the hardware can operate with * in this band. Must be sorted to give a valid "supported * rates" IE, i.e. CCK rates first, then OFDM. * @n_bitrates: Number of bitrates in @bitrates * @ht_cap: HT capabilities in this band * @vht_cap: VHT capabilities in this band */ struct ieee80211_supported_band { struct ieee80211_channel *channels; struct ieee80211_rate *bitrates; enum ieee80211_band band; int n_channels; int n_bitrates; struct ieee80211_sta_ht_cap ht_cap; struct ieee80211_sta_vht_cap vht_cap; }; /* * Wireless hardware/device configuration structures and methods */ /** * DOC: Actions and configuration * * Each wireless device and each virtual interface offer a set of configuration * operations and other actions that are invoked by userspace. Each of these * actions is described in the operations structure, and the parameters these * operations use are described separately. * * Additionally, some operations are asynchronous and expect to get status * information via some functions that drivers need to call. * * Scanning and BSS list handling with its associated functionality is described * in a separate chapter. */ /** * struct vif_params - describes virtual interface parameters * @use_4addr: use 4-address frames * @macaddr: address to use for this virtual interface. This will only * be used for non-netdevice interfaces. If this parameter is set * to zero address the driver may determine the address as needed. */ struct vif_params { int use_4addr; u8 macaddr[ETH_ALEN]; }; /** * struct key_params - key information * * Information about a key * * @key: key material * @key_len: length of key material * @cipher: cipher suite selector * @seq: sequence counter (IV/PN) for TKIP and CCMP keys, only used * with the get_key() callback, must be in little endian, * length given by @seq_len. * @seq_len: length of @seq. */ struct key_params { u8 *key; u8 *seq; int key_len; int seq_len; u32 cipher; }; /** * struct cfg80211_chan_def - channel definition * @chan: the (control) channel * @width: channel width * @center_freq1: center frequency of first segment * @center_freq2: center frequency of second segment * (only with 80+80 MHz) */ struct cfg80211_chan_def { struct ieee80211_channel *chan; enum nl80211_chan_width width; u32 center_freq1; u32 center_freq2; }; /** * cfg80211_get_chandef_type - return old channel type from chandef * @chandef: the channel definition * * Return: The old channel type (NOHT, HT20, HT40+/-) from a given * chandef, which must have a bandwidth allowing this conversion. */ static inline enum nl80211_channel_type cfg80211_get_chandef_type(const struct cfg80211_chan_def *chandef) { switch (chandef->width) { case NL80211_CHAN_WIDTH_20_NOHT: return NL80211_CHAN_NO_HT; case NL80211_CHAN_WIDTH_20: return NL80211_CHAN_HT20; case NL80211_CHAN_WIDTH_40: if (chandef->center_freq1 > chandef->chan->center_freq) return NL80211_CHAN_HT40PLUS; return NL80211_CHAN_HT40MINUS; default: WARN_ON(1); return NL80211_CHAN_NO_HT; } } /** * cfg80211_chandef_create - create channel definition using channel type * @chandef: the channel definition struct to fill * @channel: the control channel * @chantype: the channel type * * Given a channel type, create a channel definition. */ void cfg80211_chandef_create(struct cfg80211_chan_def *chandef, struct ieee80211_channel *channel, enum nl80211_channel_type chantype); /** * cfg80211_chandef_identical - check if two channel definitions are identical * @chandef1: first channel definition * @chandef2: second channel definition * * Return: %true if the channels defined by the channel definitions are * identical, %false otherwise. */ static inline bool cfg80211_chandef_identical(const struct cfg80211_chan_def *chandef1, const struct cfg80211_chan_def *chandef2) { return (chandef1->chan == chandef2->chan && chandef1->width == chandef2->width && chandef1->center_freq1 == chandef2->center_freq1 && chandef1->center_freq2 == chandef2->center_freq2); } /** * cfg80211_chandef_compatible - check if two channel definitions are compatible * @chandef1: first channel definition * @chandef2: second channel definition * * Return: %NULL if the given channel definitions are incompatible, * chandef1 or chandef2 otherwise. */ const struct cfg80211_chan_def * cfg80211_chandef_compatible(const struct cfg80211_chan_def *chandef1, const struct cfg80211_chan_def *chandef2); /** * cfg80211_chandef_valid - check if a channel definition is valid * @chandef: the channel definition to check * Return: %true if the channel definition is valid. %false otherwise. */ bool cfg80211_chandef_valid(const struct cfg80211_chan_def *chandef); /** * cfg80211_chandef_usable - check if secondary channels can be used * @wiphy: the wiphy to validate against * @chandef: the channel definition to check * @prohibited_flags: the regulatory channel flags that must not be set * Return: %true if secondary channels are usable. %false otherwise. */ bool cfg80211_chandef_usable(struct wiphy *wiphy, const struct cfg80211_chan_def *chandef, u32 prohibited_flags); /** * ieee80211_chandef_rate_flags - returns rate flags for a channel * * In some channel types, not all rates may be used - for example CCK * rates may not be used in 5/10 MHz channels. * * @chandef: channel definition for the channel * * Returns: rate flags which apply for this channel */ static inline enum ieee80211_rate_flags ieee80211_chandef_rate_flags(struct cfg80211_chan_def *chandef) { switch (chandef->width) { case NL80211_CHAN_WIDTH_5: return IEEE80211_RATE_SUPPORTS_5MHZ; case NL80211_CHAN_WIDTH_10: return IEEE80211_RATE_SUPPORTS_10MHZ; default: break; } return 0; } /** * enum survey_info_flags - survey information flags * * @SURVEY_INFO_NOISE_DBM: noise (in dBm) was filled in * @SURVEY_INFO_IN_USE: channel is currently being used * @SURVEY_INFO_CHANNEL_TIME: channel active time (in ms) was filled in * @SURVEY_INFO_CHANNEL_TIME_BUSY: channel busy time was filled in * @SURVEY_INFO_CHANNEL_TIME_EXT_BUSY: extension channel busy time was filled in * @SURVEY_INFO_CHANNEL_TIME_RX: channel receive time was filled in * @SURVEY_INFO_CHANNEL_TIME_TX: channel transmit time was filled in * * Used by the driver to indicate which info in &struct survey_info * it has filled in during the get_survey(). */ enum survey_info_flags { SURVEY_INFO_NOISE_DBM = 1<<0, SURVEY_INFO_IN_USE = 1<<1, SURVEY_INFO_CHANNEL_TIME = 1<<2, SURVEY_INFO_CHANNEL_TIME_BUSY = 1<<3, SURVEY_INFO_CHANNEL_TIME_EXT_BUSY = 1<<4, SURVEY_INFO_CHANNEL_TIME_RX = 1<<5, SURVEY_INFO_CHANNEL_TIME_TX = 1<<6, }; /** * struct survey_info - channel survey response * * @channel: the channel this survey record reports, mandatory * @filled: bitflag of flags from &enum survey_info_flags * @noise: channel noise in dBm. This and all following fields are * optional * @channel_time: amount of time in ms the radio spent on the channel * @channel_time_busy: amount of time the primary channel was sensed busy * @channel_time_ext_busy: amount of time the extension channel was sensed busy * @channel_time_rx: amount of time the radio spent receiving data * @channel_time_tx: amount of time the radio spent transmitting data * * Used by dump_survey() to report back per-channel survey information. * * This structure can later be expanded with things like * channel duty cycle etc. */ struct survey_info { struct ieee80211_channel *channel; u64 channel_time; u64 channel_time_busy; u64 channel_time_ext_busy; u64 channel_time_rx; u64 channel_time_tx; u32 filled; s8 noise; }; /** * struct cfg80211_crypto_settings - Crypto settings * @wpa_versions: indicates which, if any, WPA versions are enabled * (from enum nl80211_wpa_versions) * @cipher_group: group key cipher suite (or 0 if unset) * @n_ciphers_pairwise: number of AP supported unicast ciphers * @ciphers_pairwise: unicast key cipher suites * @n_akm_suites: number of AKM suites * @akm_suites: AKM suites * @control_port: Whether user space controls IEEE 802.1X port, i.e., * sets/clears %NL80211_STA_FLAG_AUTHORIZED. If true, the driver is * required to assume that the port is unauthorized until authorized by * user space. Otherwise, port is marked authorized by default. * @control_port_ethertype: the control port protocol that should be * allowed through even on unauthorized ports * @control_port_no_encrypt: TRUE to prevent encryption of control port * protocol frames. */ struct cfg80211_crypto_settings { u32 wpa_versions; u32 cipher_group; int n_ciphers_pairwise; u32 ciphers_pairwise[NL80211_MAX_NR_CIPHER_SUITES]; int n_akm_suites; u32 akm_suites[NL80211_MAX_NR_AKM_SUITES]; bool control_port; __be16 control_port_ethertype; bool control_port_no_encrypt; }; /** * struct cfg80211_beacon_data - beacon data * @head: head portion of beacon (before TIM IE) * or %NULL if not changed * @tail: tail portion of beacon (after TIM IE) * or %NULL if not changed * @head_len: length of @head * @tail_len: length of @tail * @beacon_ies: extra information element(s) to add into Beacon frames or %NULL * @beacon_ies_len: length of beacon_ies in octets * @proberesp_ies: extra information element(s) to add into Probe Response * frames or %NULL * @proberesp_ies_len: length of proberesp_ies in octets * @assocresp_ies: extra information element(s) to add into (Re)Association * Response frames or %NULL * @assocresp_ies_len: length of assocresp_ies in octets * @probe_resp_len: length of probe response template (@probe_resp) * @probe_resp: probe response template (AP mode only) */ struct cfg80211_beacon_data { const u8 *head, *tail; const u8 *beacon_ies; const u8 *proberesp_ies; const u8 *assocresp_ies; const u8 *probe_resp; size_t head_len, tail_len; size_t beacon_ies_len; size_t proberesp_ies_len; size_t assocresp_ies_len; size_t probe_resp_len; }; struct mac_address { u8 addr[ETH_ALEN]; }; /** * struct cfg80211_acl_data - Access control list data * * @acl_policy: ACL policy to be applied on the station's * entry specified by mac_addr * @n_acl_entries: Number of MAC address entries passed * @mac_addrs: List of MAC addresses of stations to be used for ACL */ struct cfg80211_acl_data { enum nl80211_acl_policy acl_policy; int n_acl_entries; /* Keep it last */ struct mac_address mac_addrs[]; }; /** * struct cfg80211_ap_settings - AP configuration * * Used to configure an AP interface. * * @chandef: defines the channel to use * @beacon: beacon data * @beacon_interval: beacon interval * @dtim_period: DTIM period * @ssid: SSID to be used in the BSS (note: may be %NULL if not provided from * user space) * @ssid_len: length of @ssid * @hidden_ssid: whether to hide the SSID in Beacon/Probe Response frames * @crypto: crypto settings * @privacy: the BSS uses privacy * @auth_type: Authentication type (algorithm) * @inactivity_timeout: time in seconds to determine station's inactivity. * @p2p_ctwindow: P2P CT Window * @p2p_opp_ps: P2P opportunistic PS * @acl: ACL configuration used by the drivers which has support for * MAC address based access control * @radar_required: set if radar detection is required */ struct cfg80211_ap_settings { struct cfg80211_chan_def chandef; struct cfg80211_beacon_data beacon; int beacon_interval, dtim_period; const u8 *ssid; size_t ssid_len; enum nl80211_hidden_ssid hidden_ssid; struct cfg80211_crypto_settings crypto; bool privacy; enum nl80211_auth_type auth_type; int inactivity_timeout; u8 p2p_ctwindow; bool p2p_opp_ps; const struct cfg80211_acl_data *acl; bool radar_required; }; /** * enum station_parameters_apply_mask - station parameter values to apply * @STATION_PARAM_APPLY_UAPSD: apply new uAPSD parameters (uapsd_queues, max_sp) * @STATION_PARAM_APPLY_CAPABILITY: apply new capability * @STATION_PARAM_APPLY_PLINK_STATE: apply new plink state * * Not all station parameters have in-band "no change" signalling, * for those that don't these flags will are used. */ enum station_parameters_apply_mask { STATION_PARAM_APPLY_UAPSD = BIT(0), STATION_PARAM_APPLY_CAPABILITY = BIT(1), STATION_PARAM_APPLY_PLINK_STATE = BIT(2), }; /** * struct station_parameters - station parameters * * Used to change and create a new station. * * @vlan: vlan interface station should belong to * @supported_rates: supported rates in IEEE 802.11 format * (or NULL for no change) * @supported_rates_len: number of supported rates * @sta_flags_mask: station flags that changed * (bitmask of BIT(NL80211_STA_FLAG_...)) * @sta_flags_set: station flags values * (bitmask of BIT(NL80211_STA_FLAG_...)) * @listen_interval: listen interval or -1 for no change * @aid: AID or zero for no change * @plink_action: plink action to take * @plink_state: set the peer link state for a station * @ht_capa: HT capabilities of station * @vht_capa: VHT capabilities of station * @uapsd_queues: bitmap of queues configured for uapsd. same format * as the AC bitmap in the QoS info field * @max_sp: max Service Period. same format as the MAX_SP in the * QoS info field (but already shifted down) * @sta_modify_mask: bitmap indicating which parameters changed * (for those that don't have a natural "no change" value), * see &enum station_parameters_apply_mask * @local_pm: local link-specific mesh power save mode (no change when set * to unknown) * @capability: station capability * @ext_capab: extended capabilities of the station * @ext_capab_len: number of extended capabilities */ struct station_parameters { const u8 *supported_rates; struct net_device *vlan; u32 sta_flags_mask, sta_flags_set; u32 sta_modify_mask; int listen_interval; u16 aid; u8 supported_rates_len; u8 plink_action; u8 plink_state; const struct ieee80211_ht_cap *ht_capa; const struct ieee80211_vht_cap *vht_capa; u8 uapsd_queues; u8 max_sp; enum nl80211_mesh_power_mode local_pm; u16 capability; const u8 *ext_capab; u8 ext_capab_len; }; /** * enum cfg80211_station_type - the type of station being modified * @CFG80211_STA_AP_CLIENT: client of an AP interface * @CFG80211_STA_AP_MLME_CLIENT: client of an AP interface that has * the AP MLME in the device * @CFG80211_STA_AP_STA: AP station on managed interface * @CFG80211_STA_IBSS: IBSS station * @CFG80211_STA_TDLS_PEER_SETUP: TDLS peer on managed interface (dummy entry * while TDLS setup is in progress, it moves out of this state when * being marked authorized; use this only if TDLS with external setup is * supported/used) * @CFG80211_STA_TDLS_PEER_ACTIVE: TDLS peer on managed interface (active * entry that is operating, has been marked authorized by userspace) * @CFG80211_STA_MESH_PEER_KERNEL: peer on mesh interface (kernel managed) * @CFG80211_STA_MESH_PEER_USER: peer on mesh interface (user managed) */ enum cfg80211_station_type { CFG80211_STA_AP_CLIENT, CFG80211_STA_AP_MLME_CLIENT, CFG80211_STA_AP_STA, CFG80211_STA_IBSS, CFG80211_STA_TDLS_PEER_SETUP, CFG80211_STA_TDLS_PEER_ACTIVE, CFG80211_STA_MESH_PEER_KERNEL, CFG80211_STA_MESH_PEER_USER, }; /** * cfg80211_check_station_change - validate parameter changes * @wiphy: the wiphy this operates on * @params: the new parameters for a station * @statype: the type of station being modified * * Utility function for the @change_station driver method. Call this function * with the appropriate station type looking up the station (and checking that * it exists). It will verify whether the station change is acceptable, and if * not will return an error code. Note that it may modify the parameters for * backward compatibility reasons, so don't use them before calling this. */ int cfg80211_check_station_change(struct wiphy *wiphy, struct station_parameters *params, enum cfg80211_station_type