/* * High memory handling common code and variables. * * (C) 1999 Andrea Arcangeli, SuSE GmbH, andrea@suse.de * Gerhard Wichert, Siemens AG, Gerhard.Wichert@pdb.siemens.de * * * Redesigned the x86 32-bit VM architecture to deal with * 64-bit physical space. With current x86 CPUs this * means up to 64 Gigabytes physical RAM. * * Rewrote high memory support to move the page cache into * high memory. Implemented permanent (schedulable) kmaps * based on Linus' idea. * * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com> */ #include <linux/mm.h> #include <linux/module.h> #include <linux/swap.h> #include <linux/bio.h> #include <linux/pagemap.h> #include <linux/mempool.h> #include <linux/blkdev.h> #include <linux/init.h> #include <linux/hash.h> #include <linux/highmem.h> #include <asm/tlbflush.h> /* * Virtual_count is not a pure "count". * 0 means that it is not mapped, and has not been mapped * since a TLB flush - it is usable. * 1 means that there are no users, but it has been mapped * since the last TLB flush - so we can't use it. * n means that there are (n-1) current users of it. */ #ifdef CONFIG_HIGHMEM unsigned long totalhigh_pages __read_mostly; EXPORT_SYMBOL(totalhigh_pages); unsigned int nr_free_highpages (void) { pg_data_t *pgdat; unsigned int pages = 0; for_each_online_pgdat(pgdat) { pages += zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], NR_FREE_PAGES); if (zone_movable_is_highmem()) pages += zone_page_state( &pgdat->node_zones[ZONE_MOVABLE], NR_FREE_PAGES); } return pages; } static int pkmap_count[LAST_PKMAP]; static unsigned int last_pkmap_nr; static __cacheline_aligned_in_smp DEFINE_SPINLOCK(kmap_lock); pte_t * pkmap_page_table; static DECLARE_WAIT_QUEUE_HEAD(pkmap_map_wait); /* * Most architectures have no use for kmap_high_get(), so let's abstract * the disabling of IRQ out of the locking in that case to save on a * potential useless overhead. */ #ifdef ARCH_NEEDS_KMAP_HIGH_GET #define lock_kmap() spin_lock_irq(&kmap_lock) #define unlock_kmap() spin_unlock_irq(&kmap_lock) #define lock_kmap_any(flags) spin_lock_irqsave(&kmap_lock, flags) #define unlock_kmap_any(flags) spin_unlock_irqrestore(&kmap_lock, flags) #else #define lock_kmap() spin_lock(&kmap_lock) #define unlock_kmap() spin_unlock(&kmap_lock) #define lock_kmap_any(flags) \ do { spin_lock(&kmap_lock); (void)(flags); } while (0) #define unlock_kmap_any(flags) \ do { spin_unlock(&kmap_lock); (void)(flags); } while (0) #endif static void flush_all_zero_pkmaps(void) { int i; int need_flush = 0; flush_cache_kmaps(); for (i = 0; i < LAST_PKMAP; i++) { struct page *page; /* * zero means we don't have anything to do, * >1 means that it is still in use. Only * a count of 1 means that it is free but * needs to be unmapped */ if (pkmap_count[i] != 1) continue; pkmap_count[i] = 0; /* sanity check */ BUG_ON(pte_none(pkmap_page_table[i])); /* * Don't need an atomic fetch-and-clear op here; * no-one has the page mapped, and cannot get at * its virtual address (and hence PTE) without first * getting the kmap_lock (which is held here). * So no dangers, even with speculative execution. */ page = pte_page(pkmap_page_table[i]); pte_clear(&init_mm, (unsigned long)page_address(page), &pkmap_page_table[i]); set_page_address(page, NULL); need_flush = 1; } if (need_flush) flush_tlb_kernel_range(PKMAP_ADDR(0), PKMAP_ADDR(LAST_PKMAP)); } /** * kmap_flush_unused - flush all unused kmap mappings in order to remove stray mappings */ void kmap_flush_unused(void) { lock_kmap(); flush_all_zero_pkmaps(); unlock_kmap(); } static inline unsigned long map_new_virtual(struct page *page) { unsigned long vaddr; int count; start: count = LAST_PKMAP; /* Find an empty entry */ for (;;) { last_pkmap_nr = (last_pkmap_nr + 1) & LAST_PKMAP_MASK; if (!last_pkmap_nr) { flush_all_zero_pkmaps(); count = LAST_PKMAP; } if (!pkmap_count[last_pkmap_nr]) break; /* Found a usable entry */ if (--count) continue; /* * Sleep for somebody else to unmap their entries */ { DECLARE_WAITQUEUE(wait, current); __set_current_state(TASK_UNINTERRUPTIBLE); add_wait_queue(&pkmap_map_wait, &wait); unlock_kmap(); schedule(); remove_wait_queue(&pkmap_map_wait, &wait); lock_kmap(); /* Somebody else might have mapped it while we slept */ if (page_address(page)) return (unsigned long)page_address(page); /* Re-start */ goto start; } } vaddr = PKMAP_ADDR(last_pkmap_nr); set_pte_at(&init_mm, vaddr, &(pkmap_page_table[last_pkmap_nr]), mk_pte(page, kmap_prot)); pkmap_count[last_pkmap_nr] = 1; set_page_address(page, (void *)vaddr); return vaddr; } /** * kmap_high - map a highmem page into memory * @page: &struct page to map * * Returns the page's virtual memory address. * * We cannot call this from interrupts, as it may block. */ void *kmap_high(struct page *page) { unsigned long vaddr; /* * For highmem pages, we can't trust "virtual" until * after we have the lock. */ lock_kmap(); vaddr = (unsigned long)page_address(page); if (!vaddr) vaddr = map_new_virtual(page); pkmap_count[PKMAP_NR(vaddr)]++; BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 2); unlock_kmap(); return (void*) vaddr; } EXPORT_SYMBOL(kmap_high); #ifdef ARCH_NEEDS_KMAP_HIGH_GET /** * kmap_high_get - pin a highmem page into memory * @page: &struct page to pin * * Returns the page's current virtual memory address, or NULL if no mapping * exists. When and only when a non null address is returned then a * matching call to kunmap_high() is necessary. * * This can be called from any context. */ void *kmap_high_get(struct page *page) { unsigned long vaddr, flags; lock_kmap_any(flags); vaddr = (unsigned long)page_address(page); if (vaddr) { BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 1); pkmap_count[PKMAP_NR(vaddr)]++; } unlock_kmap_any(flags); return (void*) vaddr; } #endif /** * kunmap_high - map a highmem page into memory * @page: &struct page to unmap * * If ARCH_NEEDS_KMAP_HIGH_GET is not defined then this may be called * only from user context. */ void kunmap_high(struct page *page) { unsigned long vaddr; unsigned long nr; unsigned long flags; int need_wakeup; lock_kmap_any(flags); vaddr = (unsigned long)page_address(page); BUG_ON(!vaddr); nr = PKMAP_NR(vaddr); /* * A count must never go down to zero * without a TLB flush! */ need_wakeup = 0; switch (--pkmap_count[nr]) { case 0: BUG(); case 1: /* * Avoid an unnecessary wake_up() function call. * The common case is pkmap_count[] == 1, but * no waiters. * The tasks queued in the wait-queue are guarded * by both the lock in the wait-queue-head and by * the kmap_lock. As the kmap_lock is held here, * no need for the wait-queue-head's lock. Simply * test if the queue is empty. */ need_wakeup = waitqueue_active(&pkmap_map_wait); } unlock_kmap_any(flags); /* do wake-up, if needed, race-free outside of the spin lock */ if (need_wakeup) wake_up(&pkmap_map_wait); } EXPORT_SYMBOL(kunmap_high); #endif #if defined(HASHED_PAGE_VIRTUAL) #define PA_HASH_ORDER 7 /* * Describes one page->virtual association */ struct page_address_map { struct page *page; void *virtual; struct list_head list; }; /* * page_address_map freelist, allocated from page_address_maps. */ static struct list_head page_address_pool; /* freelist */ static spinlock_t pool_lock; /* protects