/*
 *  linux/kernel/exit.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 */

#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/capability.h>
#include <linux/completion.h>
#include <linux/personality.h>
#include <linux/tty.h>
#include <linux/mnt_namespace.h>
#include <linux/key.h>
#include <linux/security.h>
#include <linux/cpu.h>
#include <linux/acct.h>
#include <linux/tsacct_kern.h>
#include <linux/file.h>
#include <linux/binfmts.h>
#include <linux/nsproxy.h>
#include <linux/pid_namespace.h>
#include <linux/ptrace.h>
#include <linux/profile.h>
#include <linux/mount.h>
#include <linux/proc_fs.h>
#include <linux/kthread.h>
#include <linux/mempolicy.h>
#include <linux/taskstats_kern.h>
#include <linux/delayacct.h>
#include <linux/freezer.h>
#include <linux/cgroup.h>
#include <linux/syscalls.h>
#include <linux/signal.h>
#include <linux/posix-timers.h>
#include <linux/cn_proc.h>
#include <linux/mutex.h>
#include <linux/futex.h>
#include <linux/compat.h>
#include <linux/pipe_fs_i.h>
#include <linux/audit.h> /* for audit_free() */
#include <linux/resource.h>
#include <linux/blkdev.h>
#include <linux/task_io_accounting_ops.h>

#include <asm/uaccess.h>
#include <asm/unistd.h>
#include <asm/pgtable.h>
#include <asm/mmu_context.h>

static void exit_mm(struct task_struct * tsk);

static void __unhash_process(struct task_struct *p)
{
	nr_threads--;
	detach_pid(p, PIDTYPE_PID);
	if (thread_group_leader(p)) {
		detach_pid(p, PIDTYPE_PGID);
		detach_pid(p, PIDTYPE_SID);

		list_del_rcu(&p->tasks);
		__get_cpu_var(process_counts)--;
	}
	list_del_rcu(&p->thread_group);
	remove_parent(p);
}

/*
 * This function expects the tasklist_lock write-locked.
 */
static void __exit_signal(struct task_struct *tsk)
{
	struct signal_struct *sig = tsk->signal;
	struct sighand_struct *sighand;

	BUG_ON(!sig);
	BUG_ON(!atomic_read(&sig->count));

	rcu_read_lock();
	sighand = rcu_dereference(tsk->sighand);
	spin_lock(&sighand->siglock);

	posix_cpu_timers_exit(tsk);
	if (atomic_dec_and_test(&sig->count))
		posix_cpu_timers_exit_group(tsk);
	else {
		/*
		 * If there is any task waiting for the group exit
		 * then notify it:
		 */
		if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
			wake_up_process(sig->group_exit_task);

		if (tsk == sig->curr_target)
			sig->curr_target = next_thread(tsk);
		/*
		 * Accumulate here the counters for all threads but the
		 * group leader as they die, so they can be added into
		 * the process-wide totals when those are taken.
		 * The group leader stays around as a zombie as long
		 * as there are other threads.  When it gets reaped,
		 * the exit.c code will add its counts into these totals.
		 * We won't ever get here for the group leader, since it
		 * will have been the last reference on the signal_struct.
		 */
		sig->utime = cputime_add(sig->utime, tsk->utime);
		sig->stime = cputime_add(sig->stime, tsk->stime);
		sig->gtime = cputime_add(sig->gtime, tsk->gtime);
		sig->min_flt += tsk->min_flt;
		sig->maj_flt += tsk->maj_flt;
		sig->nvcsw += tsk->nvcsw;
		sig->nivcsw += tsk->nivcsw;
		sig->inblock += task_io_get_inblock(tsk);
		sig->oublock += task_io_get_oublock(tsk);
		sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
		sig = NULL; /* Marker for below. */
	}

	__unhash_process(tsk);

	tsk->signal = NULL;
	tsk->sighand = NULL;
	spin_unlock(&sighand->siglock);
	rcu_read_unlock();

	__cleanup_sighand(sighand);
	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
	flush_sigqueue(&tsk->pending);
	if (sig) {
		flush_sigqueue(&sig->shared_pending);
		taskstats_tgid_free(sig);
		__cleanup_signal(sig);
	}
}

static void delayed_put_task_struct(struct rcu_head *rhp)
{
	put_task_struct(container_of(rhp, struct task_struct, rcu));
}

void release_task(struct task_struct * p)
{
	struct task_struct *leader;
	int zap_leader;
repeat:
	atomic_dec(&p->user->processes);
	proc_flush_task(p);
	write_lock_irq(&tasklist_lock);
	ptrace_unlink(p);
	BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
	__exit_signal(p);

	/*
	 * If we are the last non-leader member of the thread
	 * group, and the leader is zombie, then notify the
	 * group leader's parent process. (if it wants notification.)
	 */
	zap_leader = 0;
	leader = p->group_leader;
	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
		BUG_ON(leader->exit_signal == -1);
		do_notify_parent(leader, leader->exit_signal);
		/*
		 * If we were the last child thread and the leader has
		 * exited already, and the leader's parent ignores SIGCHLD,
		 * then we are the one who should release the leader.
		 *
		 * do_notify_parent() will have marked it self-reaping in
		 * that case.
		 */
		zap_leader = (leader->exit_signal == -1);
	}

	write_unlock_irq(&tasklist_lock);
	release_thread(p);
	call_rcu(&p->rcu, delayed_put_task_struct);

	p = leader;
	if (unlikely(zap_leader))
		goto repeat;
}

/*
 * This checks not only the pgrp, but falls back on the pid if no
 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
 * without this...
 *
 * The caller must hold rcu lock or the tasklist lock.
 */
struct pid *session_of_pgrp(struct pid *pgrp)
{
	struct task_struct *p;
	struct pid *sid = NULL;

	p = pid_task(pgrp, PIDTYPE_PGID);
	if (p == NULL)
		p = pid_task(pgrp, PIDTYPE_PID);
	if (p != NULL)
		sid = task_session(p);

	return sid;
}

/*
 * Determine if a process group is "orphaned", according to the POSIX
 * definition in 2.2.2.52.  Orphaned process groups are not to be affected
 * by terminal-generated stop signals.  Newly orphaned process groups are
 * to receive a SIGHUP and a SIGCONT.
 *
 * "I ask you, have you ever known what it is to be an orphan?"
 */
static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
{
	struct task_struct *p;