statype); /** * enum station_info_flags - station information flags * * Used by the driver to indicate which info in &struct station_info * it has filled in during get_station() or dump_station(). * * @STATION_INFO_INACTIVE_TIME: @inactive_time filled * @STATION_INFO_RX_BYTES: @rx_bytes filled * @STATION_INFO_TX_BYTES: @tx_bytes filled * @STATION_INFO_RX_BYTES64: @rx_bytes filled with 64-bit value * @STATION_INFO_TX_BYTES64: @tx_bytes filled with 64-bit value * @STATION_INFO_LLID: @llid filled * @STATION_INFO_PLID: @plid filled * @STATION_INFO_PLINK_STATE: @plink_state filled * @STATION_INFO_SIGNAL: @signal filled * @STATION_INFO_TX_BITRATE: @txrate fields are filled * (tx_bitrate, tx_bitrate_flags and tx_bitrate_mcs) * @STATION_INFO_RX_PACKETS: @rx_packets filled with 32-bit value * @STATION_INFO_TX_PACKETS: @tx_packets filled with 32-bit value * @STATION_INFO_TX_RETRIES: @tx_retries filled * @STATION_INFO_TX_FAILED: @tx_failed filled * @STATION_INFO_RX_DROP_MISC: @rx_dropped_misc filled * @STATION_INFO_SIGNAL_AVG: @signal_avg filled * @STATION_INFO_RX_BITRATE: @rxrate fields are filled * @STATION_INFO_BSS_PARAM: @bss_param filled * @STATION_INFO_CONNECTED_TIME: @connected_time filled * @STATION_INFO_ASSOC_REQ_IES: @assoc_req_ies filled * @STATION_INFO_STA_FLAGS: @sta_flags filled * @STATION_INFO_BEACON_LOSS_COUNT: @beacon_loss_count filled * @STATION_INFO_T_OFFSET: @t_offset filled * @STATION_INFO_LOCAL_PM: @local_pm filled * @STATION_INFO_PEER_PM: @peer_pm filled * @STATION_INFO_NONPEER_PM: @nonpeer_pm filled * @STATION_INFO_CHAIN_SIGNAL: @chain_signal filled * @STATION_INFO_CHAIN_SIGNAL_AVG: @chain_signal_avg filled */ enum station_info_flags { STATION_INFO_INACTIVE_TIME = 1<<0, STATION_INFO_RX_BYTES = 1<<1, STATION_INFO_TX_BYTES = 1<<2, STATION_INFO_LLID = 1<<3, STATION_INFO_PLID = 1<<4, STATION_INFO_PLINK_STATE = 1<<5, STATION_INFO_SIGNAL = 1<<6, STATION_INFO_TX_BITRATE = 1<<7, STATION_INFO_RX_PACKETS = 1<<8, STATION_INFO_TX_PACKETS = 1<<9, STATION_INFO_TX_RETRIES = 1<<10, STATION_INFO_TX_FAILED = 1<<11, STATION_INFO_RX_DROP_MISC = 1<<12, STATION_INFO_SIGNAL_AVG = 1<<13, STATION_INFO_RX_BITRATE = 1<<14, STATION_INFO_BSS_PARAM = 1<<15, STATION_INFO_CONNECTED_TIME = 1<<16, STATION_INFO_ASSOC_REQ_IES = 1<<17, STATION_INFO_STA_FLAGS = 1<<18, STATION_INFO_BEACON_LOSS_COUNT = 1<<19, STATION_INFO_T_OFFSET = 1<<20, STATION_INFO_LOCAL_PM = 1<<21, STATION_INFO_PEER_PM = 1<<22, STATION_INFO_NONPEER_PM = 1<<23, STATION_INFO_RX_BYTES64 = 1<<24, STATION_INFO_TX_BYTES64 = 1<<25, STATION_INFO_CHAIN_SIGNAL = 1<<26, STATION_INFO_CHAIN_SIGNAL_AVG = 1<<27, }; /** * enum station_info_rate_flags - bitrate info flags * * Used by the driver to indicate the specific rate transmission * type for 802.11n transmissions. * * @RATE_INFO_FLAGS_MCS: mcs field filled with HT MCS * @RATE_INFO_FLAGS_VHT_MCS: mcs field filled with VHT MCS * @RATE_INFO_FLAGS_40_MHZ_WIDTH: 40 MHz width transmission * @RATE_INFO_FLAGS_80_MHZ_WIDTH: 80 MHz width transmission * @RATE_INFO_FLAGS_80P80_MHZ_WIDTH: 80+80 MHz width transmission * @RATE_INFO_FLAGS_160_MHZ_WIDTH: 160 MHz width transmission * @RATE_INFO_FLAGS_SHORT_GI: 400ns guard interval * @RATE_INFO_FLAGS_60G: 60GHz MCS */ enum rate_info_flags { RATE_INFO_FLAGS_MCS = BIT(0), RATE_INFO_FLAGS_VHT_MCS = BIT(1), RATE_INFO_FLAGS_40_MHZ_WIDTH = BIT(2), RATE_INFO_FLAGS_80_MHZ_WIDTH = BIT(3), RATE_INFO_FLAGS_80P80_MHZ_WIDTH = BIT(4), RATE_INFO_FLAGS_160_MHZ_WIDTH = BIT(5), RATE_INFO_FLAGS_SHORT_GI = BIT(6), RATE_INFO_FLAGS_60G = BIT(7), }; /** * struct rate_info - bitrate information * * Information about a receiving or transmitting bitrate * * @flags: bitflag of flags from &enum rate_info_flags * @mcs: mcs index if struct describes a 802.11n bitrate * @legacy: bitrate in 100kbit/s for 802.11abg * @nss: number of streams (VHT only) */ struct rate_info { u8 flags; u8 mcs; u16 legacy; u8 nss; }; /** * enum station_info_rate_flags - bitrate info flags * * Used by the driver to indicate the specific rate transmission * type for 802.11n transmissions. * * @BSS_PARAM_FLAGS_CTS_PROT: whether CTS protection is enabled * @BSS_PARAM_FLAGS_SHORT_PREAMBLE: whether short preamble is enabled * @BSS_PARAM_FLAGS_SHORT_SLOT_TIME: whether short slot time is enabled */ enum bss_param_flags { BSS_PARAM_FLAGS_CTS_PROT = 1<<0, BSS_PARAM_FLAGS_SHORT_PREAMBLE = 1<<1, BSS_PARAM_FLAGS_SHORT_SLOT_TIME = 1<<2, }; /** * struct sta_bss_parameters - BSS parameters for the attached station * * Information about the currently associated BSS * * @flags: bitflag of flags from &enum bss_param_flags * @dtim_period: DTIM period for the BSS * @beacon_interval: beacon interval */ struct sta_bss_parameters { u8 flags; u8 dtim_period; u16 beacon_interval; }; #define IEEE80211_MAX_CHAINS 4 /** * struct station_info - station information * * Station information filled by driver for get_station() and dump_station. * * @filled: bitflag of flags from &enum station_info_flags * @connected_time: time(in secs) since a station is last connected * @inactive_time: time since last station activity (tx/rx) in milliseconds * @rx_bytes: bytes received from this station * @tx_bytes: bytes transmitted to this station * @llid: mesh local link id * @plid: mesh peer link id * @plink_state: mesh peer link state * @signal: The signal strength, type depends on the wiphy's signal_type. * For CFG80211_SIGNAL_TYPE_MBM, value is expressed in _dBm_. * @signal_avg: Average signal strength, type depends on the wiphy's signal_type. * For CFG80211_SIGNAL_TYPE_MBM, value is expressed in _dBm_. * @chains: bitmask for filled values in @chain_signal, @chain_signal_avg * @chain_signal: per-chain signal strength of last received packet in dBm * @chain_signal_avg: per-chain signal strength average in dBm * @txrate: current unicast bitrate from this station * @rxrate: current unicast bitrate to this station * @rx_packets: packets received from this station * @tx_packets: packets transmitted to this station * @tx_retries: cumulative retry counts * @tx_failed: number of failed transmissions (retries exceeded, no ACK) * @rx_dropped_misc: Dropped for un-specified reason. * @bss_param: current BSS parameters * @generation: generation number for nl80211 dumps. * This number should increase every time the list of stations * changes, i.e. when a station is added or removed, so that * userspace can tell whether it got a consistent snapshot. * @assoc_req_ies: IEs from (Re)Association Request. * This is used only when in AP mode with drivers that do not use * user space MLME/SME implementation. The information is provided for * the cfg80211_new_sta() calls to notify user space of the IEs. * @assoc_req_ies_len: Length of assoc_req_ies buffer in octets. * @sta_flags: station flags mask & values * @beacon_loss_count: Number of times beacon loss event has triggered. * @t_offset: Time offset of the station relative to this host. * @local_pm: local mesh STA power save mode * @peer_pm: peer mesh STA power save mode * @nonpeer_pm: non-peer mesh STA power save mode */ struct station_info { u32 filled; u32 connected_time; u32 inactive_time; u64 rx_bytes; u64 tx_bytes; u16 llid; u16 plid; u8 plink_state; s8 signal; s8 signal_avg; u8 chains; s8 chain_signal[IEEE80211_MAX_CHAINS]; s8 chain_signal_avg[IEEE80211_MAX_CHAINS]; struct rate_info txrate; struct rate_info rxrate; u32 rx_packets; u32 tx_packets; u32 tx_retries; u32 tx_failed; u32 rx_dropped_misc; struct sta_bss_parameters bss_param; struct nl80211_sta_flag_update sta_flags; int generation; const u8 *assoc_req_ies; size_t assoc_req_ies_len; u32 beacon_loss_count; s64 t_offset; enum nl80211_mesh_power_mode local_pm; enum nl80211_mesh_power_mode peer_pm; enum nl80211_mesh_power_mode nonpeer_pm; /* * Note: Add a new enum station_info_flags value for each new field and * use it to check which fields are initialized. */ }; /** * enum monitor_flags - monitor flags * * Monitor interface configuration flags. Note that these must be the bits * according to the nl80211 flags. * * @MONITOR_FLAG_FCSFAIL: pass frames with bad FCS * @MONITOR_FLAG_PLCPFAIL: pass frames with bad PLCP * @MONITOR_FLAG_CONTROL: pass control frames * @MONITOR_FLAG_OTHER_BSS: disable BSSID filtering * @MONITOR_FLAG_COOK_FRAMES: report frames after processing * @MONITOR_FLAG_ACTIVE: active monitor, ACKs frames on its MAC address */ enum monitor_flags { MONITOR_FLAG_FCSFAIL = 1<beacon_ies in that case. * @signal: signal strength value (type depends on the wiphy's signal_type) * @priv: private area for driver use, has at least wiphy->bss_priv_size bytes */ struct cfg80211_bss { struct ieee80211_channel *channel; const struct cfg80211_bss_ies __rcu *ies; const struct cfg80211_bss_ies __rcu *beacon_ies; const struct cfg80211_bss_ies __rcu *proberesp_ies; struct cfg80211_bss *hidden_beacon_bss; s32 signal; u16 beacon_interval; u16 capability; u8 bssid[ETH_ALEN]; u8 priv[0] __aligned(sizeof(void *)); }; /** * ieee80211_bss_get_ie - find IE with given ID * @bss: the bss to search * @ie: the IE ID * * Note that the return value is an RCU-protected pointer, so * rcu_read_lock() must be held when calling this function. * Return: %NULL if not found. */ const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie); /** * struct cfg80211_auth_request - Authentication request data * * This structure provides information needed to complete IEEE 802.11 * authentication. * * @bss: The BSS to authenticate with, the callee must obtain a reference * to it if it needs to keep it. * @auth_type: Authentication type (algorithm) * @ie: Extra IEs to add to Authentication frame or %NULL * @ie_len: Length of ie buffer in octets * @key_len: length of WEP key for shared key authentication * @key_idx: index of WEP key for shared key authentication * @key: WEP key for shared key authentication * @sae_data: Non-IE data to use with SAE or %NULL. This starts with * Authentication transaction sequence number field. * @sae_data_len: Length of sae_data buffer in octets */ struct cfg80211_auth_request { struct cfg80211_bss *bss; const u8 *ie; size_t ie_len; enum nl80211_auth_type auth_type; const u8 *key; u8 key_len, key_idx; const u8 *sae_data; size_t sae_data_len; }; /** * enum cfg80211_assoc_req_flags - Over-ride default behaviour in association. * * @ASSOC_REQ_DISABLE_HT: Disable HT (802.11n) * @ASSOC_REQ_DISABLE_VHT: Disable VHT */ enum cfg80211_assoc_req_flags { ASSOC_REQ_DISABLE_HT = BIT(0), ASSOC_REQ_DISABLE_VHT = BIT(1), }; /** * struct cfg80211_assoc_request - (Re)Association request data * * This structure provides information needed to complete IEEE 802.11 * (re)association. * @bss: The BSS to associate with. If the call is successful the driver is * given a reference that it must give back to cfg80211_send_rx_assoc() * or to cfg80211_assoc_timeout(). To ensure proper refcounting, new * association requests while already associating must be rejected. * @ie: Extra IEs to add to (Re)Association Request frame or %NULL * @ie_len: Length of ie buffer in octets * @use_mfp: Use management frame protection (IEEE 802.11w) in this association * @crypto: crypto settings * @prev_bssid: previous BSSID, if not %NULL use reassociate frame * @flags: See &enum cfg80211_assoc_req_flags * @ht_capa: HT Capabilities over-rides. Values set in ht_capa_mask * will be used in ht_capa. Un-supported values will be ignored. * @ht_capa_mask: The bits of ht_capa which are to be used. * @vht_capa: VHT capability override * @vht_capa_mask: VHT capability mask indicating which fields to use */ struct cfg80211_assoc_request { struct cfg80211_bss *bss; const u8 *ie, *prev_bssid; size_t ie_len; struct cfg80211_crypto_settings crypto; bool use_mfp; u32 flags; struct ieee80211_ht_cap ht_capa; struct ieee80211_ht_cap ht_capa_mask; struct ieee80211_vht_cap vht_capa, vht_capa_mask; }; /** * struct cfg80211_deauth_request - Deauthentication request data * * This structure provides information needed to complete IEEE 802.11 * deauthentication. * * @bssid: the BSSID of the BSS to deauthenticate from * @ie: Extra IEs to add to Deauthentication frame or %NULL * @ie_len: Length of ie buffer in octets * @reason_code: The reason code for the deauthentication * @local_state_change: if set, change local state only and * do not set a deauth frame */ struct cfg80211_deauth_request { const u8 *bssid; const u8 *ie; size_t ie_len; u16 reason_code; bool local_state_change; }; /** * struct cfg80211_disassoc_request - Disassociation request data * * This structure provides information needed to complete IEEE 802.11 * disassocation. * * @bss: the BSS to disassociate from * @ie: Extra IEs to add to Disassociation frame or %NULL * @ie_len: Length of ie buffer in octets * @reason_code: The reason code for the disassociation * @local_state_change: This is a request for a local state only, i.e., no * Disassociation frame is to be transmitted. */ struct cfg80211_disassoc_request { struct cfg80211_bss *bss; const u8 *ie; size_t ie_len; u16 reason_code; bool local_state_change; }; /** * struct cfg80211_ibss_params - IBSS parameters * * This structure defines the IBSS parameters for the join_ibss() * method. * * @ssid: The SSID, will always be non-null. * @ssid_len: The length of the SSID, will always be non-zero. * @bssid: Fixed BSSID requested, maybe be %NULL, if set do not * search for IBSSs with a different BSSID. * @chandef: defines the channel to use if no other IBSS to join can be found * @channel_fixed: The channel should be fixed -- do not search for * IBSSs to join on other channels. * @ie: information element(s) to include in the beacon * @ie_len: length of that * @beacon_interval: beacon interval to use * @privacy: this is a protected network, keys will be configured * after joining * @control_port: whether user space controls IEEE 802.1X port, i.e., * sets/clears %NL80211_STA_FLAG_AUTHORIZED. If true, the driver is * required to assume that the port is unauthorized until authorized by * user space. Otherwise, port is marked authorized by default. * @basic_rates: bitmap of basic rates to use when creating the IBSS * @mcast_rate: per-band multicast rate index + 1 (0: disabled) */ struct cfg80211_ibss_params { u8 *ssid; u8 *bssid; struct cfg80211_chan_def chandef; u8 *ie; u8 ssid_len, ie_len; u16 beacon_interval; u32 basic_rates; bool channel_fixed; bool privacy; bool control_port; int mcast_rate[IEEE80211_NUM_BANDS]; }; /** * struct cfg80211_connect_params - Connection parameters * * This structure provides information needed to complete IEEE 802.11 * authentication and association. * * @channel: The channel to use or %NULL if not specified (auto-select based * on scan results) * @bssid: The AP BSSID or %NULL if not specified (auto-select based on scan * results) * @ssid: SSID * @ssid_len: Length of ssid in octets * @auth_type: Authentication type (algorithm) * @ie: IEs for association request * @ie_len: Length of assoc_ie in octets * @privacy: indicates whether privacy-enabled APs should be used * @mfp: indicate whether management frame protection is used * @crypto: crypto settings * @key_len: length of WEP key for shared key authentication * @key_idx: index of WEP key for shared key authentication * @key: WEP key for shared key authentication * @flags: See &enum cfg80211_assoc_req_flags * @bg_scan_period: Background scan period in seconds * or -1 to indicate that default value is to be used. * @ht_capa: HT Capabilities over-rides. Values set in ht_capa_mask * will be used in ht_capa. Un-supported values will be