/* * linux/mm/vmalloc.c * * Copyright (C) 1993 Linus Torvalds * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 * Numa awareness, Christoph Lameter, SGI, June 2005 */ #include <linux/vmalloc.h> #include <linux/mm.h> #include <linux/module.h> #include <linux/highmem.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/interrupt.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/debugobjects.h> #include <linux/kallsyms.h> #include <linux/list.h> #include <linux/rbtree.h> #include <linux/radix-tree.h> #include <linux/rcupdate.h> #include <linux/pfn.h> #include <linux/kmemleak.h> #include <linux/atomic.h> #include <asm/uaccess.h> #include <asm/tlbflush.h> #include <asm/shmparam.h> /*** Page table manipulation functions ***/ static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) { pte_t *pte; pte = pte_offset_kernel(pmd, addr); do { pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); WARN_ON(!pte_none(ptent) && !pte_present(ptent)); } while (pte++, addr += PAGE_SIZE, addr != end); } static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) { pmd_t *pmd; unsigned long next; pmd = pmd_offset(pud, addr); do { next = pmd_addr_end(addr, end); if (pmd_none_or_clear_bad(pmd)) continue; vunmap_pte_range(pmd, addr, next); } while (pmd++, addr = next, addr != end); } static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end) { pud_t *pud; unsigned long next; pud = pud_offset(pgd, addr); do { next = pud_addr_end(addr, end); if (pud_none_or_clear_bad(pud)) continue; vunmap_pmd_range(pud, addr, next); } while (pud++, addr = next, addr != end); } static void vunmap_page_range(unsigned long addr, unsigned long end) { pgd_t *pgd; unsigned long next; BUG_ON(addr >= end); pgd = pgd_offset_k(addr); do { next = pgd_addr_end(addr, end); if (pgd_none_or_clear_bad(pgd)) continue; vunmap_pud_range(pgd, addr, next); } while (pgd++, addr = next, addr != end); } static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, pgprot_t prot, struct page **pages, int *nr) { pte_t *pte; /* * nr is a running index into the array which helps higher level * callers keep track of where we're up to. */ pte = pte_alloc_kernel(pmd, addr); if (!pte) return -ENOMEM; do { struct page *page = pages[*nr]; if (WARN_ON(!pte_none(*pte))) return -EBUSY; if (WARN_ON(!page)) return -ENOMEM; set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); (*nr)++; } while (pte++, addr += PAGE_SIZE, addr != end); return 0; } static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, pgprot_t prot, struct page **pages, int *nr) { pmd_t *pmd; unsigned long next; pmd = pmd_alloc(&init_mm, pud, addr); if (!pmd) return -ENOMEM; do { next = pmd_addr_end(addr, end); if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) return -ENOMEM; } while (pmd++, addr = next, addr != end); return 0; } static int vmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end, pgprot_t prot, struct page **pages, int *nr) { pud_t *pud; unsigned long next; pud = pud_alloc(&init_mm, pgd, addr); if (!pud) return -ENOMEM; do { next = pud_addr_end(addr, end); if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) return -ENOMEM; } while (pud++, addr = next, addr != end); return 0; } /* * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and * will have pfns corresponding to the "pages" array. * * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] */ static int vmap_page_range_noflush(unsigned long start, unsigned long end, pgprot_t prot, struct page **pages) { pgd_t *pgd; unsigned long next; unsigned long addr = start; int err = 0; int nr = 0; BUG_ON(addr >= end); pgd = pgd_offset_k(addr); do { next = pgd_addr_end(addr, end); err = vmap_pud_range(pgd, addr, next, prot, pages, &nr); if (err) return err; } while (pgd++, addr = next, addr != end); return nr; } static int vmap_page_range(unsigned long start, unsigned long end, pgprot_t prot, struct page **pages) { int ret; ret = vmap_page_range_noflush(start, end, prot, pages); flush_cache_vmap(start, end); return ret; } int is_vmalloc_or_module_addr(const void *x) { /* * ARM, x86-64 and sparc64 put modules in a special place, * and fall back on vmalloc() if that fails. Others * just put it in the vmalloc space. */ #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) unsigned long addr = (unsigned long)x; if (addr >= MODULES_VADDR && addr < MODULES_END) return 1; #endif return is_vmalloc_addr(x); } /* * Walk a vmap address to the struct page it maps. */ struct page *vmalloc_to_page(const void *vmalloc_addr) { unsigned long addr = (unsigned long) vmalloc_addr; struct page *page = NULL; pgd_t *pgd = pgd_offset_k(addr); /* * XXX we might need to change this if we add VIRTUAL_BUG_ON for * architectures that do not vmalloc module space */ VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); if (!pgd_none(*pgd)) { pud_t *pud = pud_offset(pgd, addr); if (!pud_none(*pud)) { pmd_t *pmd = pmd_offset(pud, addr); if (!pmd_none(*pmd)) { pte_t *ptep, pte; ptep = pte_offset_map(pmd, addr); pte = *ptep; if (pte_present(pte)) page = pte_page(pte); pte_unmap(ptep); } } } return page; } EXPORT_SYMBOL(vmalloc_to_page); /* * Map a vmalloc()-space virtual address to the physical page frame number. */ unsigned long vmalloc_to_pfn(const void *vmalloc_addr) { return page_to_pfn(vmalloc_to_page(vmalloc_addr)); } EXPORT_SYMBOL(vmalloc_to_pfn); /*** Global kva allocator ***/ #define VM_LAZY_FREE 0x01 #define VM_LAZY_FREEING 0x02 #define VM_VM_AREA 0x04 struct vmap_area { unsigned long va_start; unsigned long va_end; unsigned long flags; struct rb_node rb_node; /* address sorted rbtree */ struct list_head list; /* address sorted list */ struct list_head purge_list; /* "lazy purge" list */ void *private; struct rcu_head rcu_head; }; static DEFINE_SPINLOCK(vmap_area_lock); static LIST_HEAD(vmap_area_list); static struct rb_root vmap_area_root = RB_ROOT; /* The vmap cache globals are protected by vmap_area_lock */ static struct rb_node *free_vmap_cache; static unsigned long cached_hole_size; static unsigned long cached_vstart; static unsigned long cached_align; static unsigned long vmap_area_pcpu_hole; static struct vmap_area *__find_vmap_area(unsigned long addr) { struct rb_node *n = vmap_area_root.rb_node; while (n) { struct vmap_area *va; va = rb_entry(n, struct vmap_area, rb_node); if (addr < va->va_start) n = n->rb_left; else if (addr > va->va_start) n = n->rb_right; else return va; } return NULL; } static void __insert_vmap_area(struct vmap_area *va) { struct rb_node **p = &vmap_area_root.rb_node; struct rb_node *parent = NULL; struct rb_node *tmp; while (*p) { struct vmap_area *tmp_va; parent = *p; tmp_va = rb_entry(parent, struct vmap_area, rb_node); if (va->va_start < tmp_va->va_end) p = &(*p)->rb_left; else if (va->va_end > tmp_va->va_start) p = &(*p)->rb_right; else BUG(); } rb_link_node(&va->rb_node, parent, p); rb_insert_color(&va->rb_node, &vmap_area_root); /* address-sort this list so it is usable like the vmlist */ tmp = rb_prev(&va->rb_node); if (tmp) { struct vmap_area *prev; prev = rb_entry(tmp, struct vmap_area, rb_node); list_add_rcu(&va->list, &prev->list); } else list_add_rcu(&va->list, &vmap_area_list); } static void purge_vmap_area_lazy(void); /* * Allocate a region of KVA of the specified size and alignment, within the * vstart and vend. */ static struct vmap_area *alloc_vmap_area(unsigned long size, unsigned long align, unsigned long vstart, unsigned long vend, int node, gfp_t gfp_mask) { struct vmap_area *va; struct rb_node *n; unsigned long addr; int purged = 0; struct vmap_area *first; BUG_ON(!size); BUG_ON(size & ~PAGE_MASK); BUG_ON(!is_power_of_2(align)); va = kmalloc_node(sizeof(struct vmap_area), gfp_mask & GFP_RECLAIM_MASK, node); if (unlikely(!va)) return ERR_PTR(-ENOMEM); retry: spin_lock(&vmap_area_lock); /* * Invalidate cache if we have more permissive parameters. * cached_hole_size notes the largest hole noticed _below_ * the vmap_area cached in free_vmap_cache: if size fits * into that hole, we want to scan from vstart to reuse * the hole instead of allocating above free_vmap_cache. * Note that __free_vmap_area may update free_vmap_cache * without updating cached_hole_size or cached_align. */ if (!free_vmap_cache || size < cached_hole_size || vstart < cached_vstart || align < cached_align) { nocache: cached_hole_size = 0; free_vmap_cache = NULL; } /* record if we encounter less permissive parameters */ cached_vstart = vstart; cached_align = align; /* find starting point for our search */ if (free_vmap_cache) { first = rb_entry(free_vmap_cache, struct vmap_area, rb_node); addr = ALIGN(first->va_end, align); if (addr < vstart) goto nocache; if (addr + size - 1 < addr) goto overflow; } else { addr = ALIGN(vstart, align); if (addr + size - 1 < addr) goto overflow; n = vmap_area_root.rb_node; first = NULL; while (n) { struct vmap_area *tmp; tmp = rb_entry(n, struct vmap_area, rb_node); if (tmp->va_end >= addr) { first = tmp; if (tmp->va_start <= addr) break; n = n->rb_left; } else n = n->rb_right; } if (!first) goto found; } /* from the starting point, walk areas until a suitable hole is found */ while (addr + size > first->va_start && addr + size <= vend) { if (addr + cached_hole_size < first->va_start) cached_hole_size = first->va_start - addr; addr = ALIGN(first->va_end, align); if (addr + size - 1 < addr) goto overflow; n = rb_next(&first->rb_node); if (n) first = rb_entry(n, struct vmap_area, rb_node); else goto found; } found: if (addr + size > vend) goto overflow; va->va_start = addr; va->va_end = addr + size; va->flags = 0; __insert_vmap_area(va); free_vmap_cache = &va->rb_node; spin_unlock(&vmap_area_lock); BUG_ON(va->va_start & (align-1)); BUG_ON(va->va_start < vstart); BUG_ON(va->va_end > vend); return va; overflow: spin_unlock(&vmap_area_lock); if (!purged) { purge_vmap_area_lazy(); purged = 1; goto retry; } if (printk_ratelimit()) printk(KERN_WARNING "vmap allocation for size %lu failed: " "use vmalloc=<size> to increase size.\n", size); kfree(va); return ERR_PTR(-EBUSY); } static void __free_vmap_area(struct vmap_area *va) { BUG_ON(RB_EMPTY_NODE(&va->rb_node)); if (free_vmap_cache) { if (va->va_end < cached_vstart) { free_vmap_cache = NULL; } else { struct vmap_area *cache; cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node); if (va->va_start <= cache->va_start) { free_vmap_cache = rb_prev(&va->rb_node); /* * We don't try to update cached_hole_size or * cached_align, but it won't go very wrong. */ } } } rb_erase(&va->rb_node, &vmap_area_root); RB_CLEAR_NODE(&va->rb_node); list_del_rcu(&va->list); /* * Track the highest possible candidate for pcpu area * allocation. Areas outside of vmalloc area can be returned * here too, consider only end addresses which fall inside * vmalloc area proper. */ if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END) vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end); kfree_rcu(va, rcu_head); } /* * Free a region of KVA allocated by alloc_vmap_area */ static void free_vmap_area(struct vmap_area *va) { spin_lock(&vmap_area_lock); __free_vmap_area(va); spin_unlock(&vmap_area_lock); } /* * Clear the pagetable entries of a given vmap_area */ static void unmap_vmap_area(struct vmap_area *va) { vunmap_page_range(va->va_start, va->va_end); } static void vmap_debug_free_range(unsigned long start, unsigned long end) { /* * Unmap page tables and force a TLB flush immediately if * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free * bugs similarly to those in linear kernel virtual address * space after a page has been freed. * * All the lazy freeing logic is still retained, in order to * minimise intrusiveness of this debugging feature. * * This is going to be *slow* (linear kernel virtual address * debugging doesn't do a broadcast TLB flush so it is a lot * faster). */ #ifdef CONFIG_DEBUG_PAGEALLOC vunmap_page_range(start, end); flush_tlb_kernel_range(start, end); #endif } /* * lazy_max_pages is the maximum amount of virtual address space we gather up * before attempting to purge with a TLB flush. * * There is a tradeoff here: a larger number will cover more kernel page tables * and take slightly longer to purge, but it will linearly reduce the number of * global TLB flushes that must be performed. It would seem natural to scale * this number up linearly with the number of CPUs (because vmapping activity * could also scale linearly with the number of CPUs), however it is likely * that in practice, workloads might be constrained in other ways that mean * vmap activity will not scale linearly with CPUs. Also, I want to be * conservative and not introduce a big latency on huge systems, so go with * a less aggressive log scale. It will still be an improvement over the old * code, and it will be simple to change the scale factor if we find that it * becomes a problem on bigger systems. */ static unsigned long lazy_max_pages(void) { unsigned int log; log = fls(num_online_cpus()); return log * (32UL * 1024 * 1024 / PAGE_SIZE); } static atomic_t vmap_lazy_nr = ATOMIC_INIT(0); /* for per-CPU blocks */ static void purge_fragmented_blocks_allcpus(void); /* * called before a call to iounmap() if the caller wants vm_area_struct's * immediately freed. */ void set_iounmap_nonlazy(void) { atomic_set(&vmap_lazy_nr, lazy_max_pages()+1); } /* * Purges all lazily-freed vmap areas. * * If sync is 0 then don't purge if there is already a purge in progress. * If force_flush is 1, then flush kernel TLBs between *start and *end even * if we found no lazy vmap areas to unmap (callers can use this to optimise * their own TLB flushing). * Returns with *start = min(*start, lowest purged address) * *end = max(*end, highest purged address) */ static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end, int sync, int force_flush) { static