/* * linux/mm/memory.c * * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds */ /* * demand-loading started 01.12.91 - seems it is high on the list of * things wanted, and it should be easy to implement. - Linus */ /* * Ok, demand-loading was easy, shared pages a little bit tricker. Shared * pages started 02.12.91, seems to work. - Linus. * * Tested sharing by executing about 30 /bin/sh: under the old kernel it * would have taken more than the 6M I have free, but it worked well as * far as I could see. * * Also corrected some "invalidate()"s - I wasn't doing enough of them. */ /* * Real VM (paging to/from disk) started 18.12.91. Much more work and * thought has to go into this. Oh, well.. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. * Found it. Everything seems to work now. * 20.12.91 - Ok, making the swap-device changeable like the root. */ /* * 05.04.94 - Multi-page memory management added for v1.1. * Idea by Alex Bligh (alex@cconcepts.co.uk) * * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG * (Gerhard.Wichert@pdb.siemens.de) * * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) */ #include <linux/kernel_stat.h> #include <linux/mm.h> #include <linux/hugetlb.h> #include <linux/mman.h> #include <linux/swap.h> #include <linux/highmem.h> #include <linux/pagemap.h> #include <linux/rmap.h> #include <linux/module.h> #include <linux/init.h> #include <asm/pgalloc.h> #include <asm/uaccess.h> #include <asm/tlb.h> #include <asm/tlbflush.h> #include <asm/pgtable.h> #include <linux/swapops.h> #include <linux/elf.h> #ifndef CONFIG_NEED_MULTIPLE_NODES /* use the per-pgdat data instead for discontigmem - mbligh */ unsigned long max_mapnr; struct page *mem_map; EXPORT_SYMBOL(max_mapnr); EXPORT_SYMBOL(mem_map); #endif unsigned long num_physpages; /* * A number of key systems in x86 including ioremap() rely on the assumption * that high_memory defines the upper bound on direct map memory, then end * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL * and ZONE_HIGHMEM. */ void * high_memory; unsigned long vmalloc_earlyreserve; EXPORT_SYMBOL(num_physpages); EXPORT_SYMBOL(high_memory); EXPORT_SYMBOL(vmalloc_earlyreserve); int randomize_va_space __read_mostly = 1; static int __init disable_randmaps(char *s) { randomize_va_space = 0; return 1; } __setup("norandmaps", disable_randmaps); /* * If a p?d_bad entry is found while walking page tables, report * the error, before resetting entry to p?d_none. Usually (but * very seldom) called out from the p?d_none_or_clear_bad macros. */ void pgd_clear_bad(pgd_t *pgd) { pgd_ERROR(*pgd); pgd_clear(pgd); } void pud_clear_bad(pud_t *pud) { pud_ERROR(*pud); pud_clear(pud); } void pmd_clear_bad(pmd_t *pmd) { pmd_ERROR(*pmd); pmd_clear(pmd); } /* * Note: this doesn't free the actual pages themselves. That * has been handled earlier when unmapping all the memory regions. */ static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd) { struct page *page = pmd_page(*pmd); pmd_clear(pmd); pte_lock_deinit(page); pte_free_tlb(tlb, page); dec_page_state(nr_page_table_pages); tlb->mm->nr_ptes--; } static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling) { pmd_t *pmd; unsigned long next; unsigned long start; start = addr; pmd = pmd_offset(pud, addr); do { next = pmd_addr_end(addr, end); if (pmd_none_or_clear_bad(pmd)) continue; free_pte_range(tlb, pmd); } while (pmd++, addr = next, addr != end); start &= PUD_MASK; if (start < floor) return; if (ceiling) { ceiling &= PUD_MASK; if (!ceiling) return; } if (end - 1 > ceiling - 1) return; pmd = pmd_offset(pud, start); pud_clear(pud); pmd_free_tlb(tlb, pmd); } static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling) { pud_t *pud; unsigned long next; unsigned long start; start = addr; pud = pud_offset(pgd, addr); do { next = pud_addr_end(addr, end); if (pud_none_or_clear_bad(pud)) continue; free_pmd_range(tlb, pud, addr, next, floor, ceiling); } while (pud++, addr = next, addr != end); start &= PGDIR_MASK; if (start < floor) return; if (ceiling) { ceiling &= PGDIR_MASK; if (!ceiling) return; } if (end - 1 > ceiling - 1) return; pud = pud_offset(pgd, start); pgd_clear(pgd); pud_free_tlb(tlb, pud); } /* * This function frees user-level page tables of a process. * * Must be called with pagetable lock held. */ void free_pgd_range(struct mmu_gather **tlb, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling) { pgd_t *pgd; unsigned long next; unsigned long start; /* * The next few lines have given us lots of grief... * * Why are we testing PMD* at this top level? Because often * there will be no work to do at all, and we'd prefer not to * go all the way down to the bottom just to discover that. * * Why all these "- 1"s? Because 0 represents both the bottom * of the address space and the top of it (using -1 for the * top wouldn't help much: the masks would do the wrong thing). * The rule is that addr 0 and floor 0 refer to the bottom of * the address space, but end 0 and ceiling 0 refer to the top * Comparisons need to use "end - 1" and "ceiling - 1" (though * that end 0 case should be mythical). * * Wherever addr is brought up or ceiling brought down, we must * be careful to reject "the opposite 0" before it confuses the * subsequent tests. But what about where end is brought down * by PMD_SIZE below? no, end can't go down to 0 there. * * Whereas we round start (addr) and ceiling down, by different * masks at different levels, in order to test whether a table * now has no other vmas using it, so can be freed, we don't * bother to round floor or end up - the tests don't need that. */ addr &= PMD_MASK; if (addr < floor) { addr += PMD_SIZE; if (!addr) return; } if (ceiling) { ceiling &= PMD_MASK; if (!ceiling) return; } if (end - 1 > ceiling - 1) end -= PMD_SIZE; if (addr > end - 1) return; start = addr; pgd = pgd_offset((*tlb)->mm, addr); do { next = pgd_addr_end(addr, end); if (pgd_none_or_clear_bad(pgd)) continue; free_pud_range(*tlb, pgd, addr, next, floor, ceiling); } while (pgd++, addr = next, addr != end); if (!(*tlb)->fullmm) flush_tlb_pgtables((*tlb)->mm, start, end); } void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma, unsigned long floor, unsigned long ceiling) { while (vma) { struct vm_area_struct *next = vma->vm_next; unsigned long addr = vma->vm_start; /* * Hide vma from rmap and vmtruncate before freeing pgtables */ anon_vma_unlink(vma); unlink_file_vma(vma); if (is_vm_hugetlb_page(vma)) { hugetlb_free_pgd_range(tlb, addr, vma->vm_end, floor, next? next->vm_start: ceiling); } else { /* * Optimization: gather nearby vmas into one call down */ while (next && next->vm_start <= vma->vm_end + PMD_SIZE && !is_vm_hugetlb_page(next)) { vma = next; next = vma->vm_next; anon_vma_unlink(vma); unlink_file_vma(vma); } free_pgd_range(tlb, addr, vma->vm_end, floor, next? next->vm_start: ceiling); } vma = next; } } int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) { struct page *new = pte_alloc_one(mm, address); if (!new) return -ENOMEM; pte_lock_init(new); spin_lock(&mm->page_table_lock); if (pmd_present(*pmd)) { /* Another has populated it */ pte_lock_deinit(new); pte_free(new); } else { mm->nr_ptes++; inc_page_state(nr_page_table_pages); pmd_populate(mm, pmd, new); } spin_unlock(&mm->page_table_lock); return 0; } int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) { pte_t *new = pte_alloc_one_kernel(&init_mm, address); if (!new) return -ENOMEM; spin_lock(&init_mm.page_table_lock); if (pmd_present(*pmd)) /* Another has populated it */ pte_free_kernel(new); else pmd_populate_kernel(&init_mm, pmd, new); spin_unlock(&init_mm.page_table_lock); return 0; } static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss) { if (file_rss) add_mm_counter(mm, file_rss, file_rss); if (anon_rss) add_mm_counter(mm, anon_rss, anon_rss); } /* * This function is called to print an error when a bad pte * is found. For example, we might have a PFN-mapped pte in * a region that doesn't allow it. * * The calling function must still handle the error. */ void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr) { printk(KERN_ERR "Bad pte = %08llx, process = %s, " "vm_flags = %lx, vaddr = %lx\n", (long long)pte_val(pte), (vma->vm_mm == current->mm ? current->comm : "???"), vma->vm_flags, vaddr); dump_stack(); } static inline int is_cow_mapping(unsigned int flags) { return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; } /* * This function gets the "struct page" associated with a pte. * * NOTE! Some mappings do not have "struct pages". A raw PFN mapping * will have each page table entry just pointing to a raw page frame * number, and as far as the VM layer is concerned, those do not have * pages associated with them - even if the PFN might point to memory * that otherwise is perfectly fine and has a "struct page". * * The way we recognize those mappings is through the rules set up * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set, * and the vm_pgoff will point to the first PFN mapped: thus every * page that is a raw mapping will always honor the rule * * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) * * and if that isn't true, the page has been COW'ed (in which case it * _does_ have a "struct page" associated with it even if it is in a * VM_PFNMAP range). */ struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte) { unsigned long pfn = pte_pfn(pte); if (unlikely(vma->vm_flags & VM_PFNMAP)) { unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT; if (pfn == vma->vm_pgoff + off) return NULL; if (!is_cow_mapping(vma->vm_flags)) return NULL; } /* * Add some anal sanity checks for now. Eventually, * we should just do "return pfn_to_page(pfn)", but * in the meantime we check that we get a valid pfn, * and that the resulting page looks ok. */ if (unlikely(!pfn_valid(pfn))) { print_bad_pte(vma, pte, addr); return NULL; } /* * NOTE! We still have PageReserved() pages in the page * tables. * * The PAGE_ZERO() pages and various VDSO mappings can * cause them to exist. */ return pfn_to_page(pfn); } /* * copy one vm_area from one task to the other. Assumes the page tables * already present in the new task to be cleared in the whole range * covered by this vma. */ static inline void copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, unsigned long addr, int *rss) { unsigned long vm_flags = vma->vm_flags; pte_t pte = *src_pte; struct page *page; /* pte contains position in swap or file, so copy. */ if (unlikely(!pte_present(pte))) { if (!pte_file(pte)) { swap_duplicate(pte_to_swp_entry(pte)); /* make sure dst_mm is on swapoff's mmlist. */ if (unlikely(list_empty(&dst_mm->mmlist))) { spin_lock(&mmlist_lock); if (list_empty(&dst_mm->mmlist)) list_add(&dst_mm->mmlist, &src_mm->mmlist); spin_unlock(&mmlist_lock); } } goto out_set_pte; } /* * If it's a COW mapping, write protect it both * in the parent and the child */ if (is_cow_mapping(vm_flags)) { ptep_set_wrprotect(src_mm, addr, src_pte); pte = *src_pte; } /* * If it's a shared mapping, mark it clean in * the child */ if (vm_flags & VM_SHARED) pte = pte_mkclean(pte); pte = pte_mkold(pte); page = vm_normal_page(vma, addr, pte); if (page) { get_page(page); page_dup_rmap(page); rss[!!PageAnon(page)]++; } out_set_pte: set_pte_at(dst_mm, addr, dst_pte, pte); } static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, unsigned long addr, unsigned long end) { pte_t *src_pte, *dst_pte; spinlock_t *src_ptl, *dst_ptl; int progress = 0; int rss[2]; again: rss[1] = rss[0] = 0; dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); if (!dst_pte) return -ENOMEM; src_pte = pte_offset_map_nested(src_pmd, addr); src_ptl = pte_lockptr(src_mm, src_pmd); spin_lock(src_ptl); do { /* * We are holding two locks at this point - either of them * could generate latencies in another task on another CPU. */ if (progress >= 32) { progress = 0; if (need_resched() || need_lockbreak(src_ptl) || need_lockbreak(dst_ptl)) break; } if (pte_none(*src_pte)) { progress++; continue; } copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss); progress += 8; } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); spin_unlock(src_ptl); pte_unmap_nested(src_pte - 1); add_mm_rss(dst_mm, rss[0], rss[1]); pte_unmap_unlock(dst_pte - 1, dst_ptl); cond_resched(); if (addr != end) goto again; return 0; } static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, unsigned long addr, unsigned long end) { pmd_t *src_pmd, *dst_pmd; unsigned long next; dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); if (!dst_pmd) return -ENOMEM; src_pmd = pmd_offset(src_pud, addr); do { next = pmd_addr_end(addr, end); if (pmd_none_or_clear_bad(src_pmd)) continue; if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, vma, addr, next)) return -ENOMEM; } while (dst_pmd++, src_pmd++, addr = next, addr != end); return 0; } static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, unsigned long addr, unsigned long end) { pud_t *src_pud, *dst_pud; unsigned long next; dst_pud = pud_alloc(dst_mm, dst_pgd, addr); if (!dst_pud) return -ENOMEM; src_pud = pud_offset(src_pgd, addr); do { next = pud_addr_end(addr, end); if (pud_none_or_clear_bad(src_pud)) continue; if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, vma, addr, next)) return -ENOMEM; } while (dst_pud++, src_pud++, addr = next, addr != end); return 0; } int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, struct vm_area_struct *vma) { pgd_t *src_pgd, *dst_pgd; unsigned long next; unsigned long addr = vma->vm_start; unsigned long end = vma->vm_end; /* * Don't copy ptes where a page fault will fill them correctly. * Fork becomes much lighter when there are big shared or private * readonly mappings. The tradeoff is that copy_page_range is more * efficient than faulting. */ if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) { if (!vma->anon_vma) return 0; } if (is_vm_hugetlb_page(vma)) return copy_hugetlb_page_range(dst_mm, src_mm, vma); dst_pgd = pgd_offset(dst_mm, addr); src_pgd = pgd_offset(src_mm, addr); do { next = pgd_addr_end(addr, end); if (pgd_none_or_clear_bad(src_pgd)) continue; if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, vma, addr, next)) return -ENOMEM; } while (dst_pgd++, src_pgd++, addr = next, addr != end); return 0; } static unsigned long zap_pte_range(struct mmu_gather *tlb, struct vm_area_struct *vma, pmd_t *pmd, unsigned long addr, unsigned long end, long *zap_work, struct zap_details *details) { struct mm_struct *mm = tlb->mm; pte_t *pte; spinlock_t *ptl; int file_rss = 0; int anon_rss = 0; pte = pte_offset_map_lock(mm, pmd, addr, &ptl); do { pte_t ptent = *pte; if (pte_none(ptent)) { (*zap_work)--; continue; } (*zap_work) -= PAGE_SIZE; if (pte_present(ptent)) { struct page *page; page = vm_normal_page(vma, addr, ptent); if (unlikely(details) && page) { /* * unmap_shared_mapping_pages() wants to * invalidate cache without truncating: * unmap shared but keep private pages. */ if (details->check_mapping && details->check_mapping != page->mapping) continue; /* * Each page->index must be checked when * invalidating or truncating nonlinear. */ if (details->nonlinear_vma && (page->index < details->first_index || page->index > details->last_index)) continue; } ptent = ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm); tlb_remove_tlb_entry(tlb, pte, addr); if (unlikely(!page)) continue; if (unlikely(details) && details->nonlinear_vma && linear_page_index(details->nonlinear_vma, addr) != page->index) set_pte_at(mm, addr, pte, pgoff_to_pte(page->index)); if (PageAnon(page)) anon_rss--; else { if (pte_dirty(ptent)) set_page_dirty(page); if (pte_young(ptent)) mark_page_accessed(page); file_rss--; } page_remove_rmap(page); tlb_remove_page(tlb, page); continue; } /* * If details->check_mapping, we leave swap entries; * if details->nonlinear_vma, we leave file entries. */ if (unlikely(details)) continue; if (!pte_file(ptent)) free_swap_and_cache(pte_to_swp_entry(ptent)); pte_clear_full(mm, addr, pte, tlb->fullmm); } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0)); add_mm_rss(mm, file_rss, anon_rss); pte_unmap_unlock(pte - 1, ptl); return addr; } static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, struct vm_area_struct *vma, pud_t *pud, unsigned long addr, unsigned long end, long *zap_work, struct zap_details *details) { pmd_t *pmd; unsigned long next; pmd = pmd_offset(pud, addr); do { next = pmd_addr_end(addr, end); if (pmd_none_or_clear_bad(pmd)) { (*zap_work)--; continue; } next = zap_pte_range(tlb, vma, pmd, addr, next, zap_work, details); } while (pmd++, addr = next, (addr != end && *zap_work > 0)); return addr; } static inline unsigned long zap_pud_range(struct mmu_gather *tlb, struct vm_area_struct *vma, pgd_t *pgd, unsigned long addr, unsigned long end, long *zap_work, struct zap_details *details) { pud_t *pud; unsigned long next; pud = pud_offset(pgd, addr); do { next = pud_addr_end(addr, end); if (pud_none_or_clear_bad(pud)) { (*zap_work)--; continue; } next = zap_pmd_range(tlb, vma, pud, addr, next, zap_work, details); } while (pud++, addr = next, (addr != end && *zap_work > 0)); return addr; } static unsigned long unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma, unsigned long addr, unsigned long end, long *zap_work, struct zap_details *details) { pgd_t *pgd; unsigned long next; if (details && !details->check_mapping && !details->nonlinear_vma) details = NULL; BUG_ON(addr >= end); tlb_start_vma(tlb, vma); pgd = pgd_offset(vma->vm_mm, addr); do { next = pgd_addr_end(addr, end); if (pgd_none_or_clear_bad(pgd)) { (*zap_work)--; continue; } next = zap_pud_range(tlb, vma, pgd, addr, next, zap_work, details); } while (pgd++, addr = next, (addr != end && *zap_work > 0)); tlb_end_vma(tlb, vma); return addr; } #ifdef CONFIG_PREEMPT # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE) #else /* No preempt: go for improved straight-line efficiency */ # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE) #endif /** * unmap_vmas - unmap a range of memory covered by a list of vma's * @tlbp: address of the caller's struct mmu_gather * @vma: the starting vma * @start_addr: virtual address at which to start unmapping * @end_addr: virtual address at which to end unmapping * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here * @details: details of nonlinear truncation or shared cache invalidation * * Returns the end address of the unmapping (restart addr if interrupted). * * Unmap all pages in the vma list. * * We aim to not hold locks for too long (for scheduling latency reasons). * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to * return the ending mmu_gather to the caller. * * Only addresses between `start' and `end' will be unmapped. * * The VMA list must be sorted in ascending virtual address order. * * unmap_vmas() assumes that the caller will flush the whole unmapped address * range after unmap_vmas() returns. So the only responsibility here is to * ensure that any thus-far unmapped pages are flushed before unmap_vmas() * drops the lock and schedules. */ unsigned long unmap_vmas(struct mmu_gather **tlbp, struct vm_area_struct *vma, unsigned long start_addr, unsigned long end_addr, unsigned long *nr_accounted, struct zap_details *details) { long zap_work = ZAP_BLOCK_SIZE; unsigned long tlb_start = 0; /* For tlb_finish_mmu */ int tlb_start_valid = 0; unsigned long start = start_addr; spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; int fullmm = (*tlbp)->fullmm; for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { unsigned long end; start = max(vma->vm_start, start_addr); if (start >= vma->vm_end) continue; end = min(vma->vm_end, end_addr); if (end <= vma->vm_start) continue; if (vma->vm_flags & VM_ACCOUNT) *nr_accounted += (end - start) >> PAGE_SHIFT; while (start != end) { if (!tlb_start_valid) { tlb_start = start; tlb_start_valid = 1; } if (unlikely(is_vm_hugetlb_page(vma))) { unmap_hugepage_range(vma, start, end); zap_work -= (end - start) / (HPAGE_SIZE / PAGE_SIZE); start = end; } else start = unmap_page_range(*tlbp, vma, start, end, &zap_work, details); if (zap_work > 0) { BUG_ON(start != end); break; } tlb_finish_mmu(*tlbp, tlb_start, start); if (need_resched() || (i_mmap_lock && need_lockbreak(i_mmap_lock))) { if (i_mmap_lock) { *tlbp = NULL; goto out; } cond_resched(); } *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm); tlb_start_valid = 0; zap_work = ZAP_BLOCK_SIZE; } } out: return start; /* which is now the end (or restart) address */ } /** * zap_page_range - remove user pages in a given range * @vma: vm_area_struct holding the applicable pages * @address: starting address of pages to zap * @size: number of bytes to zap * @details: details of nonlinear truncation or shared cache invalidation */ unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, unsigned long size, struct zap_details *details) { struct mm_struct *mm = vma->vm_mm; struct mmu_gather *tlb; unsigned long end = address + size; unsigned long nr_accounted = 0; lru_add_drain(); tlb = tlb_gather_mmu(mm, 0); update_hiwater_rss(mm); end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details); if (tlb) tlb_finish_mmu(tlb, address, end); return end; } /* * Do a quick page-table lookup for a single page. */ struct page *follow_page(struct vm_area_struct *vma, unsigned long address, unsigned int flags) { pgd_t *pgd; pud_t *pud; pmd_t *pmd; pte_t *ptep, pte; spinlock_t *ptl; struct page *page; struct mm_struct *mm = vma->vm_mm; page = follow_huge_addr(mm, address, flags & FOLL_WRITE); if (!IS_ERR(page)) { BUG_ON(flags & FOLL_GET); goto out; } page = NULL; pgd = pgd_offset(mm, address); if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) goto no_page_table; pud = pud_offset(pgd, address); if (pud_none(*pud) || unlikely(pud_bad(*pud))) goto no_page_table; pmd = pmd_offset(pud, address); if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) goto no_page_table; if (pmd_huge(*pmd)) { BUG_ON(flags & FOLL_GET); page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); goto out; } ptep = pte_offset_map_lock(mm, pmd, address, &ptl); if (!ptep) goto out; pte = *ptep; if (!pte_present(pte)) goto unlock; if ((flags & FOLL_WRITE) && !pte_write(pte)) goto unlock; page = vm_normal_page(vma, address, pte); if (unlikely(!page)) goto unlock; if (flags & FOLL_GET) get_page(page); if (flags & FOLL_TOUCH) { if ((flags & FOLL_WRITE) && !pte_dirty(pte) && !PageDirty(page)) set_page_dirty(page); mark_page_accessed(page); } unlock: pte_unmap_unlock(ptep, ptl); out: return page; no_page_table: /* * When core dumping an enormous anonymous area that nobody * has touched so far, we don't want to allocate page tables. */ if (flags & FOLL_ANON) { page = ZERO_PAGE(address); if (flags & FOLL_GET) get_page(page); BUG_ON(flags & FOLL_WRITE); } return page; } int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start, int len, int write, int force, struct page **pages, struct vm_area_struct **vmas) { int i; unsigned int vm_flags; /* * Require read or write permissions. * If 'force' is set, we only require the "MAY" flags. */ vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); i = 0; do { struct vm_area_struct *vma; unsigned int foll_flags; vma = find_extend_vma(mm, start); if (!vma && in_gate_area(tsk, start)) { unsigned long pg = start & PAGE_MASK; struct vm_area_struct *gate_vma = get_gate_vma(tsk); pgd_t *pgd; pud_t *pud; pmd_t *pmd; pte_t *pte; if (write) /* user gate pages are read-only */ return i ? : -EFAULT; if (pg > TASK_SIZE) pgd = pgd_offset_k(pg); else pgd = pgd_offset_gate(mm, pg); BUG_ON(pgd_none(*pgd)); pud = pud_offset(pgd, pg); BUG_ON(pud_none(*pud)); pmd = pmd_offset(pud, pg); if (pmd_none(*pmd)) return i ? : -EFAULT; pte = pte_offset_map(pmd, pg); if (pte_none(*pte)) { pte_unmap(pte); return i ? : -EFAULT; } if (pages) { struct page *page = vm_normal_page(gate_vma, start, *pte); pages[i] = page; if (page) get_page(page); } pte_unmap(pte); if (vmas) vmas[i] = gate_vma; i++; start += PAGE_SIZE; len--; continue; } if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP)) || !