/* * linux/kernel/workqueue.c * * Generic mechanism for defining kernel helper threads for running * arbitrary tasks in process context. * * Started by Ingo Molnar, Copyright (C) 2002 * * Derived from the taskqueue/keventd code by: * * David Woodhouse * Andrew Morton * Kai Petzke * Theodore Ts'o * * Made to use alloc_percpu by Christoph Lameter . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * The per-CPU workqueue (if single thread, we always use the first * possible cpu). */ struct cpu_workqueue_struct { spinlock_t lock; struct list_head worklist; wait_queue_head_t more_work; struct work_struct *current_work; struct workqueue_struct *wq; struct task_struct *thread; int should_stop; int run_depth; /* Detect run_workqueue() recursion depth */ } ____cacheline_aligned; /* * The externally visible workqueue abstraction is an array of * per-CPU workqueues: */ struct workqueue_struct { struct cpu_workqueue_struct *cpu_wq; const char *name; struct list_head list; /* Empty if single thread */ int freezeable; /* Freeze threads during suspend */ }; /* All the per-cpu workqueues on the system, for hotplug cpu to add/remove threads to each one as cpus come/go. */ static DEFINE_MUTEX(workqueue_mutex); static LIST_HEAD(workqueues); static int singlethread_cpu __read_mostly; static cpumask_t cpu_singlethread_map __read_mostly; /* optimization, we could use cpu_possible_map */ static cpumask_t cpu_populated_map __read_mostly; /* If it's single threaded, it isn't in the list of workqueues. */ static inline int is_single_threaded(struct workqueue_struct *wq) { return list_empty(&wq->list); } static const cpumask_t *wq_cpu_map(struct workqueue_struct *wq) { return is_single_threaded(wq) ? &cpu_singlethread_map : &cpu_populated_map; } /* * Set the workqueue on which a work item is to be run * - Must *only* be called if the pending flag is set */ static inline void set_wq_data(struct work_struct *work, void *wq) { unsigned long new; BUG_ON(!work_pending(work)); new = (unsigned long) wq | (1UL << WORK_STRUCT_PENDING); new |= WORK_STRUCT_FLAG_MASK & *work_data_bits(work); atomic_long_set(&work->data, new); } static inline void *get_wq_data(struct work_struct *work) { return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK); } static void insert_work(struct cpu_workqueue_struct *cwq, struct work_struct *work, int tail) { set_wq_data(work, cwq); if (tail) list_add_tail(&work->entry, &cwq->worklist); else list_add(&work->entry, &cwq->worklist); wake_up(&cwq->more_work); } /* Preempt must be disabled. */ static void __queue_work(struct cpu_workqueue_struct *cwq, struct work_struct *work) { unsigned long flags; spin_lock_irqsave(&cwq->lock, flags); insert_work(cwq, work, 1); spin_unlock_irqrestore(&cwq->lock, flags); } /** * queue_work - queue work on a workqueue * @wq: workqueue to use * @work: work to queue * * Returns 0 if @work was already on a queue, non-zero otherwise. * * We queue the work to the CPU it was submitted, but there is no * guarantee that it will be processed by that CPU. */ int fastcall queue_work(struct workqueue_struct *wq, struct work_struct *work) { int ret = 0, cpu = get_cpu(); if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) { if (unlikely(is_single_threaded(wq))) cpu = singlethread_cpu; BUG_ON(!list_empty(&work->entry)); __queue_work(per_cpu_ptr(wq->cpu_wq, cpu), work); ret = 1; } put_cpu(); return ret; } EXPORT_SYMBOL_GPL(queue_work); void delayed_work_timer_fn(unsigned long __data) { struct delayed_work *dwork = (struct delayed_work *)__data; struct workqueue_struct *wq = get_wq_data(&dwork->work); int cpu = smp_processor_id(); if (unlikely(is_single_threaded(wq))) cpu = singlethread_cpu; __queue_work(per_cpu_ptr(wq->cpu_wq, cpu), &dwork->work); } /** * queue_delayed_work - queue work on a workqueue after delay * @wq: workqueue to use * @dwork: delayable work to queue * @delay: number of jiffies to wait before queueing * * Returns 0 if @work was already on a queue, non-zero otherwise. */ int fastcall queue_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork, unsigned long delay) { int ret = 0; struct timer_list *timer = &dwork->timer; struct work_struct *work = &dwork->work; timer_stats_timer_set_start_info(timer); if (delay == 0) return queue_work(wq, work); if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) { BUG_ON(timer_pending(timer)); BUG_ON(!list_empty(&work->entry)); /* This stores wq for the moment, for the timer_fn */ set_wq_data(work, wq); timer->expires = jiffies + delay; timer->data = (unsigned long)dwork; timer->function = delayed_work_timer_fn; add_timer(timer); ret = 1; } return ret; } EXPORT_SYMBOL_GPL(queue_delayed_work); /** * queue_delayed_work_on - queue work on specific CPU after delay * @cpu: CPU number to execute work on * @wq: workqueue to use * @dwork: work to queue * @delay: number of jiffies to wait before queueing * * Returns 0 if @work was already on a queue, non-zero otherwise. */ int queue_delayed_work_on(int cpu, struct workqueue_struct *wq, struct delayed_work *dwork, unsigned long delay) { int ret = 0; struct timer_list *timer = &dwork->timer; struct work_struct *work = &dwork->work; if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) { BUG_ON(timer_pending(timer)); BUG_ON(!list_empty(&work->entry)); /* This stores wq for the moment, for the timer_fn */ set_wq_data(work, wq); timer->expires = jiffies + delay; timer->data = (unsigned long)dwork; timer->function = delayed_work_timer_fn; add_timer_on(timer, cpu); ret = 1; } return ret; } EXPORT_SYMBOL_GPL(queue_delayed_work_on); static void run_workqueue(struct cpu_workqueue_struct *cwq) { spin_lock_irq(&cwq->lock); cwq->run_depth++; if (cwq->run_depth > 3) { /* morton gets to eat his hat */ printk("%s: recursion depth exceeded: %d\n", __FUNCTION__, cwq->run_depth); dump_stack(); } while (!list_empty(&cwq->worklist)) { struct work_struct *work = list_entry(cwq->worklist.next, struct work_struct, entry); work_func_t f = work->func; cwq->current_work = work; list_del_init(cwq->worklist.next); spin_unlock_irq(&cwq->lock); BUG_ON(get_wq_data(work) != cwq); if (!test_bit(WORK_STRUCT_NOAUTOREL, work_data_bits(work))) work_release(work); f(work); if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { printk(KERN_ERR "BUG: workqueue leaked lock or atomic: " "%s/0x%08x/%d\n", current->comm, preempt_count(), current->pid); printk(KERN_ERR " last function: "); print_symbol("%s\n", (unsigned long)f); debug_show_held_locks(current); dump_stack(); } spin_lock_irq(&cwq->lock); cwq->current_work = NULL; } cwq->run_depth--; spin_unlock_irq(&cwq->lock); } /* * NOTE: the caller must not touch *cwq if this func returns true */ static int cwq_should_stop(struct cpu_workqueue_struct *cwq) { int should_stop = cwq->should_stop; if (unlikely(should_stop)) { spin_lock_irq(&cwq->lock); should_stop = cwq->should_stop && list_empty(&cwq->worklist); if (should_stop) cwq->thread = NULL; spin_unlock_irq(&cwq->lock); } return should_stop; } static int worker_thread(void *__cwq) { struct cpu_workqueue_struct *cwq = __cwq; DEFINE_WAIT(wait); struct k_sigaction sa; sigset_t blocked; if (!cwq->wq->freezeable) current->flags |= PF_NOFREEZE; set_user_nice(current, -5); /* Block and flush all signals */ sigfillset(&blocked); sigprocmask(SIG_BLOCK, &blocked, NULL); flush_signals(current); /* * We inherited MPOL_INTERLEAVE from the booting kernel. * Set MPOL_DEFAULT to insure node local allocations. */ numa_default_policy(); /* SIG_IGN makes children autoreap: see do_notify_parent(). */ sa.sa.sa_handler = SIG_IGN; sa.sa.sa_flags = 0; siginitset(&sa.sa.sa_mask, sigmask(SIGCHLD)); do_sigaction(SIGCHLD, &sa, (struct k_sigaction *)0); for (;;) { if (cwq->wq->freezeable) try_to_freeze(); prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE); if (!cwq->should_stop && list_empty(&cwq->worklist)) schedule(); finish_wait(&cwq->more_work, &wait); if (cwq_should_stop(cwq)) break; run_workqueue(cwq); } return 0; } struct wq_barrier { struct work_struct work; struct completion done; }; static void wq_barrier_func(struct work_struct *work) { struct wq_barrier *barr = container_of(work, struct wq_barrier, work); complete(&barr->done); } static void insert_wq_barrier(struct cpu_workqueue_struct *cwq, struct wq_barrier *barr, int tail) { INIT_WORK(&barr->work, wq_barrier_func); __set_bit(WORK_STRUCT_PENDING, work_data_bits(&barr->work)); init_completion(&barr->done); insert_work(cwq, &barr->work, tail); } static void flush_cpu_workqueue(struct cpu_workqueue_struct *cwq) { if (cwq->thread == current) { /* * Probably keventd trying to flush its own queue. So simply run * it by hand rather than deadlocking. */ run_workqueue(cwq); } else { struct wq_barrier barr; int active = 0; spin_lock_irq(&cwq->lock); if (!list_empty(&cwq->worklist) || cwq->current_work != NULL) { insert_wq_barrier(cwq, &barr, 1); active = 1; } spin_unlock_irq(&cwq->lock); if (active) wait_for_completion(&barr.done); } } /** * flush_workqueue - ensure that any scheduled work has run to completion. * @wq: workqueue to flush * * Forces execution of the workqueue and blocks until its completion. * This is typically used in driver shutdown handlers. * * We sleep until all works which were queued on entry have been handled, * but we are not livelocked by new incoming ones. * * This function used to run the workqueues itself. Now we just wait for the * helper threads to do it. */ void fastcall flush_workqueue(struct workqueue_struct *wq) { const cpumask_t *cpu_map = wq_cpu_map(wq); int cpu might_sleep(); for_each_cpu_mask(cpu, *cpu_map) flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu)); } EXPORT_SYMBOL_GPL(flush_workqueue); static void wait_on_work(struct cpu_workqueue_struct *cwq, struct work_struct *work) { struct wq_barrier barr; int running = 0; spin_lock_irq(&cwq->lock); if (unlikely(cwq->current_work == work)) { insert_wq_barrier(cwq, &barr, 0); running = 1; } spin_unlock_irq(&cwq->lock); if (unlikely(running)) wait_for_completion(&barr.done); } /** * flush_work - block until a work_struct's callback has terminated * @wq: the workqueue on which the work is queued * @work: the work which is to be flushed * * flush_work() will attempt to cancel the work if it is queued. If the work's * callback appears to be running, flush_work() will block until it has * completed. * * flush_work() is designed to be used when the caller is tearing down data * structures which the callback function operates upon. It is expected that, * prior to calling flush_work(), the caller has arranged for the work to not * be requeued. */ void flush_work(struct workqueue_struct *wq, struct work_struct *work) { const cpumask_t *cpu_map = wq_cpu_map(wq); struct cpu_workqueue_struct *cwq; int cpu; might_sleep(); cwq = get_wq_data(work); /* Was it ever queued ? */ if (!cwq) return; /* * This work can't be re-queued, no need to re-check that * get_wq_data() is still the same when we take cwq->lock. */ spin_lock_irq(&cwq->lock); list_del_init(&work->entry); work_release(work); spin_unlock_irq(&cwq->lock); for_each_cpu_mask(cpu, *cpu_map) wait_on_work(per_cpu_ptr(wq->cpu_wq, cpu), work); } EXPORT_SYMBOL_GPL(flush_work); static struct workqueue_struct *keventd_wq; /** * schedule_work - put work task in global workqueue * @work: job to be done * * This puts a job in the kernel-global workqueue. */ int fastcall schedule_work(struct work_struct *work) { return queue_work(keventd_wq, work); } EXPORT_SYMBOL(schedule_work); /** * schedule_delayed_work - put work task