DEFINE_SPINLOCK(purge_lock); LIST_HEAD(valist); struct vmap_area *va; struct vmap_area *n_va; int nr = 0; /* * If sync is 0 but force_flush is 1, we'll go sync anyway but callers * should not expect such behaviour. This just simplifies locking for * the case that isn't actually used at the moment anyway. */ if (!sync && !force_flush) { if (!spin_trylock(&purge_lock)) return; } else spin_lock(&purge_lock); if (sync) purge_fragmented_blocks_allcpus(); rcu_read_lock(); list_for_each_entry_rcu(va, &vmap_area_list, list) { if (va->flags & VM_LAZY_FREE) { if (va->va_start < *start) *start = va->va_start; if (va->va_end > *end) *end = va->va_end; nr += (va->va_end - va->va_start) >> PAGE_SHIFT; list_add_tail(&va->purge_list, &valist); va->flags |= VM_LAZY_FREEING; va->flags &= ~VM_LAZY_FREE; } } rcu_read_unlock(); if (nr) atomic_sub(nr, &vmap_lazy_nr); if (nr || force_flush) flush_tlb_kernel_range(*start, *end); if (nr) { spin_lock(&vmap_area_lock); list_for_each_entry_safe(va, n_va, &valist, purge_list) __free_vmap_area(va); spin_unlock(&vmap_area_lock); } spin_unlock(&purge_lock); } /* * Kick off a purge of the outstanding lazy areas. Don't bother if somebody * is already purging. */ static void try_purge_vmap_area_lazy(void) { unsigned long start = ULONG_MAX, end = 0; __purge_vmap_area_lazy(&start, &end, 0, 0); } /* * Kick off a purge of the outstanding lazy areas. */ static void purge_vmap_area_lazy(void) { unsigned long start = ULONG_MAX, end = 0; __purge_vmap_area_lazy(&start, &end, 1, 0); } /* * Free a vmap area, caller ensuring that the area has been unmapped * and flush_cache_vunmap had been called for the correct range * previously. */ static void free_vmap_area_noflush(struct vmap_area *va) { va->flags |= VM_LAZY_FREE; atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr); if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages())) try_purge_vmap_area_lazy(); } /* * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been * called for the correct range previously. */ static void free_unmap_vmap_area_noflush(struct vmap_area *va) { unmap_vmap_area(va); free_vmap_area_noflush(va); } /* * Free and unmap a vmap area */ static void free_unmap_vmap_area(struct vmap_area *va) { flush_cache_vunmap(va->va_start, va->va_end); free_unmap_vmap_area_noflush(va); } static struct vmap_area *find_vmap_area(unsigned long addr) { struct vmap_area *va; spin_lock(&vmap_area_lock); va = __find_vmap_area(addr); spin_unlock(&vmap_area_lock); return va; } static void free_unmap_vmap_area_addr(unsigned long addr) { struct vmap_area *va; va = find_vmap_area(addr); BUG_ON(!va); free_unmap_vmap_area(va); } /*** Per cpu kva allocator ***/ /* * vmap space is limited especially on 32 bit architectures. Ensure there is * room for at least 16 percpu vmap blocks per CPU. */ /* * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess * instead (we just need a rough idea) */ #if BITS_PER_LONG == 32 #define VMALLOC_SPACE (128UL*1024*1024) #else #define VMALLOC_SPACE (128UL*1024*1024*1024) #endif #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ #define VMAP_BBMAP_BITS \ VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) static bool vmap_initialized __read_mostly = false; struct vmap_block_queue { spinlock_t lock; struct list_head free; }; struct vmap_block { spinlock_t lock; struct vmap_area *va; struct vmap_block_queue *vbq; unsigned long free, dirty; DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS); DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS); struct list_head free_list; struct rcu_head rcu_head; struct list_head purge; }; /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); /* * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block * in the free path. Could get rid of this if we change the API to return a * "cookie" from alloc, to be passed to free. But no big deal yet. */ static DEFINE_SPINLOCK(vmap_block_tree_lock); static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); /* * We should probably have a fallback mechanism to allocate virtual memory * out of partially filled vmap blocks. However vmap block sizing should be * fairly reasonable according to the vmalloc size, so it shouldn't be a * big problem. */ static unsigned long addr_to_vb_idx(unsigned long addr) { addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); addr /= VMAP_BLOCK_SIZE; return addr; } static struct vmap_block *new_vmap_block(gfp_t gfp_mask) { struct vmap_block_queue *vbq; struct vmap_block *vb; struct vmap_area *va; unsigned long vb_idx; int node, err; node = numa_node_id(); vb = kmalloc_node(sizeof(struct