	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
		if ((p == ignored_task) ||
		    (p->exit_state && thread_group_empty(p)) ||
		    is_global_init(p->real_parent))
			continue;

		if (task_pgrp(p->real_parent) != pgrp &&
		    task_session(p->real_parent) == task_session(p))
			return 0;
	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);

	return 1;
}

int is_current_pgrp_orphaned(void)
{
	int retval;

	read_lock(&tasklist_lock);
	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
	read_unlock(&tasklist_lock);

	return retval;
}

static int has_stopped_jobs(struct pid *pgrp)
{
	int retval = 0;
	struct task_struct *p;

	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
		if (!task_is_stopped(p))
			continue;
		retval = 1;
		break;
	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
	return retval;
}

/*
 * Check to see if any process groups have become orphaned as
 * a result of our exiting, and if they have any stopped jobs,
 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
 */
static void
kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
{
	struct pid *pgrp = task_pgrp(tsk);
	struct task_struct *ignored_task = tsk;

	if (!parent)
		 /* exit: our father is in a different pgrp than
		  * we are and we were the only connection outside.
		  */
		parent = tsk->real_parent;
	else
		/* reparent: our child is in a different pgrp than
		 * we are, and it was the only connection outside.
		 */
		ignored_task = NULL;

	if (task_pgrp(parent) != pgrp &&
	    task_session(parent) == task_session(tsk) &&
	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
	    has_stopped_jobs(pgrp)) {
		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
	}
}

/**
 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
 *
 * If a kernel thread is launched as a result of a system call, or if
 * it ever exits, it should generally reparent itself to kthreadd so it
 * isn't in the way of other processes and is correctly cleaned up on exit.
 *
 * The various task state such as scheduling policy and priority may have
 * been inherited from a user process, so we reset them to sane values here.
 *
 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
 */
static void reparent_to_kthreadd(void)
{
	write_lock_irq(&tasklist_lock);

	ptrace_unlink(current);
	/* Reparent to init */
	remove_parent(current);
	current->real_parent = current->parent = kthreadd_task;
	add_parent(current);

	/* Set the exit signal to SIGCHLD so we signal init on exit */
	current->exit_signal = SIGCHLD;

	if (task_nice(current) < 0)
		set_user_nice(current, 0);
	/* cpus_allowed? */
	/* rt_priority? */
	/* signals? */
	security_task_reparent_to_init(current);
	memcpy(current->signal->rlim, init_task.signal->rlim,
	       sizeof(current->signal->rlim));
	atomic_inc(&(INIT_USER->__count));
	write_unlock_irq(&tasklist_lock);
	switch_uid(INIT_USER);
}

void __set_special_pids(struct pid *pid)
{
	struct task_struct *curr = current->group_leader;
	pid_t nr = pid_nr(pid);

	if (task_session(curr) != pid) {
		detach_pid(curr, PIDTYPE_SID);
		attach_pid(curr, PIDTYPE_SID, pid);
		set_task_session(curr, nr);
	}
	if (task_pgrp(curr) != pid) {
		detach_pid(curr, PIDTYPE_PGID);
		attach_pid(curr, PIDTYPE_PGID, pid);
		set_task_pgrp(curr, nr);
	}
}

static void set_special_pids(struct pid *pid)
{
	write_lock_irq(&tasklist_lock);
	__set_special_pids(pid);
	write_unlock_irq(&tasklist_lock);
}

/*
 * Let kernel threads use this to say that they
 * allow a certain signal (since daemonize() will
 * have disabled all of them by default).
 */
int allow_signal(int sig)
{
	if (!valid_signal(sig) || sig < 1)
		return -EINVAL;

	spin_lock_irq(&current->sighand->siglock);
	sigdelset(&current->blocked, sig);
	if (!current->mm) {
		/* Kernel threads handle their own signals.
		   Let the signal code know it'll be handled, so
		   that they don't get converted to SIGKILL or
		   just silently dropped */
		current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
	}
	recalc_sigpending();
	spin_unlock_irq(&current->sighand->siglock);
	return 0;
}

EXPORT_SYMBOL(allow_signal);

int disallow_signal(int sig)
{
	if (!valid_signal(sig) || sig < 1)
		return -EINVAL;

	spin_lock_irq(&current->sighand->siglock);
	current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
	recalc_sigpending();
	spin_unlock_irq(&current->sighand->siglock);
	return 0;
}

EXPORT_SYMBOL(disallow_signal);

/*
 *	Put all the gunge required to become a kernel thread without
 *	attached user resources in one place where it belongs.
 */

void daemonize(const char *name, ...)
{
	va_list args;
	struct fs_struct *fs;
	sigset_t blocked;

	va_start(args, name);
	vsnprintf(current->comm, sizeof(current->comm), name, args);
	va_end(args);

	/*
	 * If we were started as result of loading a module, close all of the
	 * user space pages.  We don't need them, and if we didn't close them
	 * they would be locked into memory.
	 */
	exit_mm(current);
	/*
	 * We don't want to have TIF_FREEZE set if the system-wide hibernation
	 * or suspend transition begins right now.
	 */
	current->flags |= PF_NOFREEZE;

	if (current->nsproxy != &init_nsproxy) {
		get_nsproxy(&init_nsproxy);
		switch_task_namespaces(current, &init_nsproxy);
	}
	set_special_pids(&init_struct_pid);
	proc_clear_tty(current);