(vm_flags & vma->vm_flags)) return i ? : -EFAULT; if (is_vm_hugetlb_page(vma)) { i = follow_hugetlb_page(mm, vma, pages, vmas, &start, &len, i); continue; } foll_flags = FOLL_TOUCH; if (pages) foll_flags |= FOLL_GET; if (!write && !(vma->vm_flags & VM_LOCKED) && (!vma->vm_ops || !vma->vm_ops->nopage)) foll_flags |= FOLL_ANON; do { struct page *page; if (write) foll_flags |= FOLL_WRITE; cond_resched(); while (!(page = follow_page(vma, start, foll_flags))) { int ret; ret = __handle_mm_fault(mm, vma, start, foll_flags & FOLL_WRITE); /* * The VM_FAULT_WRITE bit tells us that do_wp_page has * broken COW when necessary, even if maybe_mkwrite * decided not to set pte_write. We can thus safely do * subsequent page lookups as if they were reads. */ if (ret & VM_FAULT_WRITE) foll_flags &= ~FOLL_WRITE; switch (ret & ~VM_FAULT_WRITE) { case VM_FAULT_MINOR: tsk->min_flt++; break; case VM_FAULT_MAJOR: tsk->maj_flt++; break; case VM_FAULT_SIGBUS: return i ? i : -EFAULT; case VM_FAULT_OOM: return i ? i : -ENOMEM; default: BUG(); } } if (pages) { pages[i] = page; flush_anon_page(page, start); flush_dcache_page(page); } if (vmas) vmas[i] = vma; i++; start += PAGE_SIZE; len--; } while (len && start < vma->vm_end); } while (len); return i; } EXPORT_SYMBOL(get_user_pages); static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd, unsigned long addr, unsigned long end, pgprot_t prot) { pte_t *pte; spinlock_t *ptl; pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); if (!pte) return -ENOMEM; do { struct page *page = ZERO_PAGE(addr); pte_t zero_pte = pte_wrprotect(mk_pte(page, prot)); page_cache_get(page); page_add_file_rmap(page); inc_mm_counter(mm, file_rss); BUG_ON(!pte_none(*pte)); set_pte_at(mm, addr, pte, zero_pte); } while (pte++, addr += PAGE_SIZE, addr != end); pte_unmap_unlock(pte - 1, ptl); return 0; } static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud, unsigned long addr, unsigned long end, pgprot_t prot) { pmd_t *pmd; unsigned long next; pmd = pmd_alloc(mm, pud, addr); if (!pmd) return -ENOMEM; do { next = pmd_addr_end(addr, end); if (zeromap_pte_range(mm, pmd, addr, next, prot)) return -ENOMEM; } while (pmd++, addr = next, addr != end); return 0; } static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd, unsigned long addr, unsigned long end, pgprot_t prot) { pud_t *pud; unsigned long next; pud = pud_alloc(mm, pgd, addr); if (!pud) return -ENOMEM; do { next = pud_addr_end(addr, end); if (zeromap_pmd_range(mm, pud, addr, next, prot)) return -ENOMEM; } while (pud++, addr = next, addr != end); return 0; } int zeromap_page_range(struct vm_area_struct *vma, unsigned long addr, unsigned long size, pgprot_t prot) { pgd_t *pgd; unsigned long next; unsigned long end = addr + size; struct mm_struct *mm = vma->vm_mm; int err; BUG_ON(addr >= end); pgd = pgd_offset(mm, addr); flush_cache_range(vma, addr, end); do { next = pgd_addr_end(addr, end); err = zeromap_pud_range(mm, pgd, addr, next, prot); if (err) break; } while (pgd++, addr = next, addr != end); return err; } pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl) { pgd_t * pgd = pgd_offset(mm, addr); pud_t * pud = pud_alloc(mm, pgd, addr); if (pud) { pmd_t * pmd = pmd_alloc(mm, pud, addr); if (pmd) return pte_alloc_map_lock(mm, pmd, addr, ptl); } return NULL; } /* * This is the old fallback for page remapping. * * For historical reasons, it only allows reserved pages. Only * old drivers should use this, and they needed to mark their * pages reserved for the old functions anyway. */ static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot) { int retval; pte_t *pte; spinlock_t *ptl; retval = -EINVAL; if (PageAnon(page)) goto out; retval = -ENOMEM; flush_dcache_page(page); pte = get_locked_pte(mm, addr, &ptl); if (!pte) goto out; retval = -EBUSY; if (!pte_none(*pte)) goto out_unlock; /* Ok, finally just insert the thing.. */ get_page(page); inc_mm_counter(mm, file_rss); page_add_file_rmap(page); set_pte_at(mm, addr, pte, mk_pte(page, prot)); retval = 0; out_unlock: pte_unmap_unlock(pte, ptl); out: return retval; } /* * This allows drivers to insert individual pages they've allocated * into a user vma. * * The page has to be a nice clean _individual_ kernel allocation. * If you allocate a compound page, you need to have marked it as * such (__GFP_COMP), or manually just split the page up yourself * (see split_page()). * * NOTE! Traditionally this was done with "remap_pfn_range()" which * took an arbitrary page protection parameter. This doesn't allow * that. Your vma protection will have to be set up correctly, which * means that if you want a shared writable mapping, you'd better * ask for a shared writable mapping! * * The page does not need to be reserved. */ int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page) { if (addr < vma->vm_start || addr >= vma->vm_end) return -EFAULT; if (!page_count(page)) return -EINVAL; vma->vm_flags |= VM_INSERTPAGE; return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot); } EXPORT_SYMBOL(vm_insert_page); /* * maps a range of physical memory into the requested pages. the old * mappings are removed. any references to nonexistent pages results * in null mappings (currently treated as "copy-on-access") */ static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, unsigned long addr, unsigned long end, unsigned long pfn, pgprot_t prot) { pte_t *pte; spinlock_t *ptl; pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); if (!pte) return -ENOMEM; do { BUG_ON(!pte_none(*pte)); set_pte_at(mm, addr, pte, pfn_pte(pfn, prot)); pfn++; } while (pte++, addr += PAGE_SIZE, addr != end); pte_unmap_unlock(pte - 1, ptl); return 0; } static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, unsigned long addr, unsigned long end, unsigned long pfn, pgprot_t prot) { pmd_t *pmd; unsigned long next; pfn -= addr >> PAGE_SHIFT; pmd = pmd_alloc(mm, pud, addr); if (!pmd) return -ENOMEM; do { next = pmd_addr_end(addr, end); if (remap_pte_range(mm, pmd, addr, next, pfn + (addr >> PAGE_SHIFT), prot)) return -ENOMEM; } while (pmd++, addr = next, addr != end); return 0; } static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, unsigned long addr, unsigned long end, unsigned long pfn, pgprot_t prot) { pud_t *pud; unsigned long next; pfn -= addr >> PAGE_SHIFT; pud = pud_alloc(mm, pgd, addr); if (!pud) return -ENOMEM; do { next = pud_addr_end(addr, end); if (remap_pmd_range(mm, pud, addr, next, pfn + (addr >> PAGE_SHIFT), prot)) return -ENOMEM; } while (pud++, addr = next, addr != end); return 0; } /* Note: this is only safe if the mm semaphore is held when called. */ int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn, unsigned