vmap_block), gfp_mask & GFP_RECLAIM_MASK, node); if (unlikely(!vb)) return ERR_PTR(-ENOMEM); va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, VMALLOC_START, VMALLOC_END, node, gfp_mask); if (IS_ERR(va)) { kfree(vb); return ERR_CAST(va); } err = radix_tree_preload(gfp_mask); if (unlikely(err)) { kfree(vb); free_vmap_area(va); return ERR_PTR(err); } spin_lock_init(&vb->lock); vb->va = va; vb->free = VMAP_BBMAP_BITS; vb->dirty = 0; bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS); bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS); INIT_LIST_HEAD(&vb->free_list); vb_idx = addr_to_vb_idx(va->va_start); spin_lock(&vmap_block_tree_lock); err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); spin_unlock(&vmap_block_tree_lock); BUG_ON(err); radix_tree_preload_end(); vbq = &get_cpu_var(vmap_block_queue); vb->vbq = vbq; spin_lock(&vbq->lock); list_add_rcu(&vb->free_list, &vbq->free); spin_unlock(&vbq->lock); put_cpu_var(vmap_block_queue); return vb; } static void free_vmap_block(struct vmap_block *vb) { struct vmap_block *tmp; unsigned long vb_idx; vb_idx = addr_to_vb_idx(vb->va->va_start); spin_lock(&vmap_block_tree_lock); tmp = radix_tree_delete(&vmap_block_tree, vb_idx); spin_unlock(&vmap_block_tree_lock); BUG_ON(tmp != vb); free_vmap_area_noflush(vb->va); kfree_rcu(vb, rcu_head); } static void purge_fragmented_blocks(int cpu) { LIST_HEAD(purge); struct vmap_block *vb; struct vmap_block *n_vb; struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); rcu_read_lock(); list_for_each_entry_rcu(vb, &vbq->free, free_list) { if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) continue; spin_lock(&vb->lock); if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { vb->free = 0; /* prevent further allocs after releasing lock */ vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS); bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS); spin_lock(&vbq->lock); list_del_rcu(&vb->free_list); spin_unlock(&vbq->lock); spin_unlock(&vb->lock); list_add_tail(&vb->purge, &purge); } else spin_unlock(&vb->lock); } rcu_read_unlock(); list_for_each_entry_safe(vb, n_vb, &purge, purge) { list_del(&vb->purge); free_vmap_block(vb); } } static void purge_fragmented_blocks_thiscpu(void) { purge_fragmented_blocks(smp_processor_id()); } static void purge_fragmented_blocks_allcpus(void) { int cpu; for_each_possible_cpu(cpu) purge_fragmented_blocks(cpu); } static void *vb_alloc(unsigned long size, gfp_t gfp_mask) { struct vmap_block_queue *vbq; struct vmap_block *vb; unsigned long addr = 0; unsigned int order; int purge = 0; BUG_ON(size & ~PAGE_MASK); BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); order = get_order(size); again: rcu_read_lock(); vbq = &get_cpu_var(vmap_block_queue); list_for_each_entry_rcu(vb, &vbq->free, free_list) { int i; spin_lock(&vb->lock); if (vb->free < 1UL << order) goto next; i = bitmap_find_free_region(vb->alloc_map, VMAP_BBMAP_BITS, order); if (i < 0) { if (vb->free + vb->dirty == VMAP_BBMAP_BITS) { /* fragmented and no outstanding allocations */ BUG_ON(vb->dirty != VMAP_BBMAP_BITS); purge = 1; } goto next; } addr = vb->va->va_start + (i << PAGE_SHIFT); BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(vb->va->va_start)); vb->free -= 1UL << order; if (vb->free == 0) { spin_lock(&vbq->lock); list_del_rcu(&vb->free_list); spin_unlock(&vbq->lock); } spin_unlock(&vb->lock); break; next: spin_unlock(&vb->lock); } if (purge) purge_fragmented_blocks_thiscpu(); put_cpu_var(vmap_block_queue); rcu_read_unlock(); if (!addr) { vb = new_vmap_block(gfp_mask); if (IS_ERR(vb)) return vb; goto again; } return (void *)addr; } static void vb_free(const void *addr, unsigned long size) { unsigned long offset; unsigned long vb_idx; unsigned int order; struct vmap_block *vb; BUG_ON(size & ~PAGE_MASK); BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); order = get_order(size); offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); vb_idx = addr_to_vb_idx((unsigned long)addr); rcu_read_lock(); vb = radix_tree_lookup(&vmap_block_tree, vb_idx); rcu_read_unlock(); BUG_ON(!vb); vunmap_page_range((unsigned long)addr, (unsigned long)addr + size); spin_lock(&vb->lock); BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order)); vb->dirty += 1UL << order; if (vb->dirty == VMAP_BBMAP_BITS) { BUG_ON(vb->free); spin_unlock(&vb->lock); free_vmap_block(vb); } else spin_unlock(&vb->lock); } /** * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer * * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily * to amortize TLB flushing overheads. What this means