	/* Block and flush all signals */
	sigfillset(&blocked);
	sigprocmask(SIG_BLOCK, &blocked, NULL);
	flush_signals(current);

	/* Become as one with the init task */

	exit_fs(current);	/* current->fs->count--; */
	fs = init_task.fs;
	current->fs = fs;
	atomic_inc(&fs->count);

	exit_files(current);
	current->files = init_task.files;
	atomic_inc(&current->files->count);

	reparent_to_kthreadd();
}

EXPORT_SYMBOL(daemonize);

static void close_files(struct files_struct * files)
{
	int i, j;
	struct fdtable *fdt;

	j = 0;

	/*
	 * It is safe to dereference the fd table without RCU or
	 * ->file_lock because this is the last reference to the
	 * files structure.
	 */
	fdt = files_fdtable(files);
	for (;;) {
		unsigned long set;
		i = j * __NFDBITS;
		if (i >= fdt->max_fds)
			break;
		set = fdt->open_fds->fds_bits[j++];
		while (set) {
			if (set & 1) {
				struct file * file = xchg(&fdt->fd[i], NULL);
				if (file) {
					filp_close(file, files);
					cond_resched();
				}
			}
			i++;
			set >>= 1;
		}
	}
}

struct files_struct *get_files_struct(struct task_struct *task)
{
	struct files_struct *files;

	task_lock(task);
	files = task->files;
	if (files)
		atomic_inc(&files->count);
	task_unlock(task);

	return files;
}

void put_files_struct(struct files_struct *files)
{
	struct fdtable *fdt;

	if (atomic_dec_and_test(&files->count)) {
		close_files(files);
		/*
		 * Free the fd and fdset arrays if we expanded them.
		 * If the fdtable was embedded, pass files for freeing
		 * at the end of the RCU grace period. Otherwise,
		 * you can free files immediately.
		 */
		fdt = files_fdtable(files);
		if (fdt != &files->fdtab)
			kmem_cache_free(files_cachep, files);
		free_fdtable(fdt);
	}
}

EXPORT_SYMBOL(put_files_struct);

void reset_files_struct(struct task_struct *tsk, struct files_struct *files)
{
	struct files_struct *old;

	old = tsk->files;
	task_lock(tsk);
	tsk->files = files;
	task_unlock(tsk);
	put_files_struct(old);
}
EXPORT_SYMBOL(reset_files_struct);

static void __exit_files(struct task_struct *tsk)
{
	struct files_struct * files = tsk->files;

	if (files) {
		task_lock(tsk);
		tsk->files = NULL;
		task_unlock(tsk);
		put_files_struct(files);
	}
}

void exit_files(struct task_struct *tsk)
{
	__exit_files(tsk);
}

static void __put_fs_struct(struct fs_struct *fs)
{
	/* No need to hold fs->lock if we are killing it */
	if (atomic_dec_and_test(&fs->count)) {
		path_put(&fs->root);
		path_put(&fs->pwd);
		if (fs->altroot.dentry)
			path_put(&fs->altroot);
		kmem_cache_free(fs_cachep, fs);
	}
}

void put_fs_struct(struct fs_struct *fs)
{
	__put_fs_struct(fs);
}

static void __exit_fs(struct task_struct *tsk)
{
	struct fs_struct * fs = tsk->fs;

	if (fs) {
		task_lock(tsk);
		tsk->fs = NULL;
		task_unlock(tsk);
		__put_fs_struct(fs);
	}
}

void exit_fs(struct task_struct *tsk)
{
	__exit_fs(tsk);
}

EXPORT_SYMBOL_GPL(exit_fs);

/*
 * Turn us into a lazy TLB process if we
 * aren't already..
 */
static void exit_mm(struct task_struct * tsk)
{
	struct mm_struct *mm = tsk->mm;

	mm_release(tsk, mm);
	if (!mm)
		return;
	/*
	 * Serialize with any possible pending coredump.
	 * We must hold mmap_sem around checking core_waiters
	 * and clearing tsk->mm.  The core-inducing thread
	 * will increment core_waiters for each thread in the
	 * group with ->mm != NULL.
	 */
	down_read(&mm->mmap_sem);
	if (mm->core_waiters) {
		up_read(&mm->mmap_sem);
		down_write(&mm->mmap_sem);
		if (!--mm->core_waiters)
			complete(mm->core_startup_done);
		up_write(&mm->mmap_sem);

		wait_for_completion(&mm->core_done);
		down_read(&mm->mmap_sem);
	}
	atomic_inc(&mm->mm_count);
	BUG_ON(mm != tsk->active_mm);
	/* more a memory barrier than a real lock */
	task_lock(tsk);
	tsk->mm = NULL;
	up_read(&mm->mmap_sem);
	enter_lazy_tlb(mm, current);
	/* We don't want this task to be frozen prematurely */
	clear_freeze_flag(tsk);
	task_unlock(tsk);
	mmput(mm);
}

static void
reparent_thread(struct task_struct *p, struct task_struct *father, int traced)
{
	if (p->pdeath_signal)
		/* We already hold the tasklist_lock here.  */
		group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);

	/* Move the child from its dying parent to the new one.  */
	if (unlikely(traced)) {
		/* Preserve ptrace links if someone else is tracing this child.  */
		list_del_init(&p->ptrace_list);
		if (p->parent != p->real_parent)
			list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
	} else {
		/* If this child is being traced, then we're the one tracing it
		 * anyway, so let go of it.
		 */
		p->ptrace = 0;
		remove_parent(p);
		p->parent = p->real_parent;
		add_parent(p);

		if (task_is_traced(p)) {
			/*
			 * If it was at a trace stop, turn it into
			 * a normal stop since it's no longer being
			 * traced.
			 */
			ptrace_untrace(p);
		}
	}

