/* * Implement the default iomap interfaces * * (C) Copyright 2004 Linus Torvalds */ #include <linux/pci.h> #include <linux/io.h> #include <linux/module.h> /* * Read/write from/to an (offsettable) iomem cookie. It might be a PIO * access or a MMIO access, these functions don't care. The info is * encoded in the hardware mapping set up by the mapping functions * (or the cookie itself, depending on implementation and hw). * * The generic routines don't assume any hardware mappings, and just * encode the PIO/MMIO as part of the cookie. They coldly assume that * the MMIO IO mappings are not in the low address range. * * Architectures for which this is not true can't use this generic * implementation and should do their own copy. */ #ifndef HAVE_ARCH_PIO_SIZE /* * We encode the physical PIO addresses (0-0xffff) into the * pointer by offsetting them with a constant (0x10000) and * assuming that all the low addresses are always PIO. That means * we can do some sanity checks on the low bits, and don't * need to just take things for granted. */ #define PIO_OFFSET 0x10000UL #define PIO_MASK 0x0ffffUL #define PIO_RESERVED 0x40000UL #endif static void bad_io_access(unsigned long port, const char *access) { static int count = 10; if (count) { count--; printk(KERN_ERR "Bad IO access at port %lx (%s)\n", port, access); WARN_ON(1); } } /* * Ugly macros are a way of life. */ #define IO_COND(addr, is_pio, is_mmio) do { \ unsigned long port = (unsigned long __force)addr; \ if (port >= PIO_RESERVED) { \ is_mmio; \ } else if (port > PIO_OFFSET) { \ port &= PIO_MASK; \ is_pio; \ } else \ bad_io_access(port, #is_pio ); \ } while (0) #ifndef pio_read16be #define pio_read16be(port) swab16(inw(port)) #define pio_read32be(port) swab32(inl(port)) #endif #ifndef mmio_read16be #define mmio_read16be(addr) be16_to_cpu(__raw_readw(addr)) #define mmio_read32be(addr) be32_to_cpu(__raw_readl(addr)) #endif unsigned int fastcall ioread8(void __iomem *addr) { IO_COND(addr, return inb(port), return readb(addr)); return 0xff; } unsigned int fastcall ioread16(void __iomem *addr) { IO_COND(addr, return inw(port), return readw(addr)); return 0xffff; } unsigned int fastcall ioread16be(void __iomem *addr) { IO_COND(addr, return pio_read16be(port), return mmio_read16be(addr)); return 0xffff; } unsigned int fastcall ioread32(void __iomem *addr) { IO_COND(addr, return inl(port), return readl(addr)); return 0xffffffff; } unsigned int fastcall ioread32be(void __iomem *addr) { IO_COND(addr, return pio_read32be(port), return mmio_read32be(addr)); return 0xffffffff; } EXPORT_SYMBOL(ioread8); EXPORT_SYMBOL(ioread16); EXPORT_SYMBOL(ioread16be); EXPORT_SYMBOL(ioread32); EXPORT_SYMBOL(ioread32be); #ifndef pio_write16be #define pio_write16be(val,port) outw(swab16(val),port) #define pio_write32be(val,port) outl(swab32(val),port) #endif #ifndef mmio_write16be #define mmio_write16be(val,port) __raw_writew(be16_to_cpu(val),port) #define mmio_write32be(val,port) __raw_writel(be32_to_cpu(val),port) #endif void fastcall iowrite8(u8 val, void __iomem *addr) { IO_COND(addr, outb(val,port), writeb(val, addr)); } void fastcall iowrite16(u16 val, void __iomem *addr) { IO_COND(addr, outw(val,port), writew(val, addr)); } void fastcall iowrite16be(u16 val, void __iomem *addr) { IO_COND(addr, pio_write16be(val,port), mmio_write16be(val, addr)); } void fastcall iowrite32(u32 val, void __iomem *addr) { IO_COND(addr, outl(val,port), writel(val, addr)); } void fastcall iowrite32be(u32 val, void __iomem *addr) { IO_COND(addr, pio_write32be(val,port), mmio_write32be(val, addr)); } EXPORT_SYMBOL(iowrite8); EXPORT_SYMBOL(iowrite16); EXPORT_SYMBOL(iowrite16be); EXPORT_SYMBOL(iowrite32); EXPORT_SYMBOL(iowrite32be); /* * These are the "repeat MMIO read/write" functions. * Note