long size, pgprot_t prot) { pgd_t *pgd; unsigned long next; unsigned long end = addr + PAGE_ALIGN(size); struct mm_struct *mm = vma->vm_mm; int err; /* * Physically remapped pages are special. Tell the * rest of the world about it: * VM_IO tells people not to look at these pages * (accesses can have side effects). * VM_RESERVED is specified all over the place, because * in 2.4 it kept swapout's vma scan off this vma; but * in 2.6 the LRU scan won't even find its pages, so this * flag means no more than count its pages in reserved_vm, * and omit it from core dump, even when VM_IO turned off. * VM_PFNMAP tells the core MM that the base pages are just * raw PFN mappings, and do not have a "struct page" associated * with them. * * There's a horrible special case to handle copy-on-write * behaviour that some programs depend on. We mark the "original" * un-COW'ed pages by matching them up with "vma->vm_pgoff". */ if (is_cow_mapping(vma->vm_flags)) { if (addr != vma->vm_start || end != vma->vm_end) return -EINVAL; vma->vm_pgoff = pfn; } vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; BUG_ON(addr >= end); pfn -= addr >> PAGE_SHIFT; pgd = pgd_offset(mm, addr); flush_cache_range(vma, addr, end); do { next = pgd_addr_end(addr, end); err = remap_pud_range(mm, pgd, addr, next, pfn + (addr >> PAGE_SHIFT), prot); if (err) break; } while (pgd++, addr = next, addr != end); return err; } EXPORT_SYMBOL(remap_pfn_range); /* * handle_pte_fault chooses page fault handler according to an entry * which was read non-atomically. Before making any commitment, on * those architectures or configurations (e.g. i386 with PAE) which * might give a mix of unmatched parts, do_swap_page and do_file_page * must check under lock before unmapping the pte and proceeding * (but do_wp_page is only called after already making such a check; * and do_anonymous_page and do_no_page can safely check later on). */ static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, pte_t *page_table, pte_t orig_pte) { int same = 1; #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) if (sizeof(pte_t) > sizeof(unsigned long)) { spinlock_t *ptl = pte_lockptr(mm, pmd); spin_lock(ptl); same = pte_same(*page_table, orig_pte); spin_unlock(ptl); } #endif pte_unmap(page_table); return same; } /* * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when * servicing faults for write access. In the normal case, do always want * pte_mkwrite. But get_user_pages can cause write faults for mappings * that do not have writing enabled, when used by access_process_vm. */ static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) { if (likely(vma->vm_flags & VM_WRITE)) pte = pte_mkwrite(pte); return pte; } static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va) { /* * If the source page was a PFN mapping, we don't have * a "struct page" for it. We do a best-effort copy by * just copying from the original user address. If that * fails, we just zero-fill it. Live with it. */ if (unlikely(!src)) { void *kaddr = kmap_atomic(dst, KM_USER0); void __user *uaddr = (void __user *)(va & PAGE_MASK); /* * This really shouldn't fail, because the page is there * in the page tables. But it might just be unreadable, * in which case we just give up and fill the result with * zeroes. */ if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) memset(kaddr, 0, PAGE_SIZE); kunmap_atomic(kaddr, KM_USER0); return; } copy_user_highpage(dst, src, va); } /* * This routine handles present pages, when users try to write * to a shared page. It is done by copying the page to a new address * and decrementing the shared-page counter for the old page. * * Note that this routine assumes that the protection checks have been * done by the caller (the low-level page fault routine in most cases). * Thus we can safely just mark it writable once we've done any necessary * COW. * * We also mark the page dirty at this point even though the page will * change only once the write actually happens. This avoids a few races, * and potentially makes it more efficient. * * We enter with non-exclusive mmap_sem (to exclude vma changes, * but allow concurrent faults), with pte both mapped and locked. * We return with mmap_sem still held, but pte unmapped and unlocked. */ static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long address, pte_t *page_table, pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte) { struct page *old_page, *new_page; pte_t entry; int ret = VM_FAULT_MINOR; old_page = vm_normal_page(vma, address, orig_pte); if (!old_page) goto gotten; if (PageAnon(old_page) && !TestSetPageLocked(old_page)) { int reuse = can_share_swap_page(old_page); unlock_page(old_page); if (reuse) { flush_cache_page(vma, address, pte_pfn(orig_pte)); entry = pte_mkyoung(orig_pte); entry = maybe_mkwrite(pte_mkdirty(entry), vma); ptep_set_access_flags(vma, address, page_table, entry, 1); update_mmu_cache(vma, address, entry); lazy_mmu_prot_update(entry); ret |= VM_FAULT_WRITE; goto unlock; } } /* * Ok, we need to copy. Oh, well.. */ page_cache_get(old_page); gotten: pte_unmap_unlock(page_table, ptl); if (unlikely(anon_vma_prepare(vma))) goto oom; if (old_page == ZERO_PAGE(address)) { new_page = alloc_zeroed_user_highpage(vma, address); if (!new_page) goto oom; } else { new_page = alloc_page_vma(GFP_HIGHUSER, vma, address); if (!new_page) goto oom; cow_user_page(new_page, old_page, address); } /* * Re-check the pte - we dropped the lock */ page_table = pte_offset_map_lock(mm, pmd, address, &ptl); if (likely(pte_same(*page_table, orig_pte))) { if (old_page) { page_remove_rmap(old_page); if (!PageAnon(old_page)) { dec_mm_counter(mm, file_rss); inc_mm_counter(mm, anon_rss); } } else inc_mm_counter(mm, anon_rss); flush_cache_page(vma, address, pte_pfn(orig_pte)); entry = mk_pte(new_page, vma->vm_page_prot); entry = maybe_mkwrite(pte_mkdirty(entry), vma); ptep_establish(vma, address, page_table, entry); update_mmu_cache(vma, address, entry); lazy_mmu_prot_update(entry); lru_cache_add_active(new_page); page_add_new_anon_rmap(new_page, vma, address); /* Free the old page.. */ new_page = old_page; ret |= VM_FAULT_WRITE; } if (new_page) page_cache_release(new_page); if (old_page) page_cache_release(old_page); unlock: pte_unmap_unlock(page_table, ptl); return ret; oom: if (old_page) page_cache_release(old_page); return VM_FAULT_OOM; } /* * Helper functions for unmap_mapping_range(). * * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ * * We have to restart searching the prio_tree whenever we drop the lock, * since the iterator is only valid while the lock is held, and anyway * a later vma might be split and reinserted earlier while lock dropped. * * The list of nonlinear vmas could be handled more efficiently, using * a placeholder, but handle it in the same way until a need is shown. * It is important to search the prio_tree before nonlinear list: a vma * may become nonlinear and be shifted from prio_tree to nonlinear list * while the lock is dropped; but never shifted from list to prio_tree. * * In order to make forward progress despite restarting the search, * vm_truncate_count is used to mark a vma as now dealt with, so we can * quickly skip it next time around. Since the prio_tree search only * shows us those vmas affected by unmapping the range in question, we * can't efficiently keep all vmas in step with mapping->truncate_count: * so instead reset them all whenever it wraps back to 0 (then go to 1). * mapping->truncate_count and vma->vm_truncate_count are protected by * i_mmap_lock. * * In order to make forward progress despite repeatedly restarting some * large vma, note the restart_addr