	/* If this is a threaded reparent there is no need to
	 * notify anyone anything has happened.
	 */
	if (p->real_parent->group_leader == father->group_leader)
		return;

	/* We don't want people slaying init.  */
	if (p->exit_signal != -1)
		p->exit_signal = SIGCHLD;

	/* If we'd notified the old parent about this child's death,
	 * also notify the new parent.
	 */
	if (!traced && p->exit_state == EXIT_ZOMBIE &&
	    p->exit_signal != -1 && thread_group_empty(p))
		do_notify_parent(p, p->exit_signal);

	kill_orphaned_pgrp(p, father);
}

/*
 * When we die, we re-parent all our children.
 * Try to give them to another thread in our thread
 * group, and if no such member exists, give it to
 * the child reaper process (ie "init") in our pid
 * space.
 */
static void forget_original_parent(struct task_struct *father)
{
	struct task_struct *p, *n, *reaper = father;
	struct list_head ptrace_dead;

	INIT_LIST_HEAD(&ptrace_dead);

	write_lock_irq(&tasklist_lock);

	do {
		reaper = next_thread(reaper);
		if (reaper == father) {
			reaper = task_child_reaper(father);
			break;
		}
	} while (reaper->flags & PF_EXITING);

	/*
	 * There are only two places where our children can be:
	 *
	 * - in our child list
	 * - in our ptraced child list
	 *
	 * Search them and reparent children.
	 */
	list_for_each_entry_safe(p, n, &father->children, sibling) {
		int ptrace;

		ptrace = p->ptrace;

		/* if father isn't the real parent, then ptrace must be enabled */
		BUG_ON(father != p->real_parent && !ptrace);

		if (father == p->real_parent) {
			/* reparent with a reaper, real father it's us */
			p->real_parent = reaper;
			reparent_thread(p, father, 0);
		} else {
			/* reparent ptraced task to its real parent */
			__ptrace_unlink (p);
			if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
			    thread_group_empty(p))
				do_notify_parent(p, p->exit_signal);
		}

		/*
		 * if the ptraced child is a zombie with exit_signal == -1
		 * we must collect it before we exit, or it will remain
		 * zombie forever since we prevented it from self-reap itself
		 * while it was being traced by us, to be able to see it in wait4.
		 */
		if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1))
			list_add(&p->ptrace_list, &ptrace_dead);
	}

	list_for_each_entry_safe(p, n, &father->ptrace_children, ptrace_list) {
		p->real_parent = reaper;
		reparent_thread(p, father, 1);
	}

	write_unlock_irq(&tasklist_lock);
	BUG_ON(!list_empty(&father->children));
	BUG_ON(!list_empty(&father->ptrace_children));

	list_for_each_entry_safe(p, n, &ptrace_dead, ptrace_list) {
		list_del_init(&p->ptrace_list);
		release_task(p);
	}

}

/*
 * Send signals to all our closest relatives so that they know
 * to properly mourn us..
 */
static void exit_notify(struct task_struct *tsk, int group_dead)
{
	int state;

	/*
	 * This does two things:
	 *
  	 * A.  Make init inherit all the child processes
	 * B.  Check to see if any process groups have become orphaned
	 *	as a result of our exiting, and if they have any stopped
	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
	 */
	forget_original_parent(tsk);
	exit_task_namespaces(tsk);

	write_lock_irq(&tasklist_lock);
	if (group_dead)
		kill_orphaned_pgrp(tsk->group_leader, NULL);

	/* Let father know we died
	 *
	 * Thread signals are configurable, but you aren't going to use
	 * that to send signals to arbitary processes.
	 * That stops right now.
	 *
	 * If the parent exec id doesn't match the exec id we saved
	 * when we started then we know the parent has changed security
	 * domain.
	 *
	 * If our self_exec id doesn't match our parent_exec_id then
	 * we have changed execution domain as these two values started
	 * the same after a fork.
	 */
	if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 &&
	    (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
	     tsk->self_exec_id != tsk->parent_exec_id)
	    && !capable(CAP_KILL))
		tsk->exit_signal = SIGCHLD;


	/* If something other than our normal parent is ptracing us, then
	 * send it a SIGCHLD instead of honoring exit_signal.  exit_signal
	 * only has special meaning to our real parent.
	 */
	if (tsk->exit_signal != -1 && thread_group_empty(tsk)) {
		int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD;
		do_notify_parent(tsk, signal);
	} else if (tsk->ptrace) {
		do_notify_parent(tsk, SIGCHLD);
	}

	state = EXIT_ZOMBIE;
	if (tsk->exit_signal == -1 && likely(!tsk->ptrace))
		state = EXIT_DEAD;
	tsk->exit_state = state;

	if (thread_group_leader(tsk) &&
	    tsk->signal->notify_count < 0 &&
	    tsk->signal->group_exit_task)
		wake_up_process(tsk->signal->group_exit_task);

	write_unlock_irq(&tasklist_lock);

	/* If the process is dead, release it - nobody will wait for it */
	if (state == EXIT_DEAD)
		release_task(tsk);
}

#ifdef CONFIG_DEBUG_STACK_USAGE
static void check_stack_usage(void)
{
	static DEFINE_SPINLOCK(low_water_lock);
	static int lowest_to_date = THREAD_SIZE;
	unsigned long *n = end_of_stack(current);
	unsigned long free;

	while (*n == 0)
		n++;
	free = (unsigned long)n - (unsigned long)end_of_stack(current);

	if (free >= lowest_to_date)
		return;

	spin_lock(&low_water_lock);
	if (free < lowest_to_date) {
		printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
				"left\n",
				current->comm, free);
		lowest_to_date = free;
	}
	spin_unlock(&low_water_lock);
}
#else
static inline void check_stack_usage(void) {}
#endif

static inline void exit_child_reaper(struct task_struct *tsk)
{
	if (likely(tsk->group_leader != task_child_reaper(tsk)))
		return;

	if (tsk->nsproxy->pid_ns == &init_pid_ns)
		panic("Attempted to kill init!");

	/*
	 * @tsk is the last thread in the 'cgroup-init' and is exiting.
	 * Terminate all remaining processes in the namespace and reap them
	 * before exiting @tsk.
	 *
	 * Note that @tsk (last thread of cgroup-init) may not necessarily
	 * be the child-reaper (i.e main thread of cgroup-init) of the
	 * namespace i.e the child_reaper may have already exited.
	 *
	 * Even after a child_reaper exits, we let it inherit orphaned children,
	 * because, pid_ns->child_reaper remains valid as long as there is
	 * at least one living sub-thread in the cgroup init.

