/* internal.h: mm/ internal definitions * * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #ifndef __MM_INTERNAL_H #define __MM_INTERNAL_H #include #include void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *start_vma, unsigned long floor, unsigned long ceiling); static inline void set_page_count(struct page *page, int v) { atomic_set(&page->_count, v); } extern int __do_page_cache_readahead(struct address_space *mapping, struct file *filp, pgoff_t offset, unsigned long nr_to_read, unsigned long lookahead_size); /* * Submit IO for the read-ahead request in file_ra_state. */ static inline unsigned long ra_submit(struct file_ra_state *ra, struct address_space *mapping, struct file *filp) { return __do_page_cache_readahead(mapping, filp, ra->start, ra->size, ra->async_size); } /* * Turn a non-refcounted page (->_count == 0) into refcounted with * a count of one. */ static inline void set_page_refcounted(struct page *page) { VM_BUG_ON_PAGE(PageTail(page), page); VM_BUG_ON_PAGE(atomic_read(&page->_count), page); set_page_count(page, 1); } static inline void __get_page_tail_foll(struct page *page, bool get_page_head) { /* * If we're getting a tail page, the elevated page->_count is * required only in the head page and we will elevate the head * page->_count and tail page->_mapcount. * * We elevate page_tail->_mapcount for tail pages to force * page_tail->_count to be zero at all times to avoid getting * false positives from get_page_unless_zero() with * speculative page access (like in * page_cache_get_speculative()) on tail pages. */ VM_BUG_ON_PAGE(atomic_read(&page->first_page->_count) <= 0, page); if (get_page_head) atomic_inc(&page->first_page->_count); get_huge_page_tail(page); } /* * This is meant to be called as the FOLL_GET operation of * follow_page() and it must be called while holding the proper PT * lock while the pte (or pmd_trans_huge) is still mapping the page. */ static inline void get_page_foll(struct page *page) { if (unlikely(PageTail(page))) /* * This is safe only because * __split_huge_page_refcount() can't run under * get_page_foll() because we hold the proper PT lock. */ __get_page_tail_foll(page, true); else { /* * Getting a normal page or the head of a compound page * requires to already have an elevated page->_count. */ VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page); atomic_inc(&page->_count); } } extern unsigned long highest_memmap_pfn; /* * in mm/vmscan.c: */ extern int isolate_lru_page(struct page *page); extern void putback_lru_page(struct page *page); extern bool zone_reclaimable(struct zone *zone); /* * in mm/rmap.c: */ extern pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address); /* * in mm/page_alloc.c */ extern void __free_pages_bootmem(struct page *page, unsigned int order); extern void prep_compound_page(struct page *page, unsigned long order); #ifdef CONFIG_MEMORY_FAILURE extern bool is_free_buddy_page(struct page *page); #endif extern int user_min_free_kbytes; #if defined CONFIG_COMPACTION || defined CONFIG_CMA /* * in mm/compaction.c */ /* * compact_control is used to track pages being migrated and the free pages * they are being migrated to during memory compaction. The free_pfn starts * at the end of a zone and migrate_pfn begins at the start. Movable pages * are moved to the end of a zone during a compaction run and the run * completes when free_pfn <= migrate_pfn */ struct compact_control { struct list_head freepages; /* List of free pages to migrate to */ struct list_head migratepages; /* List of pages being migrated */ unsigned long nr_freepages; /* Number of isolated free pages */ unsigned long nr_migratepages; /* Number of pages to migrate */ unsigned long free_pfn; /* isolate_freepages search base */ unsigned long migrate_pfn; /* isolate_migratepages search base */ enum migrate_mode mode; /* Async or sync migration mode */ bool ignore_skip_hint; /* Scan blocks even if marked skip */ bool finished_update_free; /* True when the zone cached pfns are * no longer being updated */ bool finished_update_migrate; int order; /* order a direct compactor needs */ int migratetype; /* MOVABLE, RECLAIMABLE etc */ struct zone *zone; bool contended; /* True if a lock was contended, or * need_resched() true during async * compaction */ }; unsigned long isolate_freepages_range(struct compact_control *cc, unsigned long start_pfn, unsigned long end_pfn); unsigned long isolate_migratepages_range(struct compact_control *cc, unsigned long low_pfn, unsigned long end_pfn); #endif /* * This function returns the order of a free page in the buddy system. In * general, page_zone(page)->lock must be held by the caller to prevent the * page from being allocated in parallel and returning garbage as the order. * If a caller does not hold page_zone(page)->lock, it must guarantee that the * page cannot be allocated or merged in parallel. */ static inline unsigned long page_order(struct page *page) { /* PageBuddy() must be checked by the caller */ return page_private(page); } static inline bool is_cow_mapping(vm_flags_t flags) { return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; } /* mm/util.c */ void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, struct vm_area_struct *prev, struct rb_node *rb_parent); #ifdef CONFIG_MMU extern long __mlock_vma_pages_range(struct vm_area_struct *vma, unsigned long start, unsigned long end, int *nonblocking); extern void