from unmap_vmas when it breaks out: * and restart from that address when we reach that vma again. It might * have been split or merged, shrunk or extended, but never shifted: so * restart_addr remains valid so long as it remains in the vma's range. * unmap_mapping_range forces truncate_count to leap over page-aligned * values so we can save vma's restart_addr in its truncate_count field. */ #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) static void reset_vma_truncate_counts(struct address_space *mapping) { struct vm_area_struct *vma; struct prio_tree_iter iter; vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) vma->vm_truncate_count = 0; list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) vma->vm_truncate_count = 0; } static int unmap_mapping_range_vma(struct vm_area_struct *vma, unsigned long start_addr, unsigned long end_addr, struct zap_details *details) { unsigned long restart_addr; int need_break; again: restart_addr = vma->vm_truncate_count; if (is_restart_addr(restart_addr) && start_addr < restart_addr) { start_addr = restart_addr; if (start_addr >= end_addr) { /* Top of vma has been split off since last time */ vma->vm_truncate_count = details->truncate_count; return 0; } } restart_addr = zap_page_range(vma, start_addr, end_addr - start_addr, details); need_break = need_resched() || need_lockbreak(details->i_mmap_lock); if (restart_addr >= end_addr) { /* We have now completed this vma: mark it so */ vma->vm_truncate_count = details->truncate_count; if (!need_break) return 0; } else { /* Note restart_addr in vma's truncate_count field */ vma->vm_truncate_count = restart_addr; if (!need_break) goto again; } spin_unlock(details->i_mmap_lock); cond_resched(); spin_lock(details->i_mmap_lock); return -EINTR; } static inline void unmap_mapping_range_tree(struct prio_tree_root *root, struct zap_details *details) { struct vm_area_struct *vma; struct prio_tree_iter iter; pgoff_t vba, vea, zba, zea; restart: vma_prio_tree_foreach(vma, &iter, root, details->first_index, details->last_index) { /* Skip quickly over those we have already dealt with */ if (vma->vm_truncate_count == details->truncate_count) continue; vba = vma->vm_pgoff; vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ zba = details->first_index; if (zba < vba) zba = vba; zea = details->last_index; if (zea > vea) zea = vea; if (unmap_mapping_range_vma(vma, ((zba - vba) << PAGE_SHIFT) + vma->vm_start, ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, details) < 0) goto restart; } } static inline void unmap_mapping_range_list(struct list_head *head, struct zap_details *details) { struct vm_area_struct *vma; /* * In nonlinear VMAs there is no correspondence between virtual address * offset and file offset. So we must perform an exhaustive search * across *all* the pages in each nonlinear VMA, not just the pages * whose virtual address lies outside the file truncation point. */ restart: list_for_each_entry(vma, head, shared.vm_set.list) { /* Skip quickly over those we have already dealt with */ if (vma->vm_truncate_count == details->truncate_count) continue; details->nonlinear_vma = vma; if (unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details) < 0) goto restart; } } /** * unmap_mapping_range - unmap the portion of all mmaps * in the specified address_space corresponding to the specified * page range in the underlying file. * @mapping: the address space containing mmaps to be unmapped. * @holebegin: byte in first page to unmap, relative to the start of * the underlying file. This will be rounded down to a PAGE_SIZE * boundary. Note that this is different from vmtruncate(), which * must keep the partial page. In contrast, we must get rid of * partial pages. * @holelen: size of prospective hole in bytes. This will be rounded * up to a PAGE_SIZE boundary. A holelen of zero truncates to the * end of the file. * @even_cows: 1 when truncating a file, unmap even private COWed pages; * but 0 when invalidating pagecache, don't throw away private data. */ void unmap_mapping_range(struct address_space *mapping, loff_t const holebegin, loff_t const holelen, int even_cows) { struct zap_details details; pgoff_t hba = holebegin >> PAGE_SHIFT; pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; /* Check for overflow. */ if (sizeof(holelen) > sizeof(hlen)) { long long holeend = (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; if (holeend & ~(long long)ULONG_MAX) hlen = ULONG_MAX - hba + 1; } details.check_mapping = even_cows? NULL: mapping; details.nonlinear_vma = NULL; details.first_index = hba; details.last_index = hba + hlen - 1; if (details.last_index < details.first_index) details.last_index = ULONG_MAX; details.i_mmap_lock = &mapping->i_mmap_lock; spin_lock(&mapping->i_mmap_lock); /* serialize i_size write against truncate_count write */ smp_wmb(); /* Protect against page faults, and endless unmapping loops */ mapping->truncate_count++; /* * For archs where spin_lock has inclusive semantics like ia64 * this smp_mb() will prevent to read pagetable contents * before the truncate_count increment is visible to * other cpus. */ smp_mb(); if (unlikely(is_restart_addr(mapping->truncate_count))) { if (mapping->truncate_count == 0) reset_vma_truncate_counts(mapping); mapping->truncate_count++; } details.truncate_count = mapping->truncate_count; if (unlikely(!prio_tree_empty(&mapping->i_mmap))) unmap_mapping_range_tree(&mapping->i_mmap, &details); if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); spin_unlock(&mapping->i_mmap_lock); } EXPORT_SYMBOL(unmap_mapping_range); /* * Handle all mappings that got truncated by a "truncate()" * system call. * * NOTE! We have to be ready to update the memory sharing * between the file and the memory map for a potential last * incomplete page. Ugly, but necessary. */ int vmtruncate(struct inode * inode, loff_t offset) { struct address_space *mapping = inode->i_mapping; unsigned long limit; if (inode->i_size < offset) goto do_expand; /* * truncation of in-use swapfiles is disallowed - it would cause * subsequent swapout to scribble on the now-freed blocks. */ if (IS_SWAPFILE(inode)) goto out_busy; i_size_write(inode, offset); unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); truncate_inode_pages(mapping, offset); goto out_truncate; do_expand: limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; if (limit != RLIM_INFINITY && offset > limit) goto out_sig; if (offset > inode->i_sb->s_maxbytes) goto out_big; i_size_write(inode, offset); out_truncate: if (inode->i_op && inode->i_op->truncate) inode->i_op->truncate(inode); return 0; out_sig: send_sig(SIGXFSZ, current, 0); out_big: return -EFBIG; out_busy: return -ETXTBSY; } EXPORT_SYMBOL(vmtruncate); int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end) { struct address_space *mapping = inode->i_mapping; /* * If the underlying filesystem is not going to provide * a way to truncate a range of blocks (punch a hole) - * we should return failure right now. */ if (!inode->i_op || !inode->i_op->truncate_range) return -ENOSYS; mutex_lock(&inode->i_mutex); down_write(&inode->i_alloc_sem); unmap_mapping_range(mapping, offset, (end - offset), 1); truncate_inode_pages_range(mapping, offset, end); inode->i_op->truncate_range(inode, offset, end); up_write(&inode->i_alloc_sem); mutex_unlock(&inode->i_mutex); return 0; } EXPORT_SYMBOL(vmtruncate_range); /* * Primitive swap readahead code. We simply read an aligned block of * (1 << page_cluster) entries in the swap area. This method is chosen * because it doesn't cost us any seek time. We also make sure to queue * the 'original' request together with the readahead ones... * * This