page_address_pool */ /* * Hash table bucket */ static struct page_address_slot { struct list_head lh; /* List of page_address_maps */ spinlock_t lock; /* Protect this bucket's list */ } ____cacheline_aligned_in_smp page_address_htable[1<<PA_HASH_ORDER]; static struct page_address_slot *page_slot(struct page *page) { return &page_address_htable[hash_ptr(page, PA_HASH_ORDER)]; } /** * page_address - get the mapped virtual address of a page * @page: &struct page to get the virtual address of * * Returns the page's virtual address. */ void *page_address(struct page *page) { unsigned long flags; void *ret; struct page_address_slot *pas; if (!PageHighMem(page)) return lowmem_page_address(page); pas = page_slot(page); ret = NULL; spin_lock_irqsave(&pas->lock, flags); if (!list_empty(&pas->lh)) { struct page_address_map *pam; list_for_each_entry(pam, &pas->lh, list) { if (pam->page == page) { ret = pam->virtual; goto done; } } } done: spin_unlock_irqrestore(&pas->lock, flags); return ret; } EXPORT_SYMBOL(page_address); /** * set_page_address - set a page's virtual address * @page: &struct page to set * @virtual: virtual address to use */ void set_page_address(struct page *page, void *virtual) { unsigned long flags; struct page_address_slot *pas; struct page_address_map *pam; BUG_ON(!PageHighMem(page)); pas = page_slot(page); if (virtual) { /* Add */ BUG_ON(list_empty(&page_address_pool)); spin_lock_irqsave(&pool_lock, flags); pam = list_entry(page_address_pool.next, struct page_address_map, list); list_del(&pam->list); spin_unlock_irqrestore(&pool_lock, flags); pam->page = page; pam->virtual = virtual; spin_lock_irqsave(&pas->lock, flags); list_add_tail(&pam->list, &pas->lh); spin_unlock_irqrestore(&pas->lock, flags); } else { /* Remove */ spin_lock_irqsave(&pas->lock, flags); list_for_each_entry(pam, &pas->lh, list) { if (pam->page == page) { list_del(&pam->list); spin_unlock_irqrestore(&pas->lock, flags); spin_lock_irqsave(&pool_lock, flags); list_add_tail(&pam->list, &page_address_pool); spin_unlock_irqrestore(&pool_lock, flags); goto done; } } spin_unlock_irqrestore(&pas->lock, flags); } done: return; } static struct page_address_map page_address_maps[LAST_PKMAP]; void __init page_address_init(void) { int i; INIT_LIST_HEAD(&page_address_pool); for (i = 0; i < ARRAY_SIZE(page_address_maps); i++) list_add(&page_address_maps[i].list, &page_address_pool); for (i = 0; i < ARRAY_SIZE(page_address_htable); i++) { INIT_LIST_HEAD(&page_address_htable[i].lh); spin_lock_init(&page_address_htable[i].lock); } spin_lock_init(&pool_lock); } #endif /* defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) */ #if defined(CONFIG_DEBUG_HIGHMEM) && defined(CONFIG_TRACE_IRQFLAGS_SUPPORT) void debug_kmap_atomic(enum km_type type) { static unsigned warn_count = 10; if (unlikely(warn_count == 0)) return; if (unlikely(in_interrupt())) { if (in_irq()) { if (type != KM_IRQ0 && type != KM_IRQ1 && type != KM_BIO_SRC_IRQ && type != KM_BIO_DST_IRQ && type != KM_BOUNCE_READ) { WARN_ON(1); warn_count--; } } else if (!irqs_disabled()) { /* softirq */ if (type != KM_IRQ0 && type != KM_IRQ1 && type != KM_SOFTIRQ0 && type != KM_SOFTIRQ1 && type != KM_SKB_SUNRPC_DATA && type != KM_SKB_DATA_SOFTIRQ && type != KM_BOUNCE_READ) { WARN_ON(1); warn_count--; } } } if (type == KM_IRQ0 || type == KM_IRQ1 || type == KM_BOUNCE_READ || type == KM_BIO_SRC_IRQ || type == KM_BIO_DST_IRQ) { if (!irqs_disabled()) { WARN_ON(1); warn_count--; } } else if (type == KM_SOFTIRQ0 || type == KM_SOFTIRQ1) { if (irq_count() == 0 && !irqs_disabled()) { WARN_ON(1); warn_count--; } } } #endif