ignored. * @ht_capa_mask: The bits of ht_capa which are to be used. * @vht_capa: VHT Capability overrides * @vht_capa_mask: The bits of vht_capa which are to be used. */ struct cfg80211_connect_params { struct ieee80211_channel *channel; u8 *bssid; u8 *ssid; size_t ssid_len; enum nl80211_auth_type auth_type; u8 *ie; size_t ie_len; bool privacy; enum nl80211_mfp mfp; struct cfg80211_crypto_settings crypto; const u8 *key; u8 key_len, key_idx; u32 flags; int bg_scan_period; struct ieee80211_ht_cap ht_capa; struct ieee80211_ht_cap ht_capa_mask; struct ieee80211_vht_cap vht_capa; struct ieee80211_vht_cap vht_capa_mask; }; /** * enum wiphy_params_flags - set_wiphy_params bitfield values * @WIPHY_PARAM_RETRY_SHORT: wiphy->retry_short has changed * @WIPHY_PARAM_RETRY_LONG: wiphy->retry_long has changed * @WIPHY_PARAM_FRAG_THRESHOLD: wiphy->frag_threshold has changed * @WIPHY_PARAM_RTS_THRESHOLD: wiphy->rts_threshold has changed * @WIPHY_PARAM_COVERAGE_CLASS: coverage class changed */ enum wiphy_params_flags { WIPHY_PARAM_RETRY_SHORT = 1 << 0, WIPHY_PARAM_RETRY_LONG = 1 << 1, WIPHY_PARAM_FRAG_THRESHOLD = 1 << 2, WIPHY_PARAM_RTS_THRESHOLD = 1 << 3, WIPHY_PARAM_COVERAGE_CLASS = 1 << 4, }; /* * cfg80211_bitrate_mask - masks for bitrate control */ struct cfg80211_bitrate_mask { struct { u32 legacy; u8 mcs[IEEE80211_HT_MCS_MASK_LEN]; } control[IEEE80211_NUM_BANDS]; }; /** * struct cfg80211_pmksa - PMK Security Association * * This structure is passed to the set/del_pmksa() method for PMKSA * caching. * * @bssid: The AP's BSSID. * @pmkid: The PMK material itself. */ struct cfg80211_pmksa { u8 *bssid; u8 *pmkid; }; /** * struct cfg80211_wowlan_trig_pkt_pattern - packet pattern * @mask: bitmask where to match pattern and where to ignore bytes, * one bit per byte, in same format as nl80211 * @pattern: bytes to match where bitmask is 1 * @pattern_len: length of pattern (in bytes) * @pkt_offset: packet offset (in bytes) * * Internal note: @mask and @pattern are allocated in one chunk of * memory, free @mask only! */ struct cfg80211_wowlan_trig_pkt_pattern { u8 *mask, *pattern; int pattern_len; int pkt_offset; }; /** * struct cfg80211_wowlan_tcp - TCP connection parameters * * @sock: (internal) socket for source port allocation * @src: source IP address * @dst: destination IP address * @dst_mac: destination MAC address * @src_port: source port * @dst_port: destination port * @payload_len: data payload length * @payload: data payload buffer * @payload_seq: payload sequence stamping configuration * @data_interval: interval at which to send data packets * @wake_len: wakeup payload match length * @wake_data: wakeup payload match data * @wake_mask: wakeup payload match mask * @tokens_size: length of the tokens buffer * @payload_tok: payload token usage configuration */ struct cfg80211_wowlan_tcp { struct socket *sock; __be32 src, dst; u16 src_port, dst_port; u8 dst_mac[ETH_ALEN]; int payload_len; const u8 *payload; struct nl80211_wowlan_tcp_data_seq payload_seq; u32 data_interval; u32 wake_len; const u8 *wake_data, *wake_mask; u32 tokens_size; /* must be last, variable member */ struct nl80211_wowlan_tcp_data_token payload_tok; }; /** * struct cfg80211_wowlan - Wake on Wireless-LAN support info * * This structure defines the enabled WoWLAN triggers for the device. * @any: wake up on any activity -- special trigger if device continues * operating as normal during suspend * @disconnect: wake up if getting disconnected * @magic_pkt: wake up on receiving magic packet * @patterns: wake up on receiving packet matching a pattern * @n_patterns: number of patterns * @gtk_rekey_failure: wake up on GTK rekey failure * @eap_identity_req: wake up on EAP identity request packet * @four_way_handshake: wake up on 4-way handshake * @rfkill_release: wake up when rfkill is released * @tcp: TCP connection establishment/wakeup parameters, see nl80211.h. * NULL if not configured. */ struct cfg80211_wowlan { bool any, disconnect, magic_pkt, gtk_rekey_failure, eap_identity_req, four_way_handshake, rfkill_release; struct cfg80211_wowlan_trig_pkt_pattern *patterns; struct cfg80211_wowlan_tcp *tcp; int n_patterns; }; /** * struct cfg80211_wowlan_wakeup - wakeup report * @disconnect: woke up by getting disconnected * @magic_pkt: woke up by receiving magic packet * @gtk_rekey_failure: woke up by GTK rekey failure * @eap_identity_req: woke up by EAP identity request packet * @four_way_handshake: woke up by 4-way handshake * @rfkill_release: woke up by rfkill being released * @pattern_idx: pattern that caused wakeup, -1 if not due to pattern * @packet_present_len: copied wakeup packet data * @packet_len: original wakeup packet length * @packet: The packet causing the wakeup, if any. * @packet_80211: For pattern match, magic packet and other data * frame triggers an 802.3 frame should be reported, for * disconnect due to deauth 802.11 frame. This indicates which * it is. * @tcp_match: TCP wakeup packet received * @tcp_connlost: TCP connection lost or failed to establish * @tcp_nomoretokens: TCP data ran out of tokens */ struct cfg80211_wowlan_wakeup { bool disconnect, magic_pkt, gtk_rekey_failure, eap_identity_req, four_way_handshake, rfkill_release, packet_80211, tcp_match, tcp_connlost, tcp_nomoretokens; s32 pattern_idx; u32 packet_present_len, packet_len; const void *packet; }; /** * struct cfg80211_gtk_rekey_data - rekey data * @kek: key encryption key * @kck: key confirmation key * @replay_ctr: replay counter */ struct cfg80211_gtk_rekey_data { u8 kek[NL80211_KEK_LEN]; u8 kck[NL80211_KCK_LEN]; u8 replay_ctr[NL80211_REPLAY_CTR_LEN]; }; /** * struct cfg80211_update_ft_ies_params - FT IE Information * * This structure provides information needed to update the fast transition IE * * @md: The Mobility Domain ID, 2 Octet value * @ie: Fast Transition IEs * @ie_len: Length of ft_ie in octets */ struct cfg80211_update_ft_ies_params { u16 md; const u8 *ie; size_t ie_len; }; /** * struct cfg80211_ops - backend description for wireless configuration * * This struct is registered by fullmac card drivers and/or wireless stacks * in order to handle configuration requests on their interfaces. * * All callbacks except where otherwise noted should return 0 * on success or a negative error code. * * All operations are currently invoked under rtnl for consistency with the * wireless extensions but this is subject to reevaluation as soon as this * code is used more widely and we have a first user without wext. * * @suspend: wiphy device needs to be suspended. The variable @wow will * be %NULL or contain the enabled Wake-on-Wireless triggers that are * configured for the device. * @resume: wiphy device needs to be resumed * @set_wakeup: Called when WoWLAN is enabled/disabled, use this callback * to call device_set_wakeup_enable() to enable/disable wakeup from * the device. * * @add_virtual_intf: create a new virtual interface with the given name, * must set the struct wireless_dev's iftype. Beware: You must create * the new netdev in the wiphy's network namespace! Returns the struct * wireless_dev, or an ERR_PTR. For P2P device wdevs, the driver must * also set the address member in the wdev. * * @del_virtual_intf: remove the virtual interface * * @change_virtual_intf: change type/configuration of virtual interface, * keep the struct wireless_dev's iftype updated. * * @add_key: add a key with the given parameters. @mac_addr will be %NULL * when adding a group key. * * @get_key: get information about the key with the given parameters. * @mac_addr will be %NULL when requesting information for a group * key. All pointers given to the @callback function need not be valid * after it returns. This function should return an error if it is * not possible to retrieve the key, -ENOENT if it doesn't exist. * * @del_key: remove a key given the @mac_addr (%NULL for a group key) * and @key_index, return -ENOENT if the key doesn't exist. * * @set_default_key: set the default key on an interface * * @set_default_mgmt_key: set the default management frame key on an interface * * @set_rekey_data: give the data necessary for GTK rekeying to the driver * * @start_ap: Start acting in AP mode defined by the parameters. * @change_beacon: Change the beacon parameters for an access point mode * interface. This should reject the call when AP mode wasn't started. * @stop_ap: Stop being an AP, including stopping beaconing. * * @add_station: Add a new station. * @del_station: Remove a station; @mac may be NULL to remove all stations. * @change_station: Modify a given station. Note that flags changes are not much * validated in cfg80211, in particular the auth/assoc/authorized flags * might come to the driver in invalid combinations -- make sure to check * them, also against the existing state! Drivers must call * cfg80211_check_station_change() to validate the information. * @get_station: get station information for the station identified by @mac * @dump_station: dump station callback -- resume dump at index @idx * * @add_mpath: add a fixed mesh path * @del_mpath: delete a given mesh path * @change_mpath: change a given mesh path * @get_mpath: get a mesh path for the given parameters * @dump_mpath: dump mesh path callback -- resume dump at index @idx * @join_mesh: join the mesh network with the specified parameters * (invoked with the wireless_dev mutex held) * @leave_mesh: leave the current mesh network * (invoked with the wireless_dev mutex held) * * @get_mesh_config: Get the current mesh configuration * * @update_mesh_config: Update mesh parameters on a running mesh. * The mask is a bitfield which tells us which parameters to * set, and which to leave alone. * * @change_bss: Modify parameters for a given BSS. * * @set_txq_params: Set TX queue parameters * * @libertas_set_mesh_channel: Only for backward compatibility for libertas, * as it doesn't implement join_mesh and needs to set the channel to * join the mesh instead. * * @set_monitor_channel: Set the monitor mode channel for the device. If other * interfaces are active this callback should reject the configuration. * If no interfaces are active or the device is down, the channel should * be stored for when a monitor interface becomes active. * * @scan: Request to do a scan. If returning zero, the scan request is given * the driver, and will be valid until passed to cfg80211_scan_done(). * For scan results, call cfg80211_inform_bss(); you can call this outside * the scan/scan_done bracket too. * * @auth: Request to authenticate with the specified peer * (invoked with the wireless_dev mutex held) * @assoc: Request to (re)associate with the specified peer * (invoked with the wireless_dev mutex held) * @deauth: Request to deauthenticate from the specified peer * (invoked with the wireless_dev mutex held) * @disassoc: Request to disassociate from the specified peer * (invoked with the wireless_dev mutex held) * * @connect: Connect to the ESS with the specified parameters. When connected, * call cfg80211_connect_result() with status code %WLAN_STATUS_SUCCESS. * If the connection fails for some reason, call cfg80211_connect_result() * with the status from the AP. * (invoked with the wireless_dev mutex held) * @disconnect: Disconnect from the BSS/ESS. * (invoked with the wireless_dev mutex held) * * @join_ibss: Join the specified IBSS (or create if necessary). Once done, call * cfg80211_ibss_joined(), also call that function when changing BSSID due * to a merge. * (invoked with the wireless_dev mutex held) * @leave_ibss: Leave the IBSS. * (invoked with the wireless_dev mutex held) * * @set_mcast_rate: Set the specified multicast rate (only if vif is in ADHOC or * MESH mode) * * @set_wiphy_params: Notify that wiphy parameters have changed; * @changed bitfield (see &enum wiphy_params_flags) describes which values * have changed. The actual parameter values are available in * struct wiphy. If returning an error, no value should be changed. * * @set_tx_power: set the transmit power according to the parameters, * the power passed is in mBm, to get dBm use MBM_TO_DBM(). The * wdev may be %NULL if power was set for the wiphy, and will * always be %NULL unless the driver supports per-vif TX power * (as advertised by the nl80211 feature flag.) * @get_tx_power: store the current TX power into the dbm variable; * return 0 if successful * * @set_wds_peer: set the WDS peer for a WDS interface * * @rfkill_poll: polls the hw rfkill line, use cfg80211 reporting * functions to adjust rfkill hw state * * @dump_survey: get site survey information. * * @remain_on_channel: Request the driver to remain awake on the specified * channel for the specified duration to complete an off-channel * operation (e.g., public action frame exchange). When the driver is * ready on the requested channel, it must indicate this with an event * notification by calling cfg80211_ready_on_channel(). * @cancel_remain_on_channel: Cancel an on-going remain-on-channel operation. * This allows the operation to be terminated prior to timeout based on * the duration value. * @mgmt_tx: Transmit a management frame. * @mgmt_tx_cancel_wait: Cancel the wait time from transmitting a management * frame on another channel * * @testmode_cmd: run a test mode command * @testmode_dump: Implement a test mode dump. The cb->args[2] and up may be * used by the function, but 0 and 1 must not be touched. Additionally, * return error codes other than -ENOBUFS and -ENOENT will terminate the * dump and return to userspace with an error, so be careful. If any data * was passed in from userspace then the data/len arguments will be present * and point to the data contained in %NL80211_ATTR_TESTDATA. * * @set_bitrate_mask: set the bitrate mask configuration * * @set_pmksa: Cache a PMKID for a BSSID. This is mostly useful for fullmac * devices running firmwares capable of generating the (re) association * RSN IE. It allows for faster roaming between WPA2 BSSIDs. * @del_pmksa: Delete a cached PMKID. * @flush_pmksa: Flush all cached PMKIDs. * @set_power_mgmt: Configure WLAN power management. A timeout value of -1 * allows the driver to adjust the dynamic ps timeout value. * @set_cqm_rssi_config: Configure connection quality monitor RSSI threshold. * @set_cqm_txe_config: Configure connection quality monitor TX error * thresholds. * @sched_scan_start: Tell the driver to start a scheduled scan. * @sched_scan_stop: Tell the driver to stop an ongoing scheduled scan. * * @mgmt_frame_register: Notify driver that a management frame type was * registered. Note that this callback may not sleep, and cannot run * concurrently with itself. * * @set_antenna: Set antenna configuration (tx_ant, rx_ant) on the device. * Parameters are bitmaps of allowed antennas to use for TX/RX. Drivers may * reject TX/RX mask combinations they cannot support by returning -EINVAL * (also see nl80211.h @NL80211_ATTR_WIPHY_ANTENNA_TX). * * @get_antenna: Get current antenna configuration from device (tx_ant, rx_ant). * * @set_ringparam: Set tx and rx ring sizes. * * @get_ringparam: Get tx and rx ring current and maximum sizes. * * @tdls_mgmt: Transmit a TDLS management frame. * @tdls_oper: Perform a high-level TDLS operation (e.g. TDLS link setup). * * @probe_client: probe an associated client, must return a cookie that it * later passes to cfg80211_probe_status(). * * @set_noack_map: Set the NoAck Map for the TIDs. * * @get_et_sset_count: Ethtool API to get string-set count. * See @ethtool_ops.get_sset_count * * @get_et_stats: Ethtool API