	 * This living sub-thread of the cgroup-init will be notified when
	 * a child inherited by the 'child-reaper' exits (do_notify_parent()
	 * uses __group_send_sig_info()). Further, when reaping child processes,
	 * do_wait() iterates over children of all living sub threads.

	 * i.e even though 'child_reaper' thread is listed as the parent of the
	 * orphaned children, any living sub-thread in the cgroup-init can
	 * perform the role of the child_reaper.
	 */
	zap_pid_ns_processes(tsk->nsproxy->pid_ns);
}

NORET_TYPE void do_exit(long code)
{
	struct task_struct *tsk = current;
	int group_dead;

	profile_task_exit(tsk);

	WARN_ON(atomic_read(&tsk->fs_excl));

	if (unlikely(in_interrupt()))
		panic("Aiee, killing interrupt handler!");
	if (unlikely(!tsk->pid))
		panic("Attempted to kill the idle task!");

	if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
		current->ptrace_message = code;
		ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
	}

	/*
	 * We're taking recursive faults here in do_exit. Safest is to just
	 * leave this task alone and wait for reboot.
	 */
	if (unlikely(tsk->flags & PF_EXITING)) {
		printk(KERN_ALERT
			"Fixing recursive fault but reboot is needed!\n");
		/*
		 * We can do this unlocked here. The futex code uses
		 * this flag just to verify whether the pi state
		 * cleanup has been done or not. In the worst case it
		 * loops once more. We pretend that the cleanup was
		 * done as there is no way to return. Either the
		 * OWNER_DIED bit is set by now or we push the blocked
		 * task into the wait for ever nirwana as well.
		 */
		tsk->flags |= PF_EXITPIDONE;
		if (tsk->io_context)
			exit_io_context();
		set_current_state(TASK_UNINTERRUPTIBLE);
		schedule();
	}

	exit_signals(tsk);  /* sets PF_EXITING */
	/*
	 * tsk->flags are checked in the futex code to protect against
	 * an exiting task cleaning up the robust pi futexes.
	 */
	smp_mb();
	spin_unlock_wait(&tsk->pi_lock);

	if (unlikely(in_atomic()))
		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
				current->comm, task_pid_nr(current),
				preempt_count());

	acct_update_integrals(tsk);
	if (tsk->mm) {
		update_hiwater_rss(tsk->mm);
		update_hiwater_vm(tsk->mm);
	}
	group_dead = atomic_dec_and_test(&tsk->signal->live);
	if (group_dead) {
		exit_child_reaper(tsk);
		hrtimer_cancel(&tsk->signal->real_timer);
		exit_itimers(tsk->signal);
	}
	acct_collect(code, group_dead);
#ifdef CONFIG_FUTEX
	if (unlikely(tsk->robust_list))
		exit_robust_list(tsk);
#ifdef CONFIG_COMPAT
	if (unlikely(tsk->compat_robust_list))
		compat_exit_robust_list(tsk);
#endif
#endif
	if (group_dead)
		tty_audit_exit();
	if (unlikely(tsk->audit_context))
		audit_free(tsk);

	tsk->exit_code = code;
	taskstats_exit(tsk, group_dead);

	exit_mm(tsk);

	if (group_dead)
		acct_process();
	exit_sem(tsk);
	__exit_files(tsk);
	__exit_fs(tsk);
	check_stack_usage();
	exit_thread();
	cgroup_exit(tsk, 1);
	exit_keys(tsk);

	if (group_dead && tsk->signal->leader)
		disassociate_ctty(1);

	module_put(task_thread_info(tsk)->exec_domain->module);
	if (tsk->binfmt)
		module_put(tsk->binfmt->module);

	proc_exit_connector(tsk);
	exit_notify(tsk, group_dead);
#ifdef CONFIG_NUMA
	mpol_free(tsk->mempolicy);
	tsk->mempolicy = NULL;
#endif
#ifdef CONFIG_FUTEX
	/*
	 * This must happen late, after the PID is not
	 * hashed anymore:
	 */
	if (unlikely(!list_empty(&tsk->pi_state_list)))
		exit_pi_state_list(tsk);
	if (unlikely(current->pi_state_cache))
		kfree(current->pi_state_cache);
#endif
	/*
	 * Make sure we are holding no locks:
	 */
	debug_check_no_locks_held(tsk);
	/*
	 * We can do this unlocked here. The futex code uses this flag
	 * just to verify whether the pi state cleanup has been done
	 * or not. In the worst case it loops once more.
	 */
	tsk->flags |= PF_EXITPIDONE;

	if (tsk->io_context)
		exit_io_context();

	if (tsk->splice_pipe)
		__free_pipe_info(tsk->splice_pipe);

	preempt_disable();
	/* causes final put_task_struct in finish_task_switch(). */
	tsk->state = TASK_DEAD;

	schedule();
	BUG();
	/* Avoid "noreturn function does return".  */
	for (;;)
		cpu_relax();	/* For when BUG is null */
}

EXPORT_SYMBOL_GPL(do_exit);