has been extended to use the NUMA policies from the mm triggering * the readahead. * * Caller must hold down_read on the vma->vm_mm if vma is not NULL. */ void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma) { #ifdef CONFIG_NUMA struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL; #endif int i, num; struct page *new_page; unsigned long offset; /* * Get the number of handles we should do readahead io to. */ num = valid_swaphandles(entry, &offset); for (i = 0; i < num; offset++, i++) { /* Ok, do the async read-ahead now */ new_page = read_swap_cache_async(swp_entry(swp_type(entry), offset), vma, addr); if (!new_page) break; page_cache_release(new_page); #ifdef CONFIG_NUMA /* * Find the next applicable VMA for the NUMA policy. */ addr += PAGE_SIZE; if (addr == 0) vma = NULL; if (vma) { if (addr >= vma->vm_end) { vma = next_vma; next_vma = vma ? vma->vm_next : NULL; } if (vma && addr < vma->vm_start) vma = NULL; } else { if (next_vma && addr >= next_vma->vm_start) { vma = next_vma; next_vma = vma->vm_next; } } #endif } lru_add_drain(); /* Push any new pages onto the LRU now */ } /* * We enter with non-exclusive mmap_sem (to exclude vma changes, * but allow concurrent faults), and pte mapped but not yet locked. * We return with mmap_sem still held, but pte unmapped and unlocked. */ static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long address, pte_t *page_table, pmd_t *pmd, int write_access, pte_t orig_pte) { spinlock_t *ptl; struct page *page; swp_entry_t entry; pte_t pte; int ret = VM_FAULT_MINOR; if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) goto out; entry = pte_to_swp_entry(orig_pte); again: page = lookup_swap_cache(entry); if (!page) { swapin_readahead(entry, address, vma); page = read_swap_cache_async(entry, vma, address); if (!page) { /* * Back out if somebody else faulted in this pte * while we released the pte lock. */ page_table = pte_offset_map_lock(mm, pmd, address, &ptl); if (likely(pte_same(*page_table, orig_pte))) ret = VM_FAULT_OOM; goto unlock; } /* Had to read the page from swap area: Major fault */ ret = VM_FAULT_MAJOR; inc_page_state(pgmajfault); grab_swap_token(); } mark_page_accessed(page); lock_page(page); if (!PageSwapCache(page)) { /* Page migration has occured */ unlock_page(page); page_cache_release(page); goto again; } /* * Back out if somebody else already faulted in this pte. */ page_table = pte_offset_map_lock(mm, pmd, address, &ptl); if (unlikely(!pte_same(*page_table, orig_pte))) goto out_nomap; if (unlikely(!PageUptodate(page))) { ret = VM_FAULT_SIGBUS; goto out_nomap; } /* The page isn't present yet, go ahead with the fault. */ inc_mm_counter(mm, anon_rss); pte = mk_pte(page, vma->vm_page_prot); if (write_access && can_share_swap_page(page)) { pte = maybe_mkwrite(pte_mkdirty(pte), vma); write_access = 0; } flush_icache_page(vma, page); set_pte_at(mm, address, page_table, pte); page_add_anon_rmap(page, vma, address); swap_free(entry); if (vm_swap_full()) remove_exclusive_swap_page(page); unlock_page(page); if (write_access) { if (do_wp_page(mm, vma, address, page_table, pmd, ptl, pte) == VM_FAULT_OOM) ret = VM_FAULT_OOM; goto out; } /* No need to invalidate - it was non-present before */ update_mmu_cache(vma, address, pte); lazy_mmu_prot_update(pte); unlock: pte_unmap_unlock(page_table, ptl); out: return ret; out_nomap: pte_unmap_unlock(page_table, ptl); unlock_page(page); page_cache_release(page); return ret; } /* * We enter with non-exclusive mmap_sem (to exclude vma changes, * but allow concurrent faults), and pte mapped but not yet locked. * We return with mmap_sem still held, but pte unmapped and unlocked. */ static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long address, pte_t *page_table, pmd_t *pmd, int write_access) { struct page *page; spinlock_t *ptl; pte_t entry; if (write_access) { /* Allocate our own private page. */ pte_unmap(page_table); if (unlikely(anon_vma_prepare(vma))) goto oom; page = alloc_zeroed_user_highpage(vma, address); if (!page) goto oom; entry = mk_pte(page, vma->vm_page_prot); entry = maybe_mkwrite(pte_mkdirty(entry), vma); page_table = pte_offset_map_lock(mm, pmd, address, &ptl); if (!pte_none(*page_table)) goto release; inc_mm_counter(mm, anon_rss); lru_cache_add_active(page); page_add_new_anon_rmap(page, vma, address); } else { /* Map the ZERO_PAGE - vm_page_prot is readonly */ page = ZERO_PAGE(address); page_cache_get(page); entry = mk_pte(page, vma->vm_page_prot); ptl = pte_lockptr(mm, pmd); spin_lock(ptl); if (!pte_none(*page_table)) goto release; inc_mm_counter(mm, file_rss); page_add_file_rmap(page); } set_pte_at(mm, address, page_table, entry); /* No need to invalidate - it was non-present before */ update_mmu_cache(vma, address, entry); lazy_mmu_prot_update(entry); unlock: pte_unmap_unlock(page_table, ptl); return VM_FAULT_MINOR; release: page_cache_release(page); goto unlock; oom: return VM_FAULT_OOM; } /* * do_no_page() tries to create a new page mapping. It aggressively * tries to share with existing pages, but makes a separate copy if * the "write_access" parameter is true in order to avoid the next * page fault. * * As this is called only for pages that do not currently exist, we * do not need to flush old virtual caches or the TLB. * * We enter with non-exclusive mmap_sem (to exclude vma changes, * but allow concurrent faults), and pte mapped but not yet locked. * We return with mmap_sem still held, but pte unmapped and unlocked. */ static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long address, pte_t *page_table, pmd_t *pmd, int write_access) { spinlock_t *ptl; struct page *new_page; struct address_space *mapping = NULL; pte_t entry; unsigned int sequence = 0; int ret = VM_FAULT_MINOR; int anon = 0; pte_unmap(page_table); BUG_ON(vma->vm_flags & VM_PFNMAP); if (vma->vm_file) { mapping = vma->vm_file->f_mapping; sequence = mapping->truncate_count; smp_rmb(); /* serializes i_size against truncate_count */ } retry: new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret); /* * No smp_rmb is needed here as long as there's a full * spin_lock/unlock sequence inside the ->nopage callback * (for the pagecache lookup) that acts as an implicit * smp_mb() and prevents the i_size read to happen * after the next truncate_count read. */ /* no page was available -- either SIGBUS or OOM */ if (new_page == NOPAGE_SIGBUS) return VM_FAULT_SIGBUS; if (new_page == NOPAGE_OOM) return VM_FAULT_OOM; /* * Should we do an early C-O-W break? */ if (write_access && !(vma->vm_flags & VM_SHARED)) { struct page *page; if (unlikely(anon_vma_prepare(vma))) goto oom; page = alloc_page_vma(GFP_HIGHUSER, vma, address); if (!page) goto oom; copy_user_highpage(page, new_page, address); page_cache_release(new_page); new_page = page; anon = 1; } page_table = pte_offset_map_lock(mm, pmd, address, &ptl); /* * For a file-backed vma, someone could have truncated or otherwise * invalidated this page. If unmap_mapping_range got called, * retry getting the page. */ if (mapping && unlikely(sequence != mapping->truncate_count)) { pte_unmap_unlock(page_table, ptl); page_cache_release(new_page); cond_resched(); sequence = mapping->truncate_count; smp_rmb(); goto retry; } /* * This silly early PAGE_DIRTY setting removes a race * due to the bad i386 page protection. But it's valid * for other architectures too. * * Note that if write_access is true, we either now have * an exclusive copy of the page, or this is a shared mapping, * so we can make it writable and dirty to avoid having to * handle that later. */ /* Only go through if we didn't race with anybody else... */ if (pte_none(*page_table)) { flush_icache_page(vma, new_page); entry = mk_pte(new_page, vma->vm_page_prot); if (write_access) entry = maybe_mkwrite(pte_mkdirty(entry), vma); set_pte_at(mm, address, page_table, entry); if (anon) { inc_mm_counter(mm, anon_rss); lru_cache_add_active(new_page); page_add_new_anon_rmap(new_page, vma, address); } else { inc_mm_counter(mm, file_rss); page_add_file_rmap(new_page); } } else { /* One of our sibling threads was faster, back out. */ page_cache_release(new_page); goto unlock; } /* no need to invalidate: a not-present page shouldn't be cached */ update_mmu_cache(vma, address, entry); lazy_mmu_prot_update(entry); unlock: pte_unmap_unlock(page_table, ptl); return ret; oom: page_cache_release(new_page); return VM_FAULT_OOM; } /* * Fault of a previously existing named mapping. Repopulate the pte * from the encoded file_pte if possible. This enables swappable * nonlinear vmas. * * We enter with non-exclusive mmap_sem (to exclude vma changes, * but allow concurrent faults), and pte mapped but not yet locked. * We return with mmap_sem still held, but pte unmapped and unlocked. */ static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long address, pte_t *page_table, pmd_t *pmd, int write_access, pte_t orig_pte) { pgoff_t pgoff; int err; if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) return VM_FAULT_MINOR; if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { /* * Page table corrupted: show pte and kill process. */ print_bad_pte(vma, orig_pte, address); return VM_FAULT_OOM; } /* We can then assume vm->vm_ops && vma->vm_ops->populate */ pgoff = pte_to_pgoff(orig_pte); err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE, vma->vm_page_prot, pgoff, 0); if (err == -ENOMEM) return VM_FAULT_OOM; if (err) return VM_FAULT_SIGBUS; return VM_FAULT_MAJOR; } /* * These routines also need to handle stuff like marking pages dirty * and/or accessed for architectures that don't do it in hardware (most * RISC architectures). The early dirtying is also good on the i386. * * There is also a hook called "update_mmu_cache()" that architectures * with external mmu caches can use to update those (ie the Sparc or * PowerPC hashed page tables that act as extended TLBs). * * We enter with non-exclusive mmap_sem (to exclude vma changes, * but allow concurrent faults), and pte mapped but not yet locked. * We return with mmap_sem still held, but pte unmapped and unlocked. */ static inline int handle_pte_fault(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long address, pte_t *pte, pmd_t *pmd, int write_access) { pte_t entry; pte_t old_entry; spinlock_t *ptl; old_entry = entry = *pte; if (!pte_present(entry)) { if (pte_none(entry)) { if (!vma->vm_ops || !vma->vm_ops->nopage) return do_anonymous_page(mm, vma, address, pte, pmd, write_access); return do_no_page(mm, vma, address, pte, pmd, write_access); } if (pte_file(entry)) return do_file_page(mm, vma, address, pte, pmd, write_access, entry); return do_swap_page(mm, vma, address, pte, pmd, write_access, entry); } ptl = pte_lockptr(mm, pmd); spin_lock(ptl); if (unlikely(!pte_same(*pte, entry))) goto unlock; if (write_access) { if (!pte_write(entry)) return do_wp_page(mm, vma, address, pte, pmd, ptl, entry); entry = pte_mkdirty(entry); } entry = pte_mkyoung(entry); if (!pte_same(old_entry, entry)) { ptep_set_access_flags(vma, address, pte, entry, write_access); update_mmu_cache(vma, address, entry); lazy_mmu_prot_update(entry); } else { /* * This is needed only for protection faults but the arch code * is not yet telling us if this is a protection fault or not. * This still avoids useless tlb flushes for .text page faults * with threads. */ if (write_access) flush_tlb_page(vma, address); } unlock: pte_unmap_unlock(pte, ptl); return VM_FAULT_MINOR; } /* * By the time we get here, we already hold the mm semaphore */ int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long address, int write_access) { pgd_t *pgd; pud_t *pud; pmd_t *pmd; pte_t *pte; __set_current_state(TASK_RUNNING); inc_page_state(pgfault); if (unlikely(is_vm_hugetlb_page(vma))) return hugetlb_fault(mm, vma, address, write_access); pgd = pgd_offset(mm, address); pud = pud_alloc(mm, pgd, address); if (!pud) return VM_FAULT_OOM; pmd = pmd_alloc(mm, pud, address); if (!pmd) return VM_FAULT_OOM; pte = pte_alloc_map(mm, pmd, address); if (!pte) return VM_FAULT_OOM; return handle_pte_fault(mm, vma, address, pte, pmd, write_access); } EXPORT_SYMBOL_GPL(__handle_mm_fault); #ifndef __PAGETABLE_PUD_FOLDED /* * Allocate page upper directory. * We've already handled the fast-path in-line. */ int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) { pud_t *new = pud_alloc_one(mm, address); if (!new) return -ENOMEM; spin_lock(&mm->page_table_lock); if (pgd_present(*pgd)) /* Another has populated it */ pud_free(new); else pgd_populate(mm, pgd, new); spin_unlock(&mm->page_table_lock); return 0; } #else /* Workaround for gcc 2.96 */ int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) { return 0; } #endif /* __PAGETABLE_PUD_FOLDED */ #ifndef __PAGETABLE_PMD_FOLDED /* * Allocate page middle directory. * We've already handled the fast-path in-line. */ int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) { pmd_t *new = pmd_alloc_one(mm, address); if (!new) return -ENOMEM; spin_lock(&mm->page_table_lock); #ifndef __ARCH_HAS_4LEVEL_HACK if (pud_present(*pud)) /* Another has populated it */ pmd_free(new); else pud_populate(mm, pud, new); #else if (pgd_present(*pud)) /* Another has populated it */ pmd_free(new); else pgd_populate(mm, pud, new); #endif /* __ARCH_HAS_4LEVEL_HACK */ spin_unlock(&mm->page_table_lock); return 0; } #else /* Workaround for gcc 2.96 */ int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) { return 0; } #endif /* __PAGETABLE_PMD_FOLDED */ int make_pages_present(unsigned long addr, unsigned long end) { int ret, len, write; struct vm_area_struct * vma; vma = find_vma(current->mm, addr); if (!vma) return -1; write = (vma->vm_flags & VM_WRITE) != 0; BUG_ON(addr >= end); BUG_ON(end > vma->vm_end); len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE; ret = get_user_pages(current, current->mm, addr, len, write, 0, NULL, NULL); if (ret < 0) return ret; return ret == len ? 0 : -1; } /* * Map a vmalloc()-space virtual address to the physical page. */ struct page * vmalloc_to_page(void * vmalloc_addr) { unsigned long addr = (unsigned long) vmalloc_addr; struct page *page = NULL; pgd_t *pgd = pgd_offset_k(addr); pud_t *pud; pmd_t *pmd; pte_t *ptep, pte; if (!pgd_none(*pgd)) { pud = pud_offset(pgd, addr); if (!pud_none(*pud)) { pmd = pmd_offset(pud, addr); if (!pmd_none(*pmd)) { ptep = pte_offset_map(pmd, addr); pte = *ptep; if (pte_present(pte)) page = pte_page(pte); pte_unmap(ptep); } } } return page; } EXPORT_SYMBOL(vmalloc_to_page); /* * Map a vmalloc()-space virtual address to the physical page frame number. */ unsigned long vmalloc_to_pfn(void * vmalloc_addr) { return page_to_pfn(vmalloc_to_page(vmalloc_addr)); } EXPORT_SYMBOL(vmalloc_to_pfn); #if !defined(__HAVE_ARCH_GATE_AREA) #if defined(AT_SYSINFO_EHDR) static struct vm_area_struct gate_vma; static int __init gate_vma_init(void) { gate_vma.vm_mm = NULL; gate_vma.vm_start = FIXADDR_USER_START; gate_vma.vm_end = FIXADDR_USER_END; gate_vma.vm_page_prot = PAGE_READONLY; gate_vma.vm_flags = 0; return 0; } __initcall(gate_vma_init); #endif struct vm_area_struct *get_gate_vma(struct task_struct *tsk) { #ifdef AT_SYSINFO_EHDR return &gate_vma; #else return NULL; #endif } int in_gate_area_no_task(unsigned long addr) { #ifdef AT_SYSINFO_EHDR if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) return 1; #endif return 0; } #endif /* __HAVE_ARCH_GATE_AREA */