to get a set of u64 stats. * See @ethtool_ops.get_ethtool_stats * * @get_et_strings: Ethtool API to get a set of strings to describe stats * and perhaps other supported types of ethtool data-sets. * See @ethtool_ops.get_strings * * @get_channel: Get the current operating channel for the virtual interface. * For monitor interfaces, it should return %NULL unless there's a single * current monitoring channel. * * @start_p2p_device: Start the given P2P device. * @stop_p2p_device: Stop the given P2P device. * * @set_mac_acl: Sets MAC address control list in AP and P2P GO mode. * Parameters include ACL policy, an array of MAC address of stations * and the number of MAC addresses. If there is already a list in driver * this new list replaces the existing one. Driver has to clear its ACL * when number of MAC addresses entries is passed as 0. Drivers which * advertise the support for MAC based ACL have to implement this callback. * * @start_radar_detection: Start radar detection in the driver. * * @update_ft_ies: Provide updated Fast BSS Transition information to the * driver. If the SME is in the driver/firmware, this information can be * used in building Authentication and Reassociation Request frames. * * @crit_proto_start: Indicates a critical protocol needs more link reliability * for a given duration (milliseconds). The protocol is provided so the * driver can take the most appropriate actions. * @crit_proto_stop: Indicates critical protocol no longer needs increased link * reliability. This operation can not fail. */ struct cfg80211_ops { int (*suspend)(struct wiphy *wiphy, struct cfg80211_wowlan *wow); int (*resume)(struct wiphy *wiphy); void (*set_wakeup)(struct wiphy *wiphy, bool enabled); struct wireless_dev * (*add_virtual_intf)(struct wiphy *wiphy, const char *name, enum nl80211_iftype type, u32 *flags, struct vif_params *params); int (*del_virtual_intf)(struct wiphy *wiphy, struct wireless_dev *wdev); int (*change_virtual_intf)(struct wiphy *wiphy, struct net_device *dev, enum nl80211_iftype type, u32 *flags, struct vif_params *params); int (*add_key)(struct wiphy *wiphy, struct net_device *netdev, u8 key_index, bool pairwise, const u8 *mac_addr, struct key_params *params); int (*get_key)(struct wiphy *wiphy, struct net_device *netdev, u8 key_index, bool pairwise, const u8 *mac_addr, void *cookie, void (*callback)(void *cookie, struct key_params*)); int (*del_key)(struct wiphy *wiphy, struct net_device *netdev, u8 key_index, bool pairwise, const u8 *mac_addr); int (*set_default_key)(struct wiphy *wiphy, struct net_device *netdev, u8 key_index, bool unicast, bool multicast); int (*set_default_mgmt_key)(struct wiphy *wiphy, struct net_device *netdev, u8 key_index); int (*start_ap)(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_ap_settings *settings); int (*change_beacon)(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_beacon_data *info); int (*stop_ap)(struct wiphy *wiphy, struct net_device *dev); int (*add_station)(struct wiphy *wiphy, struct net_device *dev, u8 *mac, struct station_parameters *params); int (*del_station)(struct wiphy *wiphy, struct net_device *dev, u8 *mac); int (*change_station)(struct wiphy *wiphy, struct net_device *dev, u8 *mac, struct station_parameters *params); int (*get_station)(struct wiphy *wiphy, struct net_device *dev, u8 *mac, struct station_info *sinfo); int (*dump_station)(struct wiphy *wiphy, struct net_device *dev, int idx, u8 *mac, struct station_info *sinfo); int (*add_mpath)(struct wiphy *wiphy, struct net_device *dev, u8 *dst, u8 *next_hop); int (*del_mpath)(struct wiphy *wiphy, struct net_device *dev, u8 *dst); int (*change_mpath)(struct wiphy *wiphy, struct net_device *dev, u8 *dst, u8 *next_hop); int (*get_mpath)(struct wiphy *wiphy, struct net_device *dev, u8 *dst, u8 *next_hop, struct mpath_info *pinfo); int (*dump_mpath)(struct wiphy *wiphy, struct net_device *dev, int idx, u8 *dst, u8 *next_hop, struct mpath_info *pinfo); int (*get_mesh_config)(struct wiphy *wiphy, struct net_device *dev, struct mesh_config *conf); int (*update_mesh_config)(struct wiphy *wiphy, struct net_device *dev, u32 mask, const struct mesh_config *nconf); int (*join_mesh)(struct wiphy *wiphy, struct net_device *dev, const struct mesh_config *conf, const struct mesh_setup *setup); int (*leave_mesh)(struct wiphy *wiphy, struct net_device *dev); int (*change_bss)(struct wiphy *wiphy, struct net_device *dev, struct bss_parameters *params); int (*set_txq_params)(struct wiphy *wiphy, struct net_device *dev, struct ieee80211_txq_params *params); int (*libertas_set_mesh_channel)(struct wiphy *wiphy, struct net_device *dev, struct ieee80211_channel *chan); int (*set_monitor_channel)(struct wiphy *wiphy, struct cfg80211_chan_def *chandef); int (*scan)(struct wiphy *wiphy, struct cfg80211_scan_request *request); int (*auth)(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_auth_request *req); int (*assoc)(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_assoc_request *req); int (*deauth)(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_deauth_request *req); int (*disassoc)(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_disassoc_request *req); int (*connect)(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_connect_params *sme); int (*disconnect)(struct wiphy *wiphy, struct net_device *dev, u16 reason_code); int (*join_ibss)(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_ibss_params *params); int (*leave_ibss)(struct wiphy *wiphy, struct net_device *dev); int (*set_mcast_rate)(struct wiphy *wiphy, struct net_device *dev, int rate[IEEE80211_NUM_BANDS]); int (*set_wiphy_params)(struct wiphy *wiphy, u32 changed); int (*set_tx_power)(struct wiphy *wiphy, struct wireless_dev *wdev, enum nl80211_tx_power_setting type, int mbm); int (*get_tx_power)(struct wiphy *wiphy, struct wireless_dev *wdev, int *dbm); int (*set_wds_peer)(struct wiphy *wiphy, struct net_device *dev, const u8 *addr); void (*rfkill_poll)(struct wiphy *wiphy); #ifdef CONFIG_NL80211_TESTMODE int (*testmode_cmd)(struct wiphy *wiphy, void *data, int len); int (*testmode_dump)(struct wiphy *wiphy, struct sk_buff *skb, struct netlink_callback *cb, void *data, int len); #endif int (*set_bitrate_mask)(struct wiphy *wiphy, struct net_device *dev, const u8 *peer, const struct cfg80211_bitrate_mask *mask); int (*dump_survey)(struct wiphy *wiphy, struct net_device *netdev, int idx, struct survey_info *info); int (*set_pmksa)(struct wiphy *wiphy, struct net_device *netdev, struct cfg80211_pmksa *pmksa); int (*del_pmksa)(struct wiphy *wiphy, struct net_device *netdev, struct cfg80211_pmksa *pmksa); int (*flush_pmksa)(struct wiphy *wiphy, struct net_device *netdev); int (*remain_on_channel)(struct wiphy *wiphy, struct wireless_dev *wdev, struct ieee80211_channel *chan, unsigned int duration, u64 *cookie); int (*cancel_remain_on_channel)(struct wiphy *wiphy, struct wireless_dev *wdev, u64 cookie); int (*mgmt_tx)(struct wiphy *wiphy, struct wireless_dev *wdev, struct ieee80211_channel *chan, bool offchan, unsigned int wait, const u8 *buf, size_t len, bool no_cck, bool dont_wait_for_ack, u64 *cookie); int (*mgmt_tx_cancel_wait)(struct wiphy *wiphy, struct wireless_dev *wdev, u64 cookie); int (*set_power_mgmt)(struct wiphy *wiphy, struct net_device *dev, bool enabled, int timeout); int (*set_cqm_rssi_config)(struct wiphy *wiphy, struct net_device *dev, s32 rssi_thold, u32 rssi_hyst); int (*set_cqm_txe_config)(struct wiphy *wiphy, struct net_device *dev, u32 rate, u32 pkts, u32 intvl); void (*mgmt_frame_register)(struct wiphy *wiphy, struct wireless_dev *wdev, u16 frame_type, bool reg); int (*set_antenna)(struct wiphy *wiphy, u32 tx_ant, u32 rx_ant); int (*get_antenna)(struct wiphy *wiphy, u32 *tx_ant, u32 *rx_ant); int (*set_ringparam)(struct wiphy *wiphy, u32 tx, u32 rx); void (*get_ringparam)(struct wiphy *wiphy, u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max); int (*sched_scan_start)(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_sched_scan_request *request); int (*sched_scan_stop)(struct wiphy *wiphy, struct net_device *dev); int (*set_rekey_data)(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_gtk_rekey_data *data); int (*tdls_mgmt)(struct wiphy *wiphy, struct net_device *dev, u8 *peer, u8 action_code, u8 dialog_token, u16 status_code, const u8 *buf, size_t len); int (*tdls_oper)(struct wiphy *wiphy, struct net_device *dev, u8 *peer, enum nl80211_tdls_operation oper); int (*probe_client)(struct wiphy *wiphy, struct net_device *dev, const u8 *peer, u64 *cookie); int (*set_noack_map)(struct wiphy *wiphy, struct net_device *dev, u16 noack_map); int (*get_et_sset_count)(struct wiphy *wiphy, struct net_device *dev, int sset); void (*get_et_stats)(struct wiphy *wiphy, struct net_device *dev, struct ethtool_stats *stats, u64 *data); void (*get_et_strings)(struct wiphy *wiphy, struct net_device *dev, u32 sset, u8 *data); int (*get_channel)(struct wiphy *wiphy, struct wireless_dev *wdev, struct cfg80211_chan_def *chandef); int (*start_p2p_device)(struct wiphy *wiphy, struct wireless_dev *wdev); void (*stop_p2p_device)(struct wiphy *wiphy, struct wireless_dev *wdev); int (*set_mac_acl)(struct wiphy *wiphy, struct net_device *dev, const struct cfg80211_acl_data *params); int (*start_radar_detection)(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_chan_def *chandef); int (*update_ft_ies)(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_update_ft_ies_params *ftie); int (*crit_proto_start)(struct wiphy *wiphy, struct wireless_dev *wdev, enum nl80211_crit_proto_id protocol, u16 duration); void (*crit_proto_stop)(struct wiphy *wiphy, struct wireless_dev *wdev); }; /* * wireless hardware and networking interfaces structures * and registration/helper functions */ /** * enum wiphy_flags - wiphy capability flags * * @WIPHY_FLAG_CUSTOM_REGULATORY: tells us the driver for this device * has its own custom regulatory domain and cannot identify the * ISO / IEC 3166 alpha2 it belongs to. When this is enabled * we will disregard the first regulatory hint (when the * initiator is %REGDOM_SET_BY_CORE). * @WIPHY_FLAG_STRICT_REGULATORY: tells us the driver for this device will * ignore regulatory domain settings until it gets its own regulatory * domain via its regulatory_hint() unless the regulatory hint is * from a country IE. After its gets its own regulatory domain it will * only allow further regulatory domain settings to further enhance * compliance. For example if channel 13 and 14 are disabled by this * regulatory domain no user regulatory domain can enable these channels * at a later time. This can be used for devices which do not have * calibration information guaranteed for frequencies or settings * outside of its regulatory domain. If used in combination with * WIPHY_FLAG_CUSTOM_REGULATORY the inspected country IE power settings * will be followed. * @WIPHY_FLAG_DISABLE_BEACON_HINTS: enable this if your driver needs to ensure * that passive scan flags and beaconing flags may not be lifted by * cfg80211 due to regulatory beacon hints. For more information on beacon * hints read the documenation for regulatory_hint_found_beacon() * @WIPHY_FLAG_NETNS_OK: if not set, do not allow changing the netns of this * wiphy at all * @WIPHY_FLAG_PS_ON_BY_DEFAULT: if set to true, powersave will be enabled * by default -- this flag will be set depending on the kernel's default * on wiphy_new(), but can be changed by the driver if it has a good * reason to override the default * @WIPHY_FLAG_4ADDR_AP: supports 4addr mode even on AP (with a single station * on a VLAN interface) * @WIPHY_FLAG_4ADDR_STATION: supports 4addr mode even as a station * @WIPHY_FLAG_CONTROL_PORT_PROTOCOL: This device supports setting the * control port protocol ethertype. The device also honours the * control_port_no_encrypt flag. * @WIPHY_FLAG_IBSS_RSN: The device supports IBSS RSN. * @WIPHY_FLAG_MESH_AUTH: The device supports mesh authentication by routing * auth frames to userspace. See @NL80211_MESH_SETUP_USERSPACE_AUTH. * @WIPHY_FLAG_SUPPORTS_SCHED_SCAN: The device supports scheduled scans. * @WIPHY_FLAG_SUPPORTS_FW_ROAM: The device supports roaming feature in the * firmware. * @WIPHY_FLAG_AP_UAPSD: The device supports uapsd on AP. * @WIPHY_FLAG_SUPPORTS_TDLS: The device supports TDLS (802.11z) operation. * @WIPHY_FLAG_TDLS_EXTERNAL_SETUP: The device does not handle TDLS (802.11z) * link setup/discovery operations internally. Setup, discovery and * teardown packets should be sent through the @NL80211_CMD_TDLS_MGMT * command. When this flag is not set, @NL80211_CMD_TDLS_OPER should be * used for asking the driver/firmware to perform a TDLS operation. * @WIPHY_FLAG_HAVE_AP_SME: device integrates AP SME * @WIPHY_FLAG_REPORTS_OBSS: the device will report beacons from other BSSes * when there are virtual interfaces in AP mode by calling * cfg80211_report_obss_beacon(). * @WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD: When operating as an AP, the device * responds to probe-requests in hardware. * @WIPHY_FLAG_OFFCHAN_TX: Device supports direct off-channel TX. * @WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL: Device supports remain-on-channel call. * @WIPHY_FLAG_SUPPORTS_5_10_MHZ: Device supports 5 MHz and 10 MHz channels. */ enum wiphy_flags { WIPHY_FLAG_CUSTOM_REGULATORY = BIT(0), WIPHY_FLAG_STRICT_REGULATORY = BIT(1), WIPHY_FLAG_DISABLE_BEACON_HINTS = BIT(2), WIPHY_FLAG_NETNS_OK = BIT(3), WIPHY_FLAG_PS_ON_BY_DEFAULT = BIT(4), WIPHY_FLAG_4ADDR_AP = BIT(5), WIPHY_FLAG_4ADDR_STATION = BIT(6), WIPHY_FLAG_CONTROL_PORT_PROTOCOL = BIT(7), WIPHY_FLAG_IBSS_RSN = BIT(8), WIPHY_FLAG_MESH_AUTH = BIT(10), WIPHY_FLAG_SUPPORTS_SCHED_SCAN = BIT(11), /* use hole at 12 */ WIPHY_FLAG_SUPPORTS_FW_ROAM = BIT(13), WIPHY_FLAG_AP_UAPSD = BIT(14), WIPHY_FLAG_SUPPORTS_TDLS = BIT(15), WIPHY_FLAG_TDLS_EXTERNAL_SETUP = BIT(16), WIPHY_FLAG_HAVE_AP_SME = BIT(17), WIPHY_FLAG_REPORTS_OBSS = BIT(18), WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD = BIT(19), WIPHY_FLAG_OFFCHAN_TX = BIT(20), WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL = BIT(21), WIPHY_FLAG_SUPPORTS_5_10_MHZ = BIT(22), }; /** * struct ieee80211_iface_limit - limit on certain interface types * @max: maximum number of interfaces of these types * @types: interface types (bits) */ struct ieee80211_iface_limit { u16 max; u16 types; }; /** * struct ieee80211_iface_combination - possible interface combination * @limits: limits for the given interface types * @n_limits: number of limitations * @num_different_channels: can use up to this many different channels * @max_interfaces: maximum number of interfaces in total allowed in this * group * @beacon_int_infra_match: In this combination, the beacon intervals * between infrastructure and AP types must match. This is required * only in special cases. * @radar_detect_widths: bitmap of channel widths supported for radar detection * * These examples can be expressed as follows: * * Allow #STA <= 1, #AP <= 1, matching BI, channels = 1, 2 total: * * struct ieee80211_iface_limit limits1[] = { * { .max = 1, .types = BIT(NL80211_IFTYPE_STATION), }, * { .max = 1, .types = BIT(NL80211_IFTYPE_AP}, }, * }; * struct ieee80211_iface_combination combination1 = { * .limits = limits1, * .n_limits = ARRAY_SIZE(limits1), * .max_interfaces = 2, * .beacon_int_infra_match = true, * }; * * * Allow #{AP, P2P-GO} <= 8, channels = 1, 8 total: * * struct ieee80211_iface_limit limits2[] = { * { .max = 8, .types = BIT(NL80211_IFTYPE_AP) | * BIT(NL80211_IFTYPE_P2P_GO), }, * }; * struct ieee80211_iface_combination combination2 = { * .limits = limits2, * .n_limits = ARRAY_SIZE(limits2), * .max_interfaces = 8, * .num_different_channels = 1, * }; * * * Allow #STA <= 1, #{P2P-client,P2P-GO} <= 3 on two channels, 4 total. * This allows for an infrastructure connection and three P2P connections. * * struct ieee80211_iface_limit limits3[] = { * { .max = 1, .types = BIT(NL80211_IFTYPE_STATION), }, * { .max = 3, .types = BIT(NL80211_IFTYPE_P2P_GO) | * BIT(NL80211_IFTYPE_P2P_CLIENT), }, * }; * struct ieee80211_iface_combination combination3 = { * .limits = limits3, * .n_limits = ARRAY_SIZE(limits3), * .max_interfaces = 4, * .num_different_channels = 2, * }; */ struct ieee80211_iface_combination { const struct ieee80211_iface_limit *limits; u32 num_different_channels; u16 max_interfaces; u8 n_limits; bool beacon_int_infra_match; u8 radar_detect_widths; }; struct ieee80211_txrx_stypes { u16 tx, rx; }; /** * enum wiphy_wowlan_support_flags - WoWLAN support flags * @WIPHY_WOWLAN_ANY: supports wakeup for the special "any" * trigger that keeps the device operating as-is and * wakes up the host on any activity, for example a * received packet that passed filtering; note that the * packet should be preserved in that case * @WIPHY_WOWLAN_MAGIC_PKT: supports wakeup on magic packet * (see nl80211.h) * @WIPHY_WOWLAN_DISCONNECT: supports wakeup on disconnect * @WIPHY_WOWLAN_SUPPORTS_GTK_REKEY: supports GTK rekeying while asleep * @WIPHY_WOWLAN_GTK_REKEY_FAILURE: supports wakeup on GTK rekey failure * @WIPHY_WOWLAN_EAP_IDENTITY_REQ: supports wakeup on EAP identity request * @WIPHY_WOWLAN_4WAY_HANDSHAKE: supports wakeup on 4-way handshake failure * @WIPHY_WOWLAN_RFKILL_RELEASE: supports wakeup on RF-kill release */ enum wiphy_wowlan_support_flags { WIPHY_WOWLAN_ANY = BIT(0), WIPHY_WOWLAN_MAGIC_PKT = BIT(1), WIPHY_WOWLAN_DISCONNECT = BIT(2), WIPHY_WOWLAN_SUPPORTS_GTK_REKEY = BIT(3), WIPHY_WOWLAN_GTK_REKEY_FAILURE = BIT(4), WIPHY_WOWLAN_EAP_IDENTITY_REQ = BIT(5), WIPHY_WOWLAN_4WAY_HANDSHAKE = BIT(6), WIPHY_WOWLAN_RFKILL_RELEASE = BIT(7), }; struct wiphy_wowlan_tcp_support { const struct nl80211_wowlan_tcp_data_token_feature *tok; u32 data_payload_max; u32 data_interval_max; u32 wake_payload_max; bool seq; }; /** * struct wiphy_wowlan_support - WoWLAN support data * @flags: see &enum wiphy_wowlan_support_flags * @n_patterns: number of supported wakeup patterns * (see nl80211.h for the pattern definition) * @pattern_max_len: maximum length of each pattern * @pattern_min_len: minimum length of each pattern * @max_pkt_offset: maximum Rx packet offset * @tcp: TCP wakeup support information */ struct wiphy_wowlan_support { u32 flags; int n_patterns; int pattern_max_len; int pattern_min_len; int max_pkt_offset; const struct wiphy_wowlan_tcp_support *tcp; }; /** * struct wiphy - wireless hardware description * @reg_notifier: the driver's regulatory notification callback, * note that if your driver uses wiphy_apply_custom_regulatory() * the reg_notifier's request can be passed as NULL * @regd: the driver's regulatory domain, if one was requested via * the regulatory_hint() API. This can be used by the driver * on the reg_notifier() if it chooses to ignore future * regulatory domain changes caused by other drivers. * @signal_type: signal type reported in &struct cfg80211_bss. * @cipher_suites: supported cipher suites * @n_cipher_suites: number of supported cipher suites * @retry_short: Retry limit for short frames (dot11ShortRetryLimit) * @retry_long: Retry limit for long frames (dot11LongRetryLimit) * @frag_threshold: Fragmentation threshold (dot11FragmentationThreshold); * -1 = fragmentation disabled, only odd values >= 256 used * @rts_threshold: RTS threshold (dot11RTSThreshold); -1 = RTS/CTS disabled * @_net: the network namespace this wiphy currently lives in * @perm_addr: permanent MAC address of this device * @addr_mask: If the device supports multiple MAC addresses by masking, * set this to a mask with variable bits set to 1, e.g. if the last * four bits are variable then set it to 00:...:00:0f. The actual * variable bits shall be determined by the interfaces added, with * interfaces not matching the mask being rejected to be brought up. * @n_addresses: number of addresses in @addresses. * @addresses: If the device has more than one address, set this pointer * to a list of addresses (6 bytes each). The first one will be used * by default for perm_addr. In this case, the mask should be set to * all-zeroes. In this case it is assumed that the device can handle * the same number of arbitrary MAC addresses. * @registered: protects ->resume and ->suspend sysfs callbacks against * unregister hardware * @debugfsdir: debugfs directory used for this wiphy, will be renamed * automatically on wiphy renames * @dev: (virtual) struct device for this wiphy * @registered: helps synchronize suspend/resume with wiphy unregister * @wext: wireless extension handlers * @priv: driver private data (sized according to wiphy_new() parameter) * @interface_modes: bitmask of interfaces types valid for this wiphy, * must be set by driver * @iface_combinations: Valid interface combinations array, should not * list single interface types. * @n_iface_combinations: number of entries in @iface_combinations array. * @software_iftypes: bitmask of software interface types, these are not * subject to any restrictions since they are purely managed in SW. * @flags: wiphy flags, see &enum wiphy_flags * @features: features advertised to nl80211, see &enum nl80211_feature_flags. * @bss_priv_size: each BSS struct has private data allocated with it, * this variable determines its size * @max_scan_ssids: maximum number of SSIDs the device can scan for in * any given scan * @max_sched_scan_ssids: maximum number of SSIDs the device can scan * for in any given scheduled scan * @max_match_sets: maximum number of match sets the device can handle * when performing a scheduled scan, 0 if filtering is not * supported. * @max_scan_ie_len: maximum length of user-controlled IEs device can * add to probe request frames transmitted during a scan, must not * include fixed IEs like supported rates * @max_sched_scan_ie_len: same as max_scan_ie_len, but for scheduled * scans * @coverage_class: current coverage class * @fw_version: firmware version for ethtool reporting * @hw_version: hardware version for ethtool reporting * @max_num_pmkids: maximum number of PMKIDs supported by device * @privid: a pointer that drivers can use to identify if an arbitrary * wiphy is theirs, e.g. in global notifiers * @bands: information about bands/channels supported by this device * * @mgmt_stypes: bitmasks of frame subtypes that can be subscribed to or * transmitted through nl80211, points to an array indexed by interface * type * * @available_antennas_tx: bitmap of antennas which are available to be * configured as TX antennas. Antenna configuration commands will be * rejected unless this or @available_antennas_rx is set. * * @available_antennas_rx: bitmap of antennas which are available to be * configured as RX antennas. Antenna configuration commands will be * rejected unless this or @available_antennas_tx is set. * * @probe_resp_offload: * Bitmap of supported protocols for probe response offloading. * See &enum nl80211_probe_resp_offload_support_attr. Only valid * when the wiphy flag @WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD is set. * * @max_remain_on_channel_duration: Maximum time a remain-on-channel operation * may request, if implemented. * * @wowlan: WoWLAN support information * @wowlan_config: current WoWLAN configuration; this should usually not be * used since access to it is necessarily racy, use the parameter passed * to the suspend() operation instead. * * @ap_sme_capa: AP SME capabilities, flags from &enum nl80211_ap_sme_features. * @ht_capa_mod_mask: Specify what ht_cap values can be over-ridden. * If null, then none can be over-ridden. * @vht_capa_mod_mask: Specify what VHT capabilities can be over-ridden. * If null, then none can be over-ridden. * * @max_acl_mac_addrs: Maximum number of MAC addresses that the device * supports for ACL. * * @extended_capabilities: extended capabilities supported by the driver, * additional capabilities might be supported by userspace; these are * the 802.11 extended capabilities ("Extended Capabilities element") * and are in the same format as in the information element. See * 802.11-2012 8.4.2.29 for the defined fields. * @extended_capabilities_mask: mask of the valid values * @extended_capabilities_len: length of the extended capabilities */ struct wiphy { /* assign these fields before you register the wiphy */ /* permanent MAC address(es) */ u8 perm_addr[ETH_ALEN]; u8 addr_mask[ETH_ALEN]; struct mac_address *addresses; const struct ieee80211_txrx_stypes *mgmt_stypes; const struct ieee80211_iface_combination *iface_combinations; int n_iface_combinations; u16 software_iftypes; u16 n_addresses; /* Supported interface modes, OR together BIT(NL80211_IFTYPE_...) */ u16 interface_modes; u16 max_acl_mac_addrs; u32 flags, features; u32 ap_sme_capa; enum cfg80211_signal_type signal_type; int bss_priv_size; u8 max_scan_ssids; u8 max_sched_scan_ssids; u8 max_match_sets; u16 max_scan_ie_len; u16 max_sched_scan_ie_len; int n_cipher_suites; const u32 *cipher_suites; u8 retry_short; u8 retry_long; u32 frag_threshold; u32 rts_threshold; u8 coverage_class; char fw_version[ETHTOOL_FWVERS_LEN]; u32 hw_version; #ifdef CONFIG_PM const struct wiphy_wowlan_support *wowlan; struct cfg80211_wowlan *wowlan_config; #endif u16 max_remain_on_channel_duration; u8 max_num_pmkids; u32 available_antennas_tx; u32 available_antennas_rx; /* * Bitmap of supported protocols for probe response offloading * see &enum nl80211_probe_resp_offload_support_attr. Only valid * when the wiphy flag @WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD is set. */ u32 probe_resp_offload; const u8 *extended_capabilities, *extended_capabilities_mask; u8 extended_capabilities_len; /* If multiple wiphys are registered and you're handed e.g. * a regular netdev with assigned ieee80211_ptr, you won't * know whether it points to a wiphy your driver has registered * or not. Assign this to something global to your driver to * help determine whether you own this wiphy or not. */ const void *privid; struct ieee80211_supported_band *bands[IEEE80211_NUM_BANDS]; /* Lets us get back the wiphy on the callback */ void (*reg_notifier)(struct wiphy *wiphy, struct regulatory_request *request); /* fields below are read-only, assigned by cfg80211 */ const struct ieee80211_regdomain __rcu *regd; /* the item in /sys/class/ieee80211/ points to this, * you need use set_wiphy_dev() (see below) */ struct device dev; /* protects ->resume, ->suspend sysfs callbacks against unregister hw */ bool registered; /* dir in debugfs: ieee80211/ */ struct dentry *debugfsdir; const struct ieee80211_ht_cap *ht_capa_mod_mask; const struct ieee80211_vht_cap *vht_capa_mod_mask; #ifdef CONFIG_NET_NS /* the network namespace this phy lives in currently */ struct net *_net; #endif #ifdef CONFIG_CFG80211_WEXT const struct iw_handler_def *wext; #endif char priv[0] __aligned(NETDEV_ALIGN); }; static inline struct net *wiphy_net(struct wiphy *wiphy) { return read_pnet(&wiphy->_net); } static inline void wiphy_net_set(struct wiphy *wiphy, struct net *net) { write_pnet(&wiphy->_net, net); } /** * wiphy_priv - return priv from wiphy * * @wiphy: the wiphy whose priv pointer to return * Return: The priv of @wiphy. */ static inline void *wiphy_priv(struct wiphy *wiphy) { BUG_ON(!wiphy); return &wiphy->priv; } /** * priv_to_wiphy - return the wiphy containing the priv * * @priv: a pointer previously returned by wiphy_priv * Return: The wiphy of @priv. */ static inline struct wiphy *priv_to_wiphy(void *priv) { BUG_ON(!priv); return container_of(priv, struct wiphy, priv); } /** * set_wiphy_dev - set device pointer for wiphy * * @wiphy: The wiphy whose device to bind * @dev: The device to parent it to */ static inline void set_wiphy_dev(struct wiphy *wiphy, struct device *dev) { wiphy->dev.parent = dev; } /** * wiphy_dev - get wiphy dev pointer * * @wiphy: The wiphy whose device struct to look up * Return: The dev of @wiphy. */ static inline struct device *wiphy_dev(struct wiphy *wiphy) { return wiphy->dev.parent; } /** * wiphy_name - get wiphy name * * @wiphy: The wiphy whose name to return * Return: The name of @wiphy. */ static inline const char *wiphy_name(const struct wiphy *wiphy) { return dev_name(&wiphy->dev); } /** * wiphy_new - create a new wiphy for use with cfg80211 * * @ops: The configuration operations for this device * @sizeof_priv: The size of the private area to allocate * * Create a new wiphy and associate the given operations with it. * @sizeof_priv bytes are allocated for private use. * * Return: A pointer to the new wiphy. This pointer must be * assigned to each netdev's ieee80211_ptr for proper operation. */ struct wiphy *wiphy_new(const struct cfg80211_ops *ops, int sizeof_priv); /** * wiphy_register - register a wiphy with cfg80211 * * @wiphy: The wiphy to register. * * Return: A non-negative wiphy index or a negative error code. */ extern int wiphy_register(struct wiphy *wiphy); /** * wiphy_unregister - deregister a wiphy from cfg80211 * * @wiphy: The wiphy to unregister. * * After this call, no more requests can be made with this priv * pointer, but the call may sleep to wait for an outstanding * request that is being handled. */ extern void wiphy_unregister(struct wiphy *wiphy); /** * wiphy_free - free wiphy * * @wiphy: The wiphy to free */ extern void wiphy_free(struct wiphy *wiphy); /* internal structs */ struct cfg80211_conn; struct cfg80211_internal_bss; struct cfg80211_cached_keys; /** * struct wireless_dev - wireless device state * * For netdevs, this structure must be allocated by the driver * that uses the ieee80211_ptr field in struct net_device (this * is intentional so it can be allocated along with the netdev.) * It need not be registered then as netdev registration will * be intercepted by cfg80211 to see the new wireless device. * * For non-netdev uses, it must also be allocated by the driver * in response to the cfg80211 callbacks that require it, as * there's no netdev registration in that case it may not be * allocated outside of callback operations that return it. * * @wiphy: pointer to hardware description * @iftype: interface type * @list: (private) Used to collect the interfaces * @netdev: (private) Used to reference back to the netdev, may be %NULL * @identifier: (private) Identifier used in nl80211 to identify this * wireless device if it has no netdev * @current_bss: (private) Used by the internal configuration code * @channel: (private) Used by the internal configuration code to track * the user-set AP, monitor and WDS channel * @preset_chandef: (private) Used by the internal configuration code to * track the channel to be used for AP later * @bssid: (private) Used by the internal configuration code * @ssid: (private) Used by the internal configuration code * @ssid_len: (private) Used by the internal configuration code * @mesh_id_len: (private) Used by the internal configuration code * @mesh_id_up_len: (private) Used by the internal configuration code * @wext: (private) Used by the internal wireless extensions compat code * @use_4addr: indicates 4addr mode is used on