NORET_TYPE void complete_and_exit(struct completion *comp, long code)
{
	if (comp)
		complete(comp);

	do_exit(code);
}

EXPORT_SYMBOL(complete_and_exit);

asmlinkage long sys_exit(int error_code)
{
	do_exit((error_code&0xff)<<8);
}

/*
 * Take down every thread in the group.  This is called by fatal signals
 * as well as by sys_exit_group (below).
 */
NORET_TYPE void
do_group_exit(int exit_code)
{
	BUG_ON(exit_code & 0x80); /* core dumps don't get here */

	if (current->signal->flags & SIGNAL_GROUP_EXIT)
		exit_code = current->signal->group_exit_code;
	else if (!thread_group_empty(current)) {
		struct signal_struct *const sig = current->signal;
		struct sighand_struct *const sighand = current->sighand;
		spin_lock_irq(&sighand->siglock);
		if (signal_group_exit(sig))
			/* Another thread got here before we took the lock.  */
			exit_code = sig->group_exit_code;
		else {
			sig->group_exit_code = exit_code;
			sig->flags = SIGNAL_GROUP_EXIT;
			zap_other_threads(current);
		}
		spin_unlock_irq(&sighand->siglock);
	}

	do_exit(exit_code);
	/* NOTREACHED */
}

/*
 * this kills every thread in the thread group. Note that any externally
 * wait4()-ing process will get the correct exit code - even if this
 * thread is not the thread group leader.
 */
asmlinkage void sys_exit_group(int error_code)
{
	do_group_exit((error_code & 0xff) << 8);
}

static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
{
	struct pid *pid = NULL;
	if (type == PIDTYPE_PID)
		pid = task->pids[type].pid;
	else if (type < PIDTYPE_MAX)
		pid = task->group_leader->pids[type].pid;
	return pid;
}

static int eligible_child(enum pid_type type, struct pid *pid, int options,
			  struct task_struct *p)
{
	int err;

	if (type < PIDTYPE_MAX) {
		if (task_pid_type(p, type) != pid)
			return 0;
	}

	/*
	 * Do not consider detached threads that are
	 * not ptraced:
	 */
	if (p->exit_signal == -1 && !p->ptrace)
		return 0;

	/* Wait for all children (clone and not) if __WALL is set;
	 * otherwise, wait for clone children *only* if __WCLONE is
	 * set; otherwise, wait for non-clone children *only*.  (Note:
	 * A "clone" child here is one that reports to its parent
	 * using a signal other than SIGCHLD.) */
	if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
	    && !(options & __WALL))
		return 0;

	err = security_task_wait(p);
	if (likely(!err))
		return 1;

	if (type != PIDTYPE_PID)
		return 0;
	/* This child was explicitly requested, abort */
	read_unlock(&tasklist_lock);
	return err;
}

static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
			       int why, int status,
			       struct siginfo __user *infop,
			       struct rusage __user *rusagep)
{
	int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;

	put_task_struct(p);
	if (!retval)
		retval = put_user(SIGCHLD, &infop->si_signo);
	if (!retval)
		retval = put_user(0, &infop->si_errno);
	if (!retval)
		retval = put_user((short)why, &infop->si_code);
	if (!retval)
		retval = put_user(pid, &infop->si_pid);
	if (!retval)
		retval = put_user(uid, &infop->si_uid);
	if (!retval)
		retval = put_user(status, &infop->si_status);
	if (!retval)
		retval = pid;
	return retval;
}

/*
 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
 * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
 * the lock and this task is uninteresting.  If we return nonzero, we have
 * released the lock and the system call should return.
 */
static int wait_task_zombie(struct task_struct *p, int noreap,
			    struct siginfo __user *infop,
			    int __user *stat_addr, struct rusage __user *ru)
{
	unsigned long state;
	int retval, status, traced;
	pid_t pid = task_pid_vnr(p);

	if (unlikely(noreap)) {
		uid_t uid = p->uid;
		int exit_code = p->exit_code;
		int why, status;

		get_task_struct(p);
		read_unlock(&tasklist_lock);
		if ((exit_code & 0x7f) == 0) {
			why = CLD_EXITED;
			status = exit_code >> 8;
		} else {
			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
			status = exit_code & 0x7f;
		}
		return wait_noreap_copyout(p, pid, uid, why,
					   status, infop, ru);
	}

	/*
	 * Try to move the task's state to DEAD
	 * only one thread is allowed to do this:
	 */
	state = xchg(&p->exit_state, EXIT_DEAD);
	if (state != EXIT_ZOMBIE) {
		BUG_ON(state != EXIT_DEAD);
		return 0;
	}

	/* traced means p->ptrace, but not vice versa */
	traced = (p->real_parent != p->parent);

	if (likely(!traced)) {
		struct signal_struct *psig;
		struct signal_struct *sig;

		/*
		 * The resource counters for the group leader are in its
		 * own task_struct.  Those for dead threads in the group
		 * are in its signal_struct, as are those for the child
		 * processes it has previously reaped.  All these
		 * accumulate in the parent's signal_struct c* fields.
		 *
		 * We don't bother to take a lock here to protect these
		 * p->signal fields, because they are only touched by
		 * __exit_signal, which runs with tasklist_lock
		 * write-locked anyway, and so is excluded here.  We do
		 * need to protect the access to p->parent->signal fields,
		 * as other threads in the parent group can be right
		 * here reaping other children at the same time.
		 */
		spin_lock_irq(&p->parent->sighand->siglock);
		psig = p->parent->signal;
		sig = p->signal;
		psig->cutime =
			cputime_add(psig->cutime,
			cputime_add(p->utime,
			cputime_add(sig->utime,
				    sig->cutime)));
		psig->cstime =
			cputime_add(psig->cstime,
			cputime_add(p->stime,
			cputime_add(sig->stime,
				    sig->cstime)));
		psig->cgtime =
			cputime_add(psig->cgtime,
			cputime_add(p->gtime,
			cputime_add(sig->gtime,
				    sig->cgtime)));
		psig->cmin_flt +=
			p->min_flt + sig->min_flt + sig->cmin_flt;
		psig->cmaj_flt +=
			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
		psig->cnvcsw +=
			p->nvcsw + sig->nvcsw + sig->cnvcsw;
		psig->cnivcsw +=
			p->nivcsw + sig->nivcsw + sig->cnivcsw;
		psig->cinblock +=
			task_io_get_inblock(p) +
			sig->inblock + sig->cinblock;
		psig->coublock +=
			task_io_get_oublock(p) +
			sig->oublock + sig->coublock;
		spin_unlock_irq(&p->parent->sighand->siglock);
	}