in global workqueue after delay * @dwork: job to be done * @delay: number of jiffies to wait or 0 for immediate execution * * After waiting for a given time this puts a job in the kernel-global * workqueue. */ int fastcall schedule_delayed_work(struct delayed_work *dwork, unsigned long delay) { timer_stats_timer_set_start_info(&dwork->timer); return queue_delayed_work(keventd_wq, dwork, delay); } EXPORT_SYMBOL(schedule_delayed_work); /** * schedule_delayed_work_on - queue work in global workqueue on CPU after delay * @cpu: cpu to use * @dwork: job to be done * @delay: number of jiffies to wait * * After waiting for a given time this puts a job in the kernel-global * workqueue on the specified CPU. */ int schedule_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay) { return queue_delayed_work_on(cpu, keventd_wq, dwork, delay); } EXPORT_SYMBOL(schedule_delayed_work_on); /** * schedule_on_each_cpu - call a function on each online CPU from keventd * @func: the function to call * * Returns zero on success. * Returns -ve errno on failure. * * Appears to be racy against CPU hotplug. * * schedule_on_each_cpu() is very slow. */ int schedule_on_each_cpu(work_func_t func) { int cpu; struct work_struct *works; works = alloc_percpu(struct work_struct); if (!works) return -ENOMEM; preempt_disable(); /* CPU hotplug */ for_each_online_cpu(cpu) { struct work_struct *work = per_cpu_ptr(works, cpu); INIT_WORK(work, func); set_bit(WORK_STRUCT_PENDING, work_data_bits(work)); __queue_work(per_cpu_ptr(keventd_wq->cpu_wq, cpu), work); } preempt_enable(); flush_workqueue(keventd_wq); free_percpu(works); return 0; } void flush_scheduled_work(void) { flush_workqueue(keventd_wq); } EXPORT_SYMBOL(flush_scheduled_work); void flush_work_keventd(struct work_struct *work) { flush_work(keventd_wq, work); } EXPORT_SYMBOL(flush_work_keventd); /** * cancel_rearming_delayed_workqueue - reliably kill off a delayed work whose handler rearms the delayed work. * @wq: the controlling workqueue structure * @dwork: the delayed work struct */ void cancel_rearming_delayed_workqueue(struct workqueue_struct *wq, struct delayed_work *dwork) { /* Was it ever queued ? */ if (!get_wq_data(&dwork->work)) return; while (!cancel_delayed_work(dwork)) flush_workqueue(wq); } EXPORT_SYMBOL(cancel_rearming_delayed_workqueue); /** * cancel_rearming_delayed_work - reliably kill off a delayed keventd work whose handler rearms the delayed work. * @dwork: the delayed work struct */ void cancel_rearming_delayed_work(struct delayed_work *dwork) { cancel_rearming_delayed_workqueue(keventd_wq, dwork); } EXPORT_SYMBOL(cancel_rearming_delayed_work); /** * execute_in_process_context - reliably execute the routine with user context * @fn: the function to execute * @ew: guaranteed storage for the execute work structure (must * be available when the work executes) * * Executes the function immediately if process context is available, * otherwise schedules the function for delayed execution. * * Returns: 0 - function was executed * 1 - function was scheduled for execution */ int execute_in_process_context(work_func_t fn, struct execute_work *ew) { if (!in_interrupt()) { fn(&ew->work); return 0; } INIT_WORK(&ew->work, fn); schedule_work(&ew->work); return 1; } EXPORT_SYMBOL_GPL(execute_in_process_context); int keventd_up(void) { return keventd_wq != NULL; } int current_is_keventd(void) { struct cpu_workqueue_struct *cwq; int cpu = smp_processor_id(); /* preempt-safe: keventd is per-cpu */ int ret = 0; BUG_ON(!keventd_wq); cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu); if (current == cwq->thread) ret = 1; return ret; } static struct cpu_workqueue_struct * init_cpu_workqueue(struct workqueue_struct *wq, int cpu) { struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu); cwq->wq = wq; spin_lock_init(&cwq->lock); INIT_LIST_HEAD(&cwq->worklist); init_waitqueue_head(&cwq->more_work); return cwq; } static int create_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu) { struct workqueue_struct *wq = cwq->wq; const char *fmt = is_single_threaded(wq) ? "%s" : "%s/%d"; struct task_struct *p; p = kthread_create(worker_thread, cwq, fmt, wq->name, cpu); /* * Nobody can add the work_struct to this cwq, * if (caller is __create_workqueue) * nobody should see this wq * else // caller is CPU_UP_PREPARE * cpu is not on cpu_online_map * so we can abort safely. */ if (IS_ERR(p)) return PTR_ERR(p); cwq->thread = p; cwq->should_stop = 0; if (!is_single_threaded(wq)) kthread_bind(p, cpu); if (is_single_threaded(wq) || cpu_online(cpu)) wake_up_process(p); return 0; } struct workqueue_struct *__create_workqueue(const char *name, int singlethread, int freezeable) { struct workqueue_struct *wq; struct cpu_workqueue_struct *cwq; int err = 0, cpu; wq = kzalloc(sizeof(*wq), GFP_KERNEL); if (!wq) return NULL; wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct); if (!wq->cpu_wq) { kfree(wq); return NULL; } wq->name = name; wq->freezeable = freezeable; if (singlethread) { INIT_LIST_HEAD(&wq->list); cwq = init_cpu_workqueue(wq, singlethread_cpu); err = create_workqueue_thread(cwq, singlethread_cpu); } else { mutex_lock(&workqueue_mutex); list_add(&wq->list, &workqueues); for_each_possible_cpu(cpu) { cwq = init_cpu_workqueue(wq, cpu); if (err || !cpu_online(cpu)) continue; err = create_workqueue_thread(cwq, cpu); } mutex_unlock(&workqueue_mutex); } if (err) { destroy_workqueue(wq); wq = NULL; } return wq; } EXPORT_SYMBOL_GPL(__create_workqueue); static void cleanup_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu) { struct wq_barrier barr; int alive = 0; spin_lock_irq(&cwq->lock); if (cwq->thread != NULL) { insert_wq_barrier(cwq, &barr, 1); cwq->should_stop = 1; alive = 1; } spin_unlock_irq(&cwq->lock); if (alive) { wait_for_completion(&barr.done); while (unlikely(cwq->thread != NULL)) cpu_relax(); /* * Wait until cwq->thread unlocks cwq->lock, * it won't touch *cwq after that. */ smp_rmb(); spin_unlock_wait(&cwq->lock); } } /** * destroy_workqueue - safely terminate a workqueue * @wq: target workqueue * * Safely destroy a workqueue. All work currently pending will be done first. */ void destroy_workqueue(struct workqueue_struct *wq) { const cpumask_t *cpu_map = wq_cpu_map(wq); struct cpu_workqueue_struct *cwq; int cpu; mutex_lock(&workqueue_mutex); list_del(&wq->list); mutex_unlock(&workqueue_mutex); for_each_cpu_mask(cpu, *cpu_map) { cwq = per_cpu_ptr(wq->cpu_wq, cpu); cleanup_workqueue_thread(cwq, cpu); } free_percpu(wq->cpu_wq); kfree(wq); } EXPORT_SYMBOL_GPL(destroy_workqueue); static int __devinit workqueue_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu) { unsigned int cpu = (unsigned long)hcpu; struct cpu_workqueue_struct *cwq; struct workqueue_struct *wq; switch (action) { case CPU_LOCK_ACQUIRE: mutex_lock(&workqueue_mutex); return NOTIFY_OK; case CPU_LOCK_RELEASE: mutex_unlock(&workqueue_mutex); return NOTIFY_OK; case CPU_UP_PREPARE: cpu_set(cpu, cpu_populated_map); } list_for_each_entry(wq, &workqueues, list) { cwq = per_cpu_ptr(wq->cpu_wq, cpu); switch (action) { case CPU_UP_PREPARE: if (!create_workqueue_thread(cwq, cpu)) break; printk(KERN_ERR "workqueue for %i failed\n", cpu); return NOTIFY_BAD; case CPU_ONLINE: wake_up_process(cwq->thread); break; case CPU_UP_CANCELED: if (cwq->thread) wake_up_process(cwq->thread); case CPU_DEAD: cleanup_workqueue_thread(cwq, cpu); break; } } return NOTIFY_OK; } void init_workqueues(void) { cpu_populated_map = cpu_online_map; singlethread_cpu = first_cpu(cpu_possible_map); cpu_singlethread_map = cpumask_of_cpu(singlethread_cpu); hotcpu_notifier(workqueue_cpu_callback, 0); keventd_wq = create_workqueue("events"); BUG_ON(!keventd_wq); }