this interface, must be * set by driver (if supported) on add_interface BEFORE registering the * netdev and may otherwise be used by driver read-only, will be update * by cfg80211 on change_interface * @mgmt_registrations: list of registrations for management frames * @mgmt_registrations_lock: lock for the list * @mtx: mutex used to lock data in this struct, may be used by drivers * and some API functions require it held * @beacon_interval: beacon interval used on this device for transmitting * beacons, 0 when not valid * @address: The address for this device, valid only if @netdev is %NULL * @p2p_started: true if this is a P2P Device that has been started * @cac_started: true if DFS channel availability check has been started * @cac_start_time: timestamp (jiffies) when the dfs state was entered. * @ps: powersave mode is enabled * @ps_timeout: dynamic powersave timeout * @ap_unexpected_nlportid: (private) netlink port ID of application * registered for unexpected class 3 frames (AP mode) * @conn: (private) cfg80211 software SME connection state machine data * @connect_keys: (private) keys to set after connection is established * @ibss_fixed: (private) IBSS is using fixed BSSID * @event_list: (private) list for internal event processing * @event_lock: (private) lock for event list */ struct wireless_dev { struct wiphy *wiphy; enum nl80211_iftype iftype; /* the remainder of this struct should be private to cfg80211 */ struct list_head list; struct net_device *netdev; u32 identifier; struct list_head mgmt_registrations; spinlock_t mgmt_registrations_lock; struct mutex mtx; bool use_4addr, p2p_started; u8 address[ETH_ALEN] __aligned(sizeof(u16)); /* currently used for IBSS and SME - might be rearranged later */ u8 ssid[IEEE80211_MAX_SSID_LEN]; u8 ssid_len, mesh_id_len, mesh_id_up_len; struct cfg80211_conn *conn; struct cfg80211_cached_keys *connect_keys; struct list_head event_list; spinlock_t event_lock; struct cfg80211_internal_bss *current_bss; /* associated / joined */ struct cfg80211_chan_def preset_chandef; /* for AP and mesh channel tracking */ struct ieee80211_channel *channel; bool ibss_fixed; bool ps; int ps_timeout; int beacon_interval; u32 ap_unexpected_nlportid; bool cac_started; unsigned long cac_start_time; #ifdef CONFIG_CFG80211_WEXT /* wext data */ struct { struct cfg80211_ibss_params ibss; struct cfg80211_connect_params connect; struct cfg80211_cached_keys *keys; u8 *ie; size_t ie_len; u8 bssid[ETH_ALEN], prev_bssid[ETH_ALEN]; u8 ssid[IEEE80211_MAX_SSID_LEN]; s8 default_key, default_mgmt_key; bool prev_bssid_valid; } wext; #endif }; static inline u8 *wdev_address(struct wireless_dev *wdev) { if (wdev->netdev) return wdev->netdev->dev_addr; return wdev->address; } /** * wdev_priv - return wiphy priv from wireless_dev * * @wdev: The wireless device whose wiphy's priv pointer to return * Return: The wiphy priv of @wdev. */ static inline void *wdev_priv(struct wireless_dev *wdev) { BUG_ON(!wdev); return wiphy_priv(wdev->wiphy); } /** * DOC: Utility functions * * cfg80211 offers a number of utility functions that can be useful. */ /** * ieee80211_channel_to_frequency - convert channel number to frequency * @chan: channel number * @band: band, necessary due to channel number overlap * Return: The corresponding frequency (in MHz), or 0 if the conversion failed. */ extern int ieee80211_channel_to_frequency(int chan, enum ieee80211_band band); /** * ieee80211_frequency_to_channel - convert frequency to channel number * @freq: center frequency * Return: The corresponding channel, or 0 if the conversion failed. */ extern int ieee80211_frequency_to_channel(int freq); /* * Name indirection necessary because the ieee80211 code also has * a function named "ieee80211_get_channel", so if you include * cfg80211's header file you get cfg80211's version, if you try * to include both header files you'll (rightfully!) get a symbol * clash. */ extern struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy, int freq); /** * ieee80211_get_channel - get channel struct from wiphy for specified frequency * @wiphy: the struct wiphy to get the channel for * @freq: the center frequency of the channel * Return: The channel struct from @wiphy at @freq. */ static inline struct ieee80211_channel * ieee80211_get_channel(struct wiphy *wiphy, int freq) { return __ieee80211_get_channel(wiphy, freq); } /** * ieee80211_get_response_rate - get basic rate for a given rate * * @sband: the band to look for rates in * @basic_rates: bitmap of basic rates * @bitrate: the bitrate for which to find the basic rate * * Return: The basic rate corresponding to a given bitrate, that * is the next lower bitrate contained in the basic rate map, * which is, for this function, given as a bitmap of indices of * rates in the band's bitrate table. */ struct ieee80211_rate * ieee80211_get_response_rate(struct ieee80211_supported_band *sband, u32 basic_rates, int bitrate); /** * ieee80211_mandatory_rates - get mandatory rates for a given band * @sband: the band to look for rates in * * This function returns a bitmap of the mandatory rates for the given * band, bits are set according to the rate position in the bitrates array. */ u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband); /* * Radiotap parsing functions -- for controlled injection support * * Implemented in net/wireless/radiotap.c * Documentation in Documentation/networking/radiotap-headers.txt */ struct radiotap_align_size { uint8_t align:4, size:4; }; struct ieee80211_radiotap_namespace { const struct radiotap_align_size *align_size; int n_bits; uint32_t oui; uint8_t subns; }; struct ieee80211_radiotap_vendor_namespaces { const struct ieee80211_radiotap_namespace *ns; int n_ns; }; /** * struct ieee80211_radiotap_iterator - tracks walk thru present radiotap args * @this_arg_index: index of current arg, valid after each successful call * to ieee80211_radiotap_iterator_next() * @this_arg: pointer to current radiotap arg; it is valid after each * call to ieee80211_radiotap_iterator_next() but also after * ieee80211_radiotap_iterator_init() where it will point to * the beginning of the actual data portion * @this_arg_size: length of the current arg, for convenience * @current_namespace: pointer to the current namespace definition * (or internally %NULL if the current namespace is unknown) * @is_radiotap_ns: indicates whether the current namespace is the default * radiotap namespace or not * * @_rtheader: pointer to the radiotap header we are walking through * @_max_length: length of radiotap header in cpu byte ordering * @_arg_index: next argument index * @_arg: next argument pointer * @_next_bitmap: internal pointer to next present u32 * @_bitmap_shifter: internal shifter for curr u32 bitmap, b0 set == arg present * @_vns: vendor namespace definitions * @_next_ns_data: beginning of the next namespace's data * @_reset_on_ext: internal; reset the arg index to 0 when going to the * next bitmap word * * Describes the radiotap parser state. Fields prefixed with an underscore * must not be used by users of the parser, only by the parser internally. */ struct ieee80211_radiotap_iterator { struct ieee80211_radiotap_header *_rtheader; const struct ieee80211_radiotap_vendor_namespaces *_vns; const struct ieee80211_radiotap_namespace *current_namespace; unsigned char *_arg, *_next_ns_data; __le32 *_next_bitmap; unsigned char *this_arg; int this_arg_index; int this_arg_size; int is_radiotap_ns; int _max_length; int _arg_index; uint32_t _bitmap_shifter; int _reset_on_ext; }; extern int ieee80211_radiotap_iterator_init( struct ieee80211_radiotap_iterator *iterator, struct ieee80211_radiotap_header *radiotap_header, int max_length, const struct ieee80211_radiotap_vendor_namespaces *vns); extern int ieee80211_radiotap_iterator_next( struct ieee80211_radiotap_iterator *iterator); extern const unsigned char rfc1042_header[6]; extern const unsigned char bridge_tunnel_header[6]; /** * ieee80211_get_hdrlen_from_skb - get header length from data * * @skb: the frame * * Given an skb with a raw 802.11 header at the data pointer this function * returns the 802.11 header length. * * Return: The 802.11 header length in bytes (not including encryption * headers). Or 0 if the data in the sk_buff is too short to contain a valid * 802.11 header. */ unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb); /** * ieee80211_hdrlen - get header length in bytes from frame control * @fc: frame control field in little-endian format * Return: The header length in bytes. */ unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc); /** * ieee80211_get_mesh_hdrlen - get mesh extension header length * @meshhdr: the mesh extension header, only the flags field * (first byte) will be accessed * Return: The length of the extension header, which is always at * least 6 bytes and at most 18 if address 5 and 6 are present. */ unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr); /** * DOC: Data path helpers * * In addition to generic utilities, cfg80211 also offers * functions that help implement the data path for devices * that do not do the 802.11/802.3 conversion on the device. */ /** * ieee80211_data_to_8023 - convert an 802.11 data frame to 802.3 * @skb: the 802.11 data frame * @addr: the device MAC address * @iftype: the virtual interface type * Return: 0 on success. Non-zero on error. */ int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr, enum nl80211_iftype iftype); /** * ieee80211_data_from_8023 - convert an 802.3 frame to 802.11 * @skb: the 802.3 frame * @addr: the device MAC address * @iftype: the virtual interface type * @bssid: the network bssid (used only for iftype STATION and ADHOC) * @qos: build 802.11 QoS data frame * Return: 0 on success, or a negative error code. */ int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr, enum nl80211_iftype iftype, u8 *bssid, bool qos); /** * ieee80211_amsdu_to_8023s - decode an IEEE 802.11n A-MSDU frame * * Decode an IEEE 802.11n A-MSDU frame and convert it to a list of * 802.3 frames. The @list will be empty if the decode fails. The * @skb is consumed after the function returns. * * @skb: The input IEEE 802.11n A-MSDU frame. * @list: The output list of 802.3 frames. It must be allocated and * initialized by by the caller. * @addr: The device MAC address. * @iftype: The device interface type. * @extra_headroom: The hardware extra headroom for SKBs in the @list. * @has_80211_header: Set it true if SKB is with IEEE 802.11 header. */ void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, const u8 *addr, enum nl80211_iftype iftype, const unsigned int extra_headroom, bool has_80211_header); /** * cfg80211_classify8021d - determine the 802.1p/1d tag for a data frame * @skb: the data frame * Return: The 802.1p/1d tag. */ unsigned int cfg80211_classify8021d(struct sk_buff *skb); /** * cfg80211_find_ie - find information element in data * * @eid: element ID * @ies: data consisting of IEs * @len: length of data * * Return: %NULL if the element ID could not be found or if * the element is invalid (claims to be longer than the given * data), or a pointer to the first byte of the requested * element, that is the byte containing the element ID. * * Note: There are no checks on the element length other than * having to fit into the given data. */ const u8 *cfg80211_find_ie(u8 eid, const u8 *ies, int len); /** * cfg80211_find_vendor_ie - find vendor specific information element in data * * @oui: vendor OUI * @oui_type: vendor-specific OUI type * @ies: data consisting of IEs * @len: length of data * * Return: %NULL if the vendor specific element ID could not be found or if the * element is invalid (claims to be longer than the given data), or a pointer to * the first byte of the requested element, that is the byte containing the * element ID. * * Note: There are no checks on the element length other than having to fit into * the given data. */ const u8 *cfg80211_find_vendor_ie(unsigned int oui, u8 oui_type, const u8 *ies, int len); /** * DOC: Regulatory enforcement infrastructure * * TODO */ /** * regulatory_hint - driver hint to the wireless core a regulatory domain * @wiphy: the wireless device giving the hint (used only for reporting * conflicts) * @alpha2: the ISO/IEC 3166 alpha2 the driver claims its regulatory domain * should be in. If @rd is set this should be NULL. Note that if you * set this to NULL you should still set rd->alpha2 to some accepted * alpha2. * * Wireless drivers can use this function to hint to the wireless core * what it believes should be the current regulatory domain by * giving it an ISO/IEC 3166 alpha2 country code it knows its regulatory * domain should be in or by providing a completely build regulatory domain. * If the driver provides an ISO/IEC 3166 alpha2 userspace will be queried * for a regulatory domain structure for the respective country. * * The wiphy must have been registered to cfg80211 prior to this call. * For cfg80211 drivers this means you must first use wiphy_register(), * for mac80211 drivers you must first use ieee80211_register_hw(). * * Drivers should check the return value, its possible you can get * an -ENOMEM. * * Return: 0 on success. -ENOMEM. */ extern int regulatory_hint(struct wiphy *wiphy, const char *alpha2); /** * wiphy_apply_custom_regulatory - apply a custom driver regulatory domain * @wiphy: the wireless device we want to process the regulatory domain on * @regd: the custom regulatory domain to use for this wiphy * * Drivers can sometimes have custom regulatory domains which do not apply * to a specific country. Drivers can use this to apply such custom regulatory * domains. This routine must be called prior to wiphy registration. The * custom regulatory domain will be trusted completely and as such previous * default channel settings will be disregarded. If no rule is found for a * channel on the regulatory domain the channel will be disabled. */ extern void wiphy_apply_custom_regulatory( struct wiphy *wiphy, const struct ieee80211_regdomain *regd); /** * freq_reg_info - get regulatory information for the given frequency * @wiphy: the wiphy for which we want to process this rule for * @center_freq: Frequency in KHz for which we want regulatory information for * * Use this function to get the regulatory rule for a specific frequency on * a given wireless device. If the device has a specific regulatory domain * it wants to follow we respect that unless a country IE has been received * and processed already. * * Return: A valid pointer, or, when an error occurs, for example if no rule * can be found, the return value is encoded using ERR_PTR(). Use IS_ERR() to * check and PTR_ERR() to obtain the numeric return value. The numeric return * value will be -ERANGE if we determine the given center_freq does not even * have a regulatory rule for a frequency range in the center_freq's band. * See freq_in_rule_band() for our current definition of a band -- this is * purely subjective and right now it's 802.11 specific. */ const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, u32 center_freq); /* * callbacks for asynchronous cfg80211 methods, notification * functions and BSS handling helpers */ /** * cfg80211_scan_done - notify that scan finished * * @request: the corresponding scan request * @aborted: set to true if the scan was aborted for any reason, * userspace will be notified of that */ void cfg80211_scan_done(struct cfg80211_scan_request *request, bool aborted); /** * cfg80211_sched_scan_results - notify that new scan results are available * * @wiphy: the wiphy which got scheduled scan results */ void cfg80211_sched_scan_results(struct wiphy *wiphy); /** * cfg80211_sched_scan_stopped - notify that the scheduled scan has stopped * * @wiphy: the wiphy on which the scheduled scan stopped * * The driver can call this function to inform cfg80211 that the * scheduled scan had to be stopped, for whatever reason. The driver * is then called back via the sched_scan_stop operation when done. */ void cfg80211_sched_scan_stopped(struct wiphy *wiphy); /** * cfg80211_inform_bss_frame - inform cfg80211 of a received BSS frame * * @wiphy: the wiphy reporting the BSS * @channel: The channel the frame was received on * @mgmt: the management frame (probe response or beacon) * @len: length of the management frame * @signal: the signal strength, type depends on the wiphy's signal_type * @gfp: context flags * * This informs cfg80211 that BSS information was found and * the BSS should be updated/added. * * Return: A referenced struct, must be released with cfg80211_put_bss()! * Or %NULL on error. */ struct cfg80211_bss * __must_check cfg80211_inform_bss_frame(struct wiphy *wiphy, struct ieee80211_channel *channel, struct ieee80211_mgmt *mgmt, size_t len, s32 signal, gfp_t gfp); /** * cfg80211_inform_bss - inform cfg80211 of a new BSS * * @wiphy: the wiphy reporting the BSS * @channel: The channel the frame was received on * @bssid: the BSSID of the BSS * @tsf: the TSF sent by the peer in the beacon/probe response (or 0) * @capability: the capability field sent by the peer * @beacon_interval: the beacon interval announced by the peer * @ie: additional IEs sent by the peer * @ielen: length of the additional IEs * @signal: the signal strength, type depends on the wiphy's signal_type * @gfp: context flags * * This informs cfg80211 that BSS information was found and * the BSS should be updated/added. * * Return: A referenced struct, must be released with cfg80211_put_bss()! * Or %NULL on error. */ struct cfg80211_bss * __must_check cfg80211_inform_bss(struct wiphy *wiphy, struct ieee80211_channel *channel, const u8 *bssid, u64 tsf, u16 capability, u16 beacon_interval, const u8 *ie, size_t ielen, s32 signal, gfp_t gfp); struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy, struct ieee80211_channel *channel, const u8 *bssid, const u8 *ssid, size_t ssid_len, u16 capa_mask, u16 capa_val); static inline struct cfg80211_bss * cfg80211_get_ibss(struct wiphy *wiphy, struct ieee80211_channel *channel, const u8 *ssid, size_t ssid_len) { return cfg80211_get_bss(wiphy, channel, NULL, ssid, ssid_len, WLAN_CAPABILITY_IBSS, WLAN_CAPABILITY_IBSS); } /** * cfg80211_ref_bss - reference BSS struct * @wiphy: the wiphy this BSS struct belongs to * @bss: the BSS struct to reference * * Increments the refcount of the given BSS struct. */ void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *bss); /** * cfg80211_put_bss - unref BSS struct * @wiphy: the wiphy this BSS struct belongs to * @bss: the BSS struct * * Decrements the refcount of the given BSS struct. */ void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *bss); /** * cfg80211_unlink_bss - unlink BSS from internal data structures * @wiphy: the wiphy * @bss: the bss to remove * * This function removes the given BSS from the internal data structures * thereby making it no longer show up in scan results etc. Use this * function when you detect a BSS is gone. Normally BSSes will also time * out, so it is not necessary to use this function at all. */ void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *bss); /** * cfg80211_rx_mlme_mgmt - notification of processed MLME management frame * @dev: network device * @buf: authentication frame (header + body) * @len: length of the frame data * * This function is called whenever an authentication, disassociation or * deauthentication frame has been received and processed in station mode. * After being asked to authenticate via cfg80211_ops::auth() the driver must * call either this function or cfg80211_auth_timeout(). * After being asked to associate via cfg80211_ops::assoc() the driver must * call either this function or cfg80211_auth_timeout(). * While connected, the driver must calls this for received and processed * disassociation and deauthentication frames. If the frame couldn't be used * because it was unprotected, the driver must call the function * cfg80211_rx_unprot_mlme_mgmt() instead. * * This function may sleep. The caller must hold the corresponding wdev's mutex. */ void cfg80211_rx_mlme_mgmt(struct net_device *dev, const u8 *buf, size_t len); /** * cfg80211_auth_timeout - notification of timed out authentication * @dev: network device * @addr: The MAC address of the device with which the authentication timed out * * This function may sleep. The caller must hold the corresponding wdev's * mutex. */ void cfg80211_auth_timeout(struct net_device *dev, const u8 *addr); /** * cfg80211_rx_assoc_resp - notification of processed association response * @dev: network device * @bss: the BSS that association was requested with, ownership of the pointer * moves to cfg80211 in this call * @buf: authentication frame (header + body) * @len: length of the frame data * * After being asked to associate via cfg80211_ops::assoc() the driver must * call either this function or cfg80211_auth_timeout(). * * This function may sleep. The caller must hold the corresponding wdev's mutex. */ void cfg80211_rx_assoc_resp(struct net_device *dev, struct cfg80211_bss *bss, const u8 *buf, size_t len); /** * cfg80211_assoc_timeout - notification of timed out association * @dev: network device * @bss: The BSS entry with which association timed out. * * This function may sleep. The caller must hold the corresponding wdev's mutex. */ void cfg80211_assoc_timeout(struct net_device *dev, struct cfg80211_bss *bss); /** * cfg80211_tx_mlme_mgmt - notification of transmitted deauth/disassoc frame * @dev: network device * @buf: 802.11 frame (header + body) * @len: length of the frame data * * This function is called whenever deauthentication has been processed in * station mode. This includes both received deauthentication frames and * locally generated ones. This function may sleep. The caller must hold the * corresponding wdev's mutex. */ void cfg80211_tx_mlme_mgmt(struct net_device *dev, const u8 *buf, size_t len); /** * cfg80211_rx_unprot_mlme_mgmt - notification of unprotected mlme mgmt frame * @dev: network device * @buf: deauthentication frame (header + body) * @len: length of the frame data * * This function is called whenever a received deauthentication or dissassoc * frame has been dropped in station mode because of MFP being used but the * frame was not protected. This function may sleep. */ void cfg80211_rx_unprot_mlme_mgmt(struct net_device *dev, const u8 *buf, size_t len); /** * cfg80211_michael_mic_failure - notification of Michael MIC failure (TKIP) * @dev: network device * @addr: The source MAC address of the frame * @key_type: The key type that the received frame used * @key_id: Key identifier (0..3). Can be -1 if missing. * @tsc: The TSC value of the frame that generated the MIC failure (6 octets) * @gfp: allocation flags * * This function is called whenever the local MAC detects a MIC failure in a * received frame. This matches with MLME-MICHAELMICFAILURE.indication() * primitive. */ void cfg80211_michael_mic_failure(struct net_device *dev, const u8 *addr, enum nl80211_key_type key_type, int key_id, const u8 *tsc, gfp_t gfp); /** * cfg80211_ibss_joined - notify cfg80211 that device joined an IBSS * * @dev: network device * @bssid: the BSSID of the IBSS joined * @gfp: allocation flags * * This function notifies cfg80211 that the device joined an IBSS or * switched to a different BSSID. Before this function can be called, * either a beacon has to have been received from the IBSS, or one of * the cfg80211_inform_bss{,_frame} functions must have been called * with the locally generated beacon -- this guarantees that there is * always a scan result for this IBSS. cfg80211 will handle the rest. */ void cfg80211_ibss_joined(struct net_device *dev, const u8 *bssid, gfp_t gfp); /** * cfg80211_notify_new_candidate - notify cfg80211 of a new mesh peer candidate * * @dev: network device * @macaddr: the MAC address of the new candidate * @ie: information elements advertised by the peer candidate * @ie_len: lenght of the information elements buffer * @gfp: allocation flags * * This function notifies cfg80211 that the mesh peer candidate has been * detected, most likely via a beacon or, less likely, via a probe response. * cfg80211 then sends a notification to userspace. */ void cfg80211_notify_new_peer_candidate(struct net_device *dev, const u8 *macaddr, const u8 *ie, u8 ie_len, gfp_t gfp); /** * DOC: RFkill integration * * RFkill integration in cfg80211 is almost invisible to drivers, * as cfg80211 automatically registers an rfkill instance for each * wireless device it knows about. Soft kill is also translated * into disconnecting and turning all interfaces off, drivers are * expected to turn off the device when all interfaces are down. * * However, devices may have a hard RFkill line, in which case they * also need to interact with the rfkill subsystem, via cfg80211. * They can do this with a few helper functions documented here. */ /** * wiphy_rfkill_set_hw_state - notify cfg80211 about hw block state * @wiphy: the wiphy * @blocked: block status */ void wiphy_rfkill_set_hw_state(struct wiphy *wiphy, bool blocked); /** * wiphy_rfkill_start_polling - start polling rfkill * @wiphy: the wiphy */ void wiphy_rfkill_start_polling(struct wiphy *wiphy); /** * wiphy_rfkill_stop_polling - stop polling rfkill * @wiphy: the wiphy */ void wiphy_rfkill_stop_polling(struct wiphy *wiphy); #ifdef CONFIG_NL80211_TESTMODE /** * DOC: Test mode * * Test mode is a set of utility functions to allow drivers to * interact with driver-specific tools to aid, for instance, * factory programming. * * This chapter describes how drivers interact with it, for more * information see the nl80211 book's chapter on it. */ /** * cfg80211_testmode_alloc_reply_skb - allocate testmode reply * @wiphy: the wiphy * @approxlen: an upper bound of the length of the data that will * be put into the skb * * This function allocates and pre-fills an skb for a reply to * the testmode command. Since it is intended for a reply, calling * it outside of the @testmode_cmd operation is invalid. * * The returned skb is pre-filled with the wiphy index and set up in * a way that any data that is put into the skb (with skb_put(), * nla_put() or similar) will end up being within the * %NL80211_ATTR_TESTDATA attribute, so all that needs to be done * with the skb is adding data for the corresponding userspace tool * which can then read that data out of the testdata attribute. You * must not modify the skb in any other way. * * When done, call cfg80211_testmode_reply() with the skb and return * its error code as the result of the @testmode_cmd operation. * * Return: An allocated and pre-filled skb. %NULL if any errors happen. */ struct sk_buff *cfg80211_testmode_alloc_reply_skb(struct wiphy *wiphy, int approxlen); /** * cfg80211_testmode_reply - send the reply skb * @skb: The skb, must have been allocated with * cfg80211_testmode_alloc_reply_skb() * * Since calling this function will usually be the last thing * before returning from the @testmode_cmd you should return * the error code. Note that this function consumes the skb * regardless of the return value. * * Return: An error code or 0 on success. */ int cfg80211_testmode_reply(struct sk_buff *skb); /** * cfg80211_testmode_alloc_event_skb - allocate testmode event * @wiphy: the wiphy * @approxlen: an upper bound of the length of the data that will * be put into the skb * @gfp: allocation flags * * This function allocates and pre-fills an skb for an event on the * testmode multicast group. * * The returned skb is set up in the same way as with * cfg80211_testmode_alloc_reply_skb() but prepared for an event. As * there, you should simply add data to it that will then end up in the * %NL80211_ATTR_TESTDATA attribute. Again, you must not modify the skb * in any other way. * * When done filling the skb, call cfg80211_testmode_event() with the * skb to send the event. * * Return: An allocated and pre-filled skb. %NULL if any errors happen. */ struct sk_buff *cfg80211_testmode_alloc_event_skb(struct wiphy *wiphy, int approxlen, gfp_t gfp); /** * cfg80211_testmode_event - send the event * @skb: The skb, must have been allocated with * cfg80211_testmode_alloc_event_skb() * @gfp: allocation flags * * This function sends the given @skb, which must have been allocated * by cfg80211_testmode_alloc_event_skb(), as an event. It always * consumes it. */ void cfg80211_testmode_event(struct sk_buff *skb, gfp_t gfp); #define CFG80211_TESTMODE_CMD(cmd) .testmode_cmd = (cmd), #define CFG80211_TESTMODE_DUMP(cmd) .testmode_dump = (cmd), #else #define CFG80211_TESTMODE_CMD(cmd) #define CFG80211_TESTMODE_DUMP(cmd) #endif /** * cfg80211_connect_result - notify cfg80211 of connection result * * @dev: network device * @bssid: the BSSID of the AP * @req_ie: association request IEs (maybe be %NULL) * @req_ie_len: association request IEs length * @resp_ie: association response IEs (may be %NULL) * @resp_ie_len: assoc response IEs length * @status: status code, 0 for successful connection, use * %WLAN_STATUS_UNSPECIFIED_FAILURE if your device cannot give you * the real status code for failures. * @gfp: allocation flags * * It should be called by the underlying driver whenever connect() has * succeeded. */ void cfg80211_connect_result(struct net_device *dev, const u8 *bssid, const u8 *req_ie, size_t req_ie_len, const u8 *resp_ie, size_t resp_ie_len, u16 status, gfp_t gfp); /** * cfg80211_roamed - notify cfg80211 of roaming * * @dev: network device * @channel: the channel of the new AP * @bssid: the BSSID of the new AP * @req_ie: association request IEs (maybe be %NULL) * @req_ie_len: association request IEs length * @resp_ie: association response IEs (may be %NULL) * @resp_ie_len: assoc response IEs length * @gfp: allocation flags * * It should be called by the underlying driver whenever it roamed * from one AP to another while connected. */ void cfg80211_roamed(struct net_device *dev, struct ieee80211_channel *channel, const u8 *bssid, const u8 *req_ie, size_t req_ie_len, const u8 *resp_ie, size_t resp_ie_len, gfp_t gfp); /** * cfg80211_roamed_bss - notify cfg80211 of roaming * * @dev: network device * @bss: entry of bss to which STA got roamed * @req_ie: association request IEs (maybe be %NULL) * @req_ie_len: association request IEs length * @resp_ie: association response IEs (may be %NULL) * @resp_ie_len: assoc response IEs length * @gfp: allocation flags * * This is just a wrapper to notify cfg80211 of roaming event with driver * passing bss to avoid a race in timeout of the bss entry. It should be * called by the underlying driver whenever it roamed from one AP to another * while connected. Drivers which have roaming implemented in firmware * may use this function to avoid a race in bss entry timeout where the bss * entry of the new AP is seen in the driver, but gets timed out by the time * it is accessed in __cfg80211_roamed() due to delay in scheduling * rdev->event_work. In case of any failures, the reference is released * either