	/*
	 * Now we are sure this task is interesting, and no other
	 * thread can reap it because we set its state to EXIT_DEAD.
	 */
	read_unlock(&tasklist_lock);

	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
		? p->signal->group_exit_code : p->exit_code;
	if (!retval && stat_addr)
		retval = put_user(status, stat_addr);
	if (!retval && infop)
		retval = put_user(SIGCHLD, &infop->si_signo);
	if (!retval && infop)
		retval = put_user(0, &infop->si_errno);
	if (!retval && infop) {
		int why;

		if ((status & 0x7f) == 0) {
			why = CLD_EXITED;
			status >>= 8;
		} else {
			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
			status &= 0x7f;
		}
		retval = put_user((short)why, &infop->si_code);
		if (!retval)
			retval = put_user(status, &infop->si_status);
	}
	if (!retval && infop)
		retval = put_user(pid, &infop->si_pid);
	if (!retval && infop)
		retval = put_user(p->uid, &infop->si_uid);
	if (!retval)
		retval = pid;

	if (traced) {
		write_lock_irq(&tasklist_lock);
		/* We dropped tasklist, ptracer could die and untrace */
		ptrace_unlink(p);
		/*
		 * If this is not a detached task, notify the parent.
		 * If it's still not detached after that, don't release
		 * it now.
		 */
		if (p->exit_signal != -1) {
			do_notify_parent(p, p->exit_signal);
			if (p->exit_signal != -1) {
				p->exit_state = EXIT_ZOMBIE;
				p = NULL;
			}
		}
		write_unlock_irq(&tasklist_lock);
	}
	if (p != NULL)
		release_task(p);

	return retval;
}

/*
 * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
 * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
 * the lock and this task is uninteresting.  If we return nonzero, we have
 * released the lock and the system call should return.
 */
static int wait_task_stopped(struct task_struct *p,
			     int noreap, struct siginfo __user *infop,
			     int __user *stat_addr, struct rusage __user *ru)
{
	int retval, exit_code, why;
	uid_t uid = 0; /* unneeded, required by compiler */
	pid_t pid;

	exit_code = 0;
	spin_lock_irq(&p->sighand->siglock);

	if (unlikely(!task_is_stopped_or_traced(p)))
		goto unlock_sig;

	if (!(p->ptrace & PT_PTRACED) && p->signal->group_stop_count > 0)
		/*
		 * A group stop is in progress and this is the group leader.
		 * We won't report until all threads have stopped.
		 */
		goto unlock_sig;

	exit_code = p->exit_code;
	if (!exit_code)
		goto unlock_sig;

	if (!noreap)
		p->exit_code = 0;

	uid = p->uid;
unlock_sig:
	spin_unlock_irq(&p->sighand->siglock);
	if (!exit_code)
		return 0;

	/*
	 * Now we are pretty sure this task is interesting.
	 * Make sure it doesn't get reaped out from under us while we
	 * give up the lock and then examine it below.  We don't want to
	 * keep holding onto the tasklist_lock while we call getrusage and
	 * possibly take page faults for user memory.
	 */
	get_task_struct(p);
	pid = task_pid_vnr(p);
	why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
	read_unlock(&tasklist_lock);

	if (unlikely(noreap))
		return wait_noreap_copyout(p, pid, uid,
					   why, exit_code,
					   infop, ru);

	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
	if (!retval && stat_addr)
		retval = put_user((exit_code << 8) | 0x7f, stat_addr);
	if (!retval && infop)
		retval = put_user(SIGCHLD, &infop->si_signo);
	if (!retval && infop)
		retval = put_user(0, &infop->si_errno);
	if (!retval && infop)
		retval = put_user((short)why, &infop->si_code);
	if (!retval && infop)
		retval = put_user(exit_code, &infop->si_status);
	if (!retval && infop)
		retval = put_user(pid, &infop->si_pid);
	if (!retval && infop)
		retval = put_user(uid, &infop->si_uid);
	if (!retval)
		retval = pid;
	put_task_struct(p);

	BUG_ON(!retval);
	return retval;
}

/*
 * Handle do_wait work for one task in a live, non-stopped state.
 * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
 * the lock and this task is uninteresting.  If we return nonzero, we have
 * released the lock and the system call should return.
 */
static int wait_task_continued(struct task_struct *p, int noreap,
			       struct siginfo __user *infop,
			       int __user *stat_addr, struct rusage __user *ru)
{
	int retval;
	pid_t pid;
	uid_t uid;