the "__raw" accesses, since we don't want to * convert to CPU byte order. We write in "IO byte * order" (we also don't have IO barriers). */ #ifndef mmio_insb static inline void mmio_insb(void __iomem *addr, u8 *dst, int count) { while (--count >= 0) { u8 data = __raw_readb(addr); *dst = data; dst++; } } static inline void mmio_insw(void __iomem *addr, u16 *dst, int count) { while (--count >= 0) { u16 data = __raw_readw(addr); *dst = data; dst++; } } static inline void mmio_insl(void __iomem *addr, u32 *dst, int count) { while (--count >= 0) { u32 data = __raw_readl(addr); *dst = data; dst++; } } #endif #ifndef mmio_outsb static inline void mmio_outsb(void __iomem *addr, const u8 *src, int count) { while (--count >= 0) { __raw_writeb(*src, addr); src++; } } static inline void mmio_outsw(void __iomem *addr, const u16 *src, int count) { while (--count >= 0) { __raw_writew(*src, addr); src++; } } static inline void mmio_outsl(void __iomem *addr, const u32 *src, int count) { while (--count >= 0) { __raw_writel(*src, addr); src++; } } #endif void fastcall ioread8_rep(void __iomem *addr, void *dst, unsigned long count) { IO_COND(addr, insb(port,dst,count), mmio_insb(addr, dst, count)); } void fastcall ioread16_rep(void __iomem *addr, void *dst, unsigned long count) { IO_COND(addr, insw(port,dst,count), mmio_insw(addr, dst, count)); } void fastcall ioread32_rep(void __iomem *addr, void *dst, unsigned long count) { IO_COND(addr, insl(port,dst,count), mmio_insl(addr, dst, count)); } EXPORT_SYMBOL(ioread8_rep); EXPORT_SYMBOL(ioread16_rep); EXPORT_SYMBOL(ioread32_rep); void fastcall iowrite8_rep(void __iomem *addr, const void *src, unsigned long count) { IO_COND(addr, outsb(port, src, count), mmio_outsb(addr, src, count)); } void fastcall iowrite16_rep(void __iomem *addr, const void *src, unsigned long count) { IO_COND(addr, outsw(port, src, count), mmio_outsw(addr, src, count)); } void fastcall iowrite32_rep(void __iomem *addr, const void *src, unsigned long count) { IO_COND(addr, outsl(port, src,count), mmio_outsl(addr, src, count)); } EXPORT_SYMBOL(iowrite8_rep); EXPORT_SYMBOL(iowrite16_rep); EXPORT_SYMBOL(iowrite32_rep); /* Create a virtual mapping cookie for an IO port range */ void __iomem *ioport_map(unsigned long port, unsigned int nr) { if (port > PIO_MASK) return NULL; return (void __iomem *) (unsigned long) (port + PIO_OFFSET); } void ioport_unmap(void __iomem *addr) { /* Nothing to do */ } EXPORT_SYMBOL(ioport_map); EXPORT_SYMBOL(ioport_unmap); /** * pci_iomap - create a virtual mapping cookie for a PCI BAR * @dev: PCI device that owns the BAR * @bar: BAR number * @maxlen: length of the memory to map * * Using this function you will get a __iomem address to your device BAR. * You can access it using ioread*() and iowrite*(). These functions hide * the details if this is a MMIO or PIO address space and will just do what * you expect from them in the correct way. * * @maxlen specifies the maximum length to map. If you want to get access to * the complete BAR without checking for its length first, pass %0 here. * */ void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long maxlen) { unsigned long start = pci_resource_start(dev, bar); unsigned long len = pci_resource_len(dev, bar); unsigned long flags = pci_resource_flags(dev, bar); if (!len || !start) return NULL; if (maxlen && len > maxlen) len = maxlen; if (flags & IORESOURCE_IO) return ioport_map(start, len); if (flags & IORESOURCE_MEM) { if (flags & IORESOURCE_CACHEABLE) return ioremap(start, len); return ioremap_nocache(start, len); } /* What? */ return NULL; } void pci_iounmap(struct pci_dev *dev, void __iomem * addr) { IO_COND(addr, /* nothing */, iounmap(addr)); } EXPORT_SYMBOL(pci_iomap); EXPORT_SYMBOL(pci_iounmap);