munlock_vma_pages_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); static inline void munlock_vma_pages_all(struct vm_area_struct *vma) { munlock_vma_pages_range(vma, vma->vm_start, vma->vm_end); } /* * must be called with vma's mmap_sem held for read or write, and page locked. */ extern void mlock_vma_page(struct page *page); extern unsigned int munlock_vma_page(struct page *page); /* * Clear the page's PageMlocked(). This can be useful in a situation where * we want to unconditionally remove a page from the pagecache -- e.g., * on truncation or freeing. * * It is legal to call this function for any page, mlocked or not. * If called for a page that is still mapped by mlocked vmas, all we do * is revert to lazy LRU behaviour -- semantics are not broken. */ extern void clear_page_mlock(struct page *page); /* * mlock_migrate_page - called only from migrate_page_copy() to * migrate the Mlocked page flag; update statistics. */ static inline void mlock_migrate_page(struct page *newpage, struct page *page) { if (TestClearPageMlocked(page)) { unsigned long flags; int nr_pages = hpage_nr_pages(page); local_irq_save(flags); __mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages); SetPageMlocked(newpage); __mod_zone_page_state(page_zone(newpage), NR_MLOCK, nr_pages); local_irq_restore(flags); } } extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma); #ifdef CONFIG_TRANSPARENT_HUGEPAGE extern unsigned long vma_address(struct page *page, struct vm_area_struct *vma); #endif #else /* !CONFIG_MMU */ static inline void clear_page_mlock(struct page *page) { } static inline void mlock_vma_page(struct page *page) { } static inline void mlock_migrate_page(struct page *new, struct page *old) { } #endif /* !CONFIG_MMU */ /* * Return the mem_map entry representing the 'offset' subpage within * the maximally aligned gigantic page 'base'. Handle any discontiguity * in the mem_map at MAX_ORDER_NR_PAGES boundaries. */ static inline struct page *mem_map_offset(struct page *base, int offset) { if (unlikely(offset >= MAX_ORDER_NR_PAGES)) return nth_page(base, offset); return base + offset; } /* * Iterator over all subpages within the maximally aligned gigantic * page 'base'. Handle any discontiguity in the mem_map. */ static inline struct page *mem_map_next(struct page *iter, struct page *base, int offset) { if (unlikely((offset & (MAX_ORDER_NR_PAGES - 1)) == 0)) { unsigned long pfn = page_to_pfn(base) + offset; if (!pfn_valid(pfn)) return NULL; return pfn_to_page(pfn); } return iter + 1; } /* * FLATMEM and DISCONTIGMEM configurations use alloc_bootmem_node, * so all functions starting at paging_init should be marked __init * in those cases. SPARSEMEM, however, allows for memory hotplug, * and alloc_bootmem_node is not used. */ #ifdef CONFIG_SPARSEMEM #define __paginginit __meminit #else #define __paginginit __init #endif /* Memory initialisation debug and verification */ enum mminit_level { MMINIT_WARNING, MMINIT_VERIFY, MMINIT_TRACE }; #ifdef CONFIG_DEBUG_MEMORY_INIT extern int mminit_loglevel; #define mminit_dprintk(level, prefix, fmt, arg...) \ do { \ if (level < mminit_loglevel) { \ printk(level <= MMINIT_WARNING ? KERN_WARNING : KERN_DEBUG); \ printk(KERN_CONT "mminit::" prefix " " fmt, ##arg); \ } \ } while (0) extern void mminit_verify_pageflags_layout(void); extern void mminit_verify_page_links(struct page *page, enum zone_type zone, unsigned long nid, unsigned long pfn); extern void mminit_verify_zonelist(void); #else static inline void mminit_dprintk(enum mminit_level level, const char *prefix, const char *fmt, ...) { } static inline void mminit_verify_pageflags_layout(void) { } static inline void mminit_verify_page_links(struct page *page, enum zone_type zone, unsigned long nid, unsigned long pfn) { } static inline void mminit_verify_zonelist(void) { } #endif /* CONFIG_DEBUG_MEMORY_INIT */ /* mminit_validate_memmodel_limits is independent of CONFIG_DEBUG_MEMORY_INIT */ #if defined(CONFIG_SPARSEMEM) extern void mminit_validate_memmodel_limits(unsigned long *start_pfn, unsigned long *end_pfn); #else static inline void mminit_validate_memmodel_limits(unsigned long *start_pfn, unsigned long *end_pfn) { } #endif /* CONFIG_SPARSEMEM */ #define ZONE_RECLAIM_NOSCAN -2 #define ZONE_RECLAIM_FULL -1 #define ZONE_RECLAIM_SOME 0 #define ZONE_RECLAIM_SUCCESS 1 extern int hwpoison_filter(struct page *p); extern u32 hwpoison_filter_dev_major; extern u32 hwpoison_filter_dev_minor; extern u64 hwpoison_filter_flags_mask; extern u64 hwpoison_filter_flags_value; extern u64 hwpoison_filter_memcg; extern u32 hwpoison_filter_enable; extern unsigned long vm_mmap_pgoff(struct file *, unsigned long, unsigned long, unsigned long, unsigned long, unsigned long); extern void set_pageblock_order(void); unsigned long reclaim_clean_pages_from_list(struct zone *zone, struct list_head *page_list); /* The ALLOC_WMARK bits are used as an index to zone->watermark */ #define ALLOC_WMARK_MIN WMARK_MIN #define ALLOC_WMARK_LOW WMARK_LOW #define ALLOC_WMARK_HIGH WMARK_HIGH #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ /* Mask to get the watermark bits */ #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) #define ALLOC_HARDER 0x10 /* try to alloc harder */ #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ #define ALLOC_CMA 0x80 /* allow allocations from CMA areas */ #define ALLOC_FAIR 0x100 /* fair zone allocation */ #endif /* __MM_INTERNAL_H */