	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
		return 0;

	spin_lock_irq(&p->sighand->siglock);
	/* Re-check with the lock held.  */
	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
		spin_unlock_irq(&p->sighand->siglock);
		return 0;
	}
	if (!noreap)
		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
	spin_unlock_irq(&p->sighand->siglock);

	pid = task_pid_vnr(p);
	uid = p->uid;
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	if (!infop) {
		retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
		put_task_struct(p);
		if (!retval && stat_addr)
			retval = put_user(0xffff, stat_addr);
		if (!retval)
			retval = pid;
	} else {
		retval = wait_noreap_copyout(p, pid, uid,
					     CLD_CONTINUED, SIGCONT,
					     infop, ru);
		BUG_ON(retval == 0);
	}

	return retval;
}

static long do_wait(enum pid_type type, struct pid *pid, int options,
		    struct siginfo __user *infop, int __user *stat_addr,
		    struct rusage __user *ru)
{
	DECLARE_WAITQUEUE(wait, current);
	struct task_struct *tsk;
	int flag, retval;

	add_wait_queue(&current->signal->wait_chldexit,&wait);
repeat:
	/* If there is nothing that can match our critier just get out */
	retval = -ECHILD;
	if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
		goto end;

	/*
	 * We will set this flag if we see any child that might later
	 * match our criteria, even if we are not able to reap it yet.
	 */
	flag = retval = 0;
	current->state = TASK_INTERRUPTIBLE;
	read_lock(&tasklist_lock);
	tsk = current;
	do {
		struct task_struct *p;

		list_for_each_entry(p, &tsk->children, sibling) {
			int ret = eligible_child(type, pid, options, p);
			if (!ret)
				continue;

			if (unlikely(ret < 0)) {
				retval = ret;
			} else if (task_is_stopped_or_traced(p)) {
				/*
				 * It's stopped now, so it might later
				 * continue, exit, or stop again.
				 */
				flag = 1;
				if (!(p->ptrace & PT_PTRACED) &&
				    !(options & WUNTRACED))
					continue;

				retval = wait_task_stopped(p,
						(options & WNOWAIT), infop,
						stat_addr, ru);
			} else if (p->exit_state == EXIT_ZOMBIE &&
					!delay_group_leader(p)) {
				/*
				 * We don't reap group leaders with subthreads.
				 */
				if (!likely(options & WEXITED))
					continue;
				retval = wait_task_zombie(p,
						(options & WNOWAIT), infop,
						stat_addr, ru);
			} else if (p->exit_state != EXIT_DEAD) {
				/*
				 * It's running now, so it might later
				 * exit, stop, or stop and then continue.
				 */
				flag = 1;
				if (!unlikely(options & WCONTINUED))
					continue;
				retval = wait_task_continued(p,
						(options & WNOWAIT), infop,
						stat_addr, ru);
			}
			if (retval != 0) /* tasklist_lock released */
				goto end;
		}
		if (!flag) {
			list_for_each_entry(p, &tsk->ptrace_children,
								ptrace_list) {
				flag = eligible_child(type, pid, options, p);
				if (!flag)
					continue;
				if (likely(flag > 0))
					break;
				retval = flag;
				goto end;
			}
		}
		if (options & __WNOTHREAD)
			break;
		tsk = next_thread(tsk);
		BUG_ON(tsk->signal != current->signal);
	} while (tsk != current);
	read_unlock(&tasklist_lock);

	if (flag) {
		if (options & WNOHANG)
			goto end;
		retval = -ERESTARTSYS;
		if (signal_pending(current))
			goto end;
		schedule();
		goto repeat;
	}
	retval = -ECHILD;
end:
	current->state = TASK_RUNNING;
	remove_wait_queue(&current->signal->wait_chldexit,&wait);
	if (infop) {
		if (retval > 0)
			retval = 0;
		else {
			/*
			 * For a WNOHANG return, clear out all the fields
			 * we would set so the user can easily tell the
			 * difference.
			 */
			if (!retval)
				retval = put_user(0, &infop->si_signo);
			if (!retval)
				retval = put_user(0, &infop->si_errno);
			if (!retval)
				retval = put_user(0, &infop->si_code);
			if (!retval)
				retval = put_user(0, &infop->si_pid);
			if (!retval)
				retval = put_user(0, &infop->si_uid);
			if (!retval)
				retval = put_user(0, &infop->si_status);
		}
	}
	return retval;
}

asmlinkage long sys_waitid(int which, pid_t upid,
			   struct siginfo __user *infop, int options,
			   struct rusage __user *ru)
{
	struct pid *pid = NULL;
	enum pid_type type;
	long ret;

	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
		return -EINVAL;
	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
		return -EINVAL;

	switch (which) {
	case P_ALL:
		type = PIDTYPE_MAX;
		break;
	case P_PID:
		type = PIDTYPE_PID;
		if (upid <= 0)
			return -EINVAL;
		break;
	case P_PGID:
		type = PIDTYPE_PGID;
		if (upid <= 0)
			return -EINVAL;
		break;
	default:
		return -EINVAL;
	}

	if (type < PIDTYPE_MAX)
		pid = find_get_pid(upid);
	ret = do_wait(type, pid, options, infop, NULL, ru);
	put_pid(pid);

	/* avoid REGPARM breakage on x86: */
	asmlinkage_protect(5, ret, which, upid, infop, options, ru);
	return ret;
}

asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr,
			  int options, struct rusage __user *ru)
{
	struct pid *pid = NULL;
	enum pid_type type;
	long ret;

	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
			__WNOTHREAD|__WCLONE|__WALL))
		return -EINVAL;

	if (upid == -1)
		type = PIDTYPE_MAX;
	else if (upid < 0) {
		type = PIDTYPE_PGID;
		pid = find_get_pid(-upid);
	} else if (upid == 0) {
		type = PIDTYPE_PGID;
		pid = get_pid(task_pgrp(current));
	} else /* upid > 0 */ {
		type = PIDTYPE_PID;
		pid = find_get_pid(upid);
	}

	ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
	put_pid(pid);

	/* avoid REGPARM breakage on x86: */
	asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
	return ret;
}

#ifdef __ARCH_WANT_SYS_WAITPID

/*
 * sys_waitpid() remains for compatibility. waitpid() should be
 * implemented by calling sys_wait4() from libc.a.
 */
asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
{
	return sys_wait4(pid, stat_addr, options, NULL);
}

#endif