in cfg80211_roamed_bss() or in __cfg80211_romed(), Otherwise, * it will be released while diconneting from the current bss. */ void cfg80211_roamed_bss(struct net_device *dev, struct cfg80211_bss *bss, const u8 *req_ie, size_t req_ie_len, const u8 *resp_ie, size_t resp_ie_len, gfp_t gfp); /** * cfg80211_disconnected - notify cfg80211 that connection was dropped * * @dev: network device * @ie: information elements of the deauth/disassoc frame (may be %NULL) * @ie_len: length of IEs * @reason: reason code for the disconnection, set it to 0 if unknown * @gfp: allocation flags * * After it calls this function, the driver should enter an idle state * and not try to connect to any AP any more. */ void cfg80211_disconnected(struct net_device *dev, u16 reason, u8 *ie, size_t ie_len, gfp_t gfp); /** * cfg80211_ready_on_channel - notification of remain_on_channel start * @wdev: wireless device * @cookie: the request cookie * @chan: The current channel (from remain_on_channel request) * @duration: Duration in milliseconds that the driver intents to remain on the * channel * @gfp: allocation flags */ void cfg80211_ready_on_channel(struct wireless_dev *wdev, u64 cookie, struct ieee80211_channel *chan, unsigned int duration, gfp_t gfp); /** * cfg80211_remain_on_channel_expired - remain_on_channel duration expired * @wdev: wireless device * @cookie: the request cookie * @chan: The current channel (from remain_on_channel request) * @gfp: allocation flags */ void cfg80211_remain_on_channel_expired(struct wireless_dev *wdev, u64 cookie, struct ieee80211_channel *chan, gfp_t gfp); /** * cfg80211_new_sta - notify userspace about station * * @dev: the netdev * @mac_addr: the station's address * @sinfo: the station information * @gfp: allocation flags */ void cfg80211_new_sta(struct net_device *dev, const u8 *mac_addr, struct station_info *sinfo, gfp_t gfp); /** * cfg80211_del_sta - notify userspace about deletion of a station * * @dev: the netdev * @mac_addr: the station's address * @gfp: allocation flags */ void cfg80211_del_sta(struct net_device *dev, const u8 *mac_addr, gfp_t gfp); /** * cfg80211_conn_failed - connection request failed notification * * @dev: the netdev * @mac_addr: the station's address * @reason: the reason for connection failure * @gfp: allocation flags * * Whenever a station tries to connect to an AP and if the station * could not connect to the AP as the AP has rejected the connection * for some reasons, this function is called. * * The reason for connection failure can be any of the value from * nl80211_connect_failed_reason enum */ void cfg80211_conn_failed(struct net_device *dev, const u8 *mac_addr, enum nl80211_connect_failed_reason reason, gfp_t gfp); /** * cfg80211_rx_mgmt - notification of received, unprocessed management frame * @wdev: wireless device receiving the frame * @freq: Frequency on which the frame was received in MHz * @sig_dbm: signal strength in mBm, or 0 if unknown * @buf: Management frame (header + body) * @len: length of the frame data * @gfp: context flags * * This function is called whenever an Action frame is received for a station * mode interface, but is not processed in kernel. * * Return: %true if a user space application has registered for this frame. * For action frames, that makes it responsible for rejecting unrecognized * action frames; %false otherwise, in which case for action frames the * driver is responsible for rejecting the frame. */ bool cfg80211_rx_mgmt(struct wireless_dev *wdev, int freq, int sig_dbm, const u8 *buf, size_t len, gfp_t gfp); /** * cfg80211_mgmt_tx_status - notification of TX status for management frame * @wdev: wireless device receiving the frame * @cookie: Cookie returned by cfg80211_ops::mgmt_tx() * @buf: Management frame (header + body) * @len: length of the frame data * @ack: Whether frame was acknowledged * @gfp: context flags * * This function is called whenever a management frame was requested to be * transmitted with cfg80211_ops::mgmt_tx() to report the TX status of the * transmission attempt. */ void cfg80211_mgmt_tx_status(struct wireless_dev *wdev, u64 cookie, const u8 *buf, size_t len, bool ack, gfp_t gfp); /** * cfg80211_cqm_rssi_notify - connection quality monitoring rssi event * @dev: network device * @rssi_event: the triggered RSSI event * @gfp: context flags * * This function is called when a configured connection quality monitoring * rssi threshold reached event occurs. */ void cfg80211_cqm_rssi_notify(struct net_device *dev, enum nl80211_cqm_rssi_threshold_event rssi_event, gfp_t gfp); /** * cfg80211_radar_event - radar detection event * @wiphy: the wiphy * @chandef: chandef for the current channel * @gfp: context flags * * This function is called when a radar is detected on the current chanenl. */ void cfg80211_radar_event(struct wiphy *wiphy, struct cfg80211_chan_def *chandef, gfp_t gfp); /** * cfg80211_cac_event - Channel availability check (CAC) event * @netdev: network device * @event: type of event * @gfp: context flags * * This function is called when a Channel availability check (CAC) is finished * or aborted. This must be called to notify the completion of a CAC process, * also by full-MAC drivers. */ void cfg80211_cac_event(struct net_device *netdev, enum nl80211_radar_event event, gfp_t gfp); /** * cfg80211_cqm_pktloss_notify - notify userspace about packetloss to peer * @dev: network device * @peer: peer's MAC address * @num_packets: how many packets were lost -- should be a fixed threshold * but probably no less than maybe 50, or maybe a throughput dependent * threshold (to account for temporary interference) * @gfp: context flags */ void cfg80211_cqm_pktloss_notify(struct net_device *dev, const u8 *peer, u32 num_packets, gfp_t gfp); /** * cfg80211_cqm_txe_notify - TX error rate event * @dev: network device * @peer: peer's MAC address * @num_packets: how many packets were lost * @rate: % of packets which failed transmission * @intvl: interval (in s) over which the TX failure threshold was breached. * @gfp: context flags * * Notify userspace when configured % TX failures over number of packets in a * given interval is exceeded. */ void cfg80211_cqm_txe_notify(struct net_device *dev, const u8 *peer, u32 num_packets, u32 rate, u32 intvl, gfp_t gfp); /** * cfg80211_gtk_rekey_notify - notify userspace about driver rekeying * @dev: network device * @bssid: BSSID of AP (to avoid races) * @replay_ctr: new replay counter * @gfp: allocation flags */ void cfg80211_gtk_rekey_notify(struct net_device *dev, const u8 *bssid, const u8 *replay_ctr, gfp_t gfp); /** * cfg80211_pmksa_candidate_notify - notify about PMKSA caching candidate * @dev: network device * @index: candidate index (the smaller the index, the higher the priority) * @bssid: BSSID of AP * @preauth: Whether AP advertises support for RSN pre-authentication * @gfp: allocation flags */ void cfg80211_pmksa_candidate_notify(struct net_device *dev, int index, const u8 *bssid, bool preauth, gfp_t gfp); /** * cfg80211_rx_spurious_frame - inform userspace about a spurious frame * @dev: The device the frame matched to * @addr: the transmitter address * @gfp: context flags * * This function is used in AP mode (only!) to inform userspace that * a spurious class 3 frame was received, to be able to deauth the * sender. * Return: %true if the frame was passed to userspace (or this failed * for a reason other than not having a subscription.) */ bool cfg80211_rx_spurious_frame(struct net_device *dev, const u8 *addr, gfp_t gfp); /** * cfg80211_rx_unexpected_4addr_frame - inform about unexpected WDS frame * @dev: The device the frame matched to * @addr: the transmitter address * @gfp: context flags * * This function is used in AP mode (only!) to inform userspace that * an associated station sent a 4addr frame but that wasn't expected. * It is allowed and desirable to send this event only once for each * station to avoid event flooding. * Return: %true if the frame was passed to userspace (or this failed * for a reason other than not having a subscription.) */ bool cfg80211_rx_unexpected_4addr_frame(struct net_device *dev, const u8 *addr, gfp_t gfp); /** * cfg80211_probe_status - notify userspace about probe status * @dev: the device the probe was sent on * @addr: the address of the peer * @cookie: the cookie filled in @probe_client previously * @acked: indicates whether probe was acked or not * @gfp: allocation flags */ void cfg80211_probe_status(struct net_device *dev, const u8 *addr, u64 cookie, bool acked, gfp_t gfp); /** * cfg80211_report_obss_beacon - report beacon from other APs * @wiphy: The wiphy that received the beacon * @frame: the frame * @len: length of the frame * @freq: frequency the frame was received on * @sig_dbm: signal strength in mBm, or 0 if unknown * * Use this function to report to userspace when a beacon was * received. It is not useful to call this when there is no * netdev that is in AP/GO mode. */ void cfg80211_report_obss_beacon(struct wiphy *wiphy, const u8 *frame, size_t len, int freq, int sig_dbm); /** * cfg80211_reg_can_beacon - check if beaconing is allowed * @wiphy: the wiphy * @chandef: the channel definition * * Return: %true if there is no secondary channel or the secondary channel(s) * can be used for beaconing (i.e. is not a radar channel etc.) */ bool cfg80211_reg_can_beacon(struct wiphy *wiphy, struct cfg80211_chan_def *chandef); /* * cfg80211_ch_switch_notify - update wdev channel and notify userspace * @dev: the device which switched channels * @chandef: the new channel definition * * Acquires wdev_lock, so must only be called from sleepable driver context! */ void cfg80211_ch_switch_notify(struct net_device *dev, struct cfg80211_chan_def *chandef); /** * ieee80211_operating_class_to_band - convert operating class to band * * @operating_class: the operating class to convert * @band: band pointer to fill * * Returns %true if the conversion was successful, %false otherwise. */ bool ieee80211_operating_class_to_band(u8 operating_class, enum ieee80211_band *band); /* * cfg80211_tdls_oper_request - request userspace to perform TDLS operation * @dev: the device on which the operation is requested * @peer: the MAC address of the peer device * @oper: the requested TDLS operation (NL80211_TDLS_SETUP or * NL80211_TDLS_TEARDOWN) * @reason_code: the reason code for teardown request * @gfp: allocation flags * * This function is used to request userspace to perform TDLS operation that * requires knowledge of keys, i.e., link setup or teardown when the AP * connection uses encryption. This is optional mechanism for the driver to use * if it can automatically determine when a TDLS link could be useful (e.g., * based on traffic and signal strength for a peer). */ void cfg80211_tdls_oper_request(struct net_device *dev, const u8 *peer, enum nl80211_tdls_operation oper, u16 reason_code, gfp_t gfp); /* * cfg80211_calculate_bitrate - calculate actual bitrate (in 100Kbps units) * @rate: given rate_info to calculate bitrate from * * return 0 if MCS index >= 32 */ u32 cfg80211_calculate_bitrate(struct rate_info *rate); /** * cfg80211_unregister_wdev - remove the given wdev * @wdev: struct wireless_dev to remove * * Call this function only for wdevs that have no netdev assigned, * e.g. P2P Devices. It removes the device from the list so that * it can no longer be used. It is necessary to call this function * even when cfg80211 requests the removal of the interface by * calling the del_virtual_intf() callback. The function must also * be called when the driver wishes to unregister the wdev, e.g. * when the device is unbound from the driver. * * Requires the RTNL to be held. */ void cfg80211_unregister_wdev(struct wireless_dev *wdev); /** * struct cfg80211_ft_event - FT Information Elements * @ies: FT IEs * @ies_len: length of the FT IE in bytes * @target_ap: target AP's MAC address * @ric_ies: RIC IE * @ric_ies_len: length of the RIC IE in bytes */ struct cfg80211_ft_event_params { const u8 *ies; size_t ies_len; const u8 *target_ap; const u8 *ric_ies; size_t ric_ies_len; }; /** * cfg80211_ft_event - notify userspace about FT IE and RIC IE * @netdev: network device * @ft_event: IE information */ void cfg80211_ft_event(struct net_device *netdev, struct cfg80211_ft_event_params *ft_event); /** * cfg80211_get_p2p_attr - find and copy a P2P attribute from IE buffer * @ies: the input IE buffer * @len: the input length * @attr: the attribute ID to find * @buf: output buffer, can be %NULL if the data isn't needed, e.g. * if the function is only called to get the needed buffer size * @bufsize: size of the output buffer * * The function finds a given P2P attribute in the (vendor) IEs and * copies its contents to the given buffer. * * Return: A negative error code (-%EILSEQ or -%ENOENT) if the data is * malformed or the attribute can't be found (respectively), or the * length of the found attribute (which can be zero). */ int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len, enum ieee80211_p2p_attr_id attr, u8 *buf, unsigned int bufsize); /** * cfg80211_report_wowlan_wakeup - report wakeup from WoWLAN * @wdev: the wireless device reporting the wakeup * @wakeup: the wakeup report * @gfp: allocation flags * * This function reports that the given device woke up. If it * caused the wakeup, report the reason(s), otherwise you may * pass %NULL as the @wakeup parameter to advertise that something * else caused the wakeup. */ void cfg80211_report_wowlan_wakeup(struct wireless_dev *wdev, struct cfg80211_wowlan_wakeup *wakeup, gfp_t gfp); /** * cfg80211_crit_proto_stopped() - indicate critical protocol stopped by driver. * * @wdev: the wireless device for which critical protocol is stopped. * @gfp: allocation flags * * This function can be called by the driver to indicate it has reverted * operation back to normal. One reason could be that the duration given * by .crit_proto_start() has expired. */ void cfg80211_crit_proto_stopped(struct wireless_dev *wdev, gfp_t gfp); /* Logging, debugging and troubleshooting/diagnostic helpers. */ /* wiphy_printk helpers, similar to dev_printk */ #define wiphy_printk(level, wiphy, format, args...) \ dev_printk(level, &(wiphy)->dev, format, ##args) #define wiphy_emerg(wiphy, format, args...) \ dev_emerg(&(wiphy)->dev, format, ##args) #define wiphy_alert(wiphy, format, args...) \ dev_alert(&(wiphy)->dev, format, ##args) #define wiphy_crit(wiphy, format, args...) \ dev_crit(&(wiphy)->dev, format, ##args) #define wiphy_err(wiphy, format, args...) \ dev_err(&(wiphy)->dev, format, ##args) #define wiphy_warn(wiphy, format, args...) \ dev_warn(&(wiphy)->dev, format, ##args) #define wiphy_notice(wiphy, format, args...) \ dev_notice(&(wiphy)->dev, format, ##args) #define wiphy_info(wiphy, format, args...) \ dev_info(&(wiphy)->dev, format, ##args) #define wiphy_debug(wiphy, format, args...) \ wiphy_printk(KERN_DEBUG, wiphy, format, ##args) #define wiphy_dbg(wiphy, format, args...) \ dev_dbg(&(wiphy)->dev, format, ##args) #if defined(VERBOSE_DEBUG) #define wiphy_vdbg wiphy_dbg #else #define wiphy_vdbg(wiphy, format, args...) \ ({ \ if (0) \ wiphy_printk(KERN_DEBUG, wiphy, format, ##args); \ 0; \ }) #endif /* * wiphy_WARN() acts like wiphy_printk(), but with the key difference * of using a WARN/WARN_ON to get the message out, including the * file/line information and a backtrace. */ #define wiphy_WARN(wiphy, format, args...) \ WARN(1, "wiphy: %s\n" format, wiphy_name(wiphy), ##args); #endif /* __NET_CFG80211_H */