is that any page you * have now, may, in a former life, have been mapped into kernel virtual * address by the vmap layer and so there might be some CPUs with TLB entries * still referencing that page (additional to the regular 1:1 kernel mapping). * * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can * be sure that none of the pages we have control over will have any aliases * from the vmap layer. */ void vm_unmap_aliases(void) { unsigned long start = ULONG_MAX, end = 0; int cpu; int flush = 0; if (unlikely(!vmap_initialized)) return; for_each_possible_cpu(cpu) { struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); struct vmap_block *vb; rcu_read_lock(); list_for_each_entry_rcu(vb, &vbq->free, free_list) { int i; spin_lock(&vb->lock); i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS); while (i < VMAP_BBMAP_BITS) { unsigned long s, e; int j; j = find_next_zero_bit(vb->dirty_map, VMAP_BBMAP_BITS, i); s = vb->va->va_start + (i << PAGE_SHIFT); e = vb->va->va_start + (j << PAGE_SHIFT); flush = 1; if (s < start) start = s; if (e > end) end = e; i = j; i = find_next_bit(vb->dirty_map, VMAP_BBMAP_BITS, i); } spin_unlock(&vb->lock); } rcu_read_unlock(); } __purge_vmap_area_lazy(&start, &end, 1, flush); } EXPORT_SYMBOL_GPL(vm_unmap_aliases); /** * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram * @mem: the pointer returned by vm_map_ram * @count: the count passed to that vm_map_ram call (cannot unmap partial) */ void vm_unmap_ram(const void *mem, unsigned int count) { unsigned long size = count << PAGE_SHIFT; unsigned long addr = (unsigned long)mem; BUG_ON(!addr); BUG_ON(addr < VMALLOC_START); BUG_ON(addr > VMALLOC_END); BUG_ON(addr & (PAGE_SIZE-1)); debug_check_no_locks_freed(mem, size); vmap_debug_free_range(addr, addr+size); if (likely(count <= VMAP_MAX_ALLOC)) vb_free(mem, size); else free_unmap_vmap_area_addr(addr); } EXPORT_SYMBOL(vm_unmap_ram); /** * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) * @pages: an array of pointers to the pages to be mapped * @count: number of pages * @node: prefer to allocate data structures on this node * @prot: memory protection to use. PAGE_KERNEL for regular RAM * * Returns: a pointer to the address that has been mapped, or %NULL on failure */ void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) { unsigned long size = count << PAGE_SHIFT; unsigned long addr; void *mem; if (likely(count <= VMAP_MAX_ALLOC)) { mem = vb_alloc(size, GFP_KERNEL); if (IS_ERR(mem)) return NULL; addr = (unsigned long)mem; } else { struct vmap_area *va; va = alloc_vmap_area(size, PAGE_SIZE, VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); if (IS_ERR(va)) return NULL; addr = va->va_start; mem = (void *)addr; } if (vmap_page_range(addr, addr + size, prot, pages) < 0) { vm_unmap_ram(mem, count); return NULL; } return mem; } EXPORT_SYMBOL(vm_map_ram); /** * vm_area_register_early - register vmap area early during boot * @vm: vm_struct to register * @align: requested alignment * * This function is used to register kernel vm area before * vmalloc_init() is called. @vm->size and @vm->flags should contain * proper values on entry and other fields should be zero. On return, * vm->addr contains the allocated address. * * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. */ void __init vm_area_register_early(struct vm_struct *vm, size_t align) { static size_t vm_init_off __initdata; unsigned long addr; addr = ALIGN(VMALLOC_START + vm_init_off, align); vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; vm->addr = (void *)addr; vm->next = vmlist; vmlist = vm; } void __init vmalloc_init(void) { struct vmap_area *va; struct vm_struct *tmp; int i; for_each_possible_cpu(i) { struct vmap_block_queue *vbq; vbq = &per_cpu(vmap_block_queue, i); spin_lock_init(&vbq->lock); INIT_LIST_HEAD(&vbq->free); } /* Import existing vmlist entries. */ for (tmp = vmlist; tmp; tmp = tmp->next) { va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT); va->flags = tmp->flags | VM_VM_AREA; va->va_start = (unsigned long)tmp->addr; va->va_end = va->va_start + tmp->size; __insert_vmap_area(va); } vmap_area_pcpu_hole = VMALLOC_END; vmap_initialized = true; } /** * map_kernel_range_noflush - map kernel VM area with the specified pages * @addr: start of the VM area to map * @size: size of the VM area to map * @prot: page protection flags to use * @pages: pages to map * * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size * specify should have been allocated using get_vm_area() and its * friends. * * NOTE: * This function does NOT do any cache flushing. The caller is * responsible for calling flush_cache_vmap() on to-be-mapped areas * before calling this function. * * RETURNS: * The number of pages mapped on success, -errno on failure. */ int map_kernel_range_noflush(unsigned long addr, unsigned long size, pgprot_t prot, struct page **pages) { return vmap_page_range_noflush(addr, addr + size, prot, pages); } /** * unmap_kernel_range_noflush - unmap kernel VM area * @addr: start of the VM area to unmap * @size: size of the VM area to unmap * * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size * specify should have been allocated using get_vm_area() and its * friends. * * NOTE: * This function does NOT do any cache flushing. The caller is * responsible for calling flush_cache_vunmap() on to-be-mapped areas * before calling this function and flush_tlb_kernel_range() after. */ void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) { vunmap_page_range(addr, addr + size); } EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush); /** * unmap_kernel_range - unmap kernel VM area and flush cache and TLB * @addr: start of the VM area to unmap * @size: size of the VM area to unmap * * Similar to unmap_kernel_range_noflush() but flushes vcache before * the unmapping and tlb after. */ void unmap_kernel_range(unsigned long addr, unsigned long size) { unsigned long end = addr + size; flush_cache_vunmap(addr, end); vunmap_page_range(addr, end); flush_tlb_kernel_range(addr, end); } int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages) { unsigned long addr = (unsigned long)area->addr; unsigned long end = addr + area->size - PAGE_SIZE; int err; err = vmap_page_range(addr, end, prot, *pages); if (err > 0) { *pages += err; err = 0; } return err; } EXPORT_SYMBOL_GPL(map_vm_area); /*** Old vmalloc interfaces ***/ DEFINE_RWLOCK(vmlist_lock); struct vm_struct *vmlist; static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, unsigned long flags, void *caller) { struct vm_struct *tmp, **p; vm->flags = flags; vm->addr = (void *)va->va_start; vm->size = va->va_end - va->va_start; vm->caller = caller; va->private = vm; va->flags |= VM_VM_AREA; write_lock(&vmlist_lock); for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { if (tmp->addr >= vm->addr) break; } vm->next = *p; *p = vm; write_unlock(&vmlist_lock); } static struct vm_struct *__get_vm_area_node(unsigned long size, unsigned long align, unsigned long flags, unsigned long start, unsigned long end, int node, gfp_t gfp_mask, void *caller) { static struct vmap_area *va; struct vm_struct *area; BUG_ON(in_interrupt()); if (flags & VM_IOREMAP) { int bit = fls(size); if (bit > IOREMAP_MAX_ORDER) bit = IOREMAP_MAX_ORDER; else if (bit < PAGE_SHIFT) bit = PAGE_SHIFT; align = 1ul << bit; } size = PAGE_ALIGN(size); if (unlikely(!size)) return NULL; area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); if (unlikely(!area)) return NULL; /* * We always allocate a guard page. */ size += PAGE_SIZE; va = alloc_vmap_area(size, align, start, end, node, gfp_mask); if (IS_ERR(va)) { kfree(area); return NULL; } insert_vmalloc_vm(area, va, flags, caller); return area; } struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, unsigned long start, unsigned long end) { return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL, __builtin_return_address(0)); } EXPORT_SYMBOL_GPL(__get_vm_area); struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, unsigned long start, unsigned long end, void *caller) { return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL, caller); } /** * get_vm_area - reserve a contiguous kernel virtual area * @size: size of the area * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC * * Search an area of @size in the kernel virtual mapping area, * and reserved it for out purposes. Returns the area descriptor * on success or %NULL on failure. */ struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) { return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, -1, GFP_KERNEL, __builtin_return_address(0)); } struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, void *caller) { return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, -1, GFP_KERNEL, caller); } static struct vm_struct *find_vm_area(const void *addr) { struct vmap_area *va; va = find_vmap_area((unsigned long)addr); if (va && va->flags & VM_VM_AREA) return va->private; return NULL; } /** * remove_vm_area - find and remove a continuous kernel virtual area * @addr: base address * * Search for the kernel VM area starting at @addr, and remove it. * This function returns the found VM area, but using it is NOT safe * on SMP machines, except for its size or flags. */ struct vm_struct *remove_vm_area(const void *addr) { struct vmap_area *va; va = find_vmap_area((unsigned long)addr); if (va && va->flags & VM_VM_AREA) { struct vm_struct *vm = va->private; struct vm_struct *tmp, **p; /* * remove from list and disallow access to this vm_struct * before unmap. (address range confliction is maintained by * vmap.) */ write_lock(&vmlist_lock); for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next) ; *p = tmp->next; write_unlock(&vmlist_lock); vmap_debug_free_range(va->va_start, va->va_end); free_unmap_vmap_area(va); vm->size -= PAGE_SIZE; return vm; } return NULL; } static void __vunmap(const void *addr, int deallocate_pages) { struct vm_struct *area; if (!addr) return; if ((PAGE_SIZE-1) & (unsigned long)addr) { WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr); return; } area = remove_vm_area(addr); if (unlikely(!area)) { WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", addr); return; } debug_check_no_locks_freed(addr, area->size); debug_check_no_obj_freed(addr, area->size); if (deallocate_pages) { int i; for (i = 0; i < area->nr_pages; i++) { struct page *page = area->pages[i]; BUG_ON(!page); __free_page(page); } if (area->flags & VM_VPAGES) vfree(area->pages); else kfree(area->pages); } kfree(area); return; } /** * vfree - release memory allocated by vmalloc() * @addr: memory base address * * Free the virtually continuous memory area starting at @addr, as * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is * NULL, no operation is performed. * * Must not be called in interrupt context. */ void vfree(const void *addr) { BUG_ON(in_interrupt()); kmemleak_free(addr); __vunmap(addr, 1); } EXPORT_SYMBOL(vfree); /** * vunmap - release virtual mapping obtained by vmap() * @addr: memory base address * * Free the virtually contiguous memory area starting at @addr, * which was created from the page array passed to vmap(). * * Must not be called in interrupt context. */ void vunmap(const void *addr) { BUG_ON(in_interrupt()); might_sleep(); __vunmap(addr, 0); } EXPORT_SYMBOL(vunmap); /** * vmap - map an array of pages into virtually contiguous space * @pages: array of page pointers * @count: number of pages to map * @flags: vm_area->flags * @prot: page protection for the mapping * * Maps @count pages from @pages into contiguous kernel virtual * space. */ void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) { struct vm_struct *area; might_sleep(); if (count > totalram_pages) return NULL; area = get_vm_area_caller((count << PAGE_SHIFT), flags, __builtin_return_address(0)); if (!area) return NULL; if (map_vm_area(area, prot, &pages)) { vunmap(area->addr); return NULL; } return area->addr; } EXPORT_SYMBOL(vmap); static void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask, pgprot_t prot, int node, void *caller); static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot, int node, void *caller) { const int order = 0; struct page **pages; unsigned int nr_pages, array_size, i; gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT; array_size = (nr_pages * sizeof(struct page *)); area->nr_pages = nr_pages; /* Please note that the recursion is strictly bounded. */ if (array_size > PAGE_SIZE) { pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM, PAGE_KERNEL, node, caller); area->flags |= VM_VPAGES; } else { pages = kmalloc_node(array_size, nested_gfp, node); } area->pages = pages; area->caller = caller; if (!area->pages) { remove_vm_area(area->addr); kfree(area); return NULL; } for (i = 0; i < area->nr_pages; i++) { struct page *page; gfp_t tmp_mask = gfp_mask | __GFP_NOWARN; if (node < 0) page = alloc_page(tmp_mask); else page = alloc_pages_node(node, tmp_mask, order); if (unlikely(!page)) { /* Successfully allocated i pages, free them in __vunmap() */ area->nr_pages = i; goto fail; } area->pages[i] = page; } if (map_vm_area(area, prot, &pages)) goto fail; return area->addr; fail: warn_alloc_failed(gfp_mask, order, "vmalloc: allocation failure, " "allocated %ld of %ld bytes\n", (area->nr_pages*PAGE_SIZE), area->size); vfree(area->addr); return NULL; } /** * __vmalloc_node_range - allocate virtually contiguous memory * @size: allocation size * @align: desired alignment * @start: vm area range start * @end: vm area range end * @gfp_mask: flags for the page level allocator * @prot: protection mask for the allocated pages * @node: node to use for allocation or -1 * @caller: caller's return address * * Allocate enough pages to cover @size from the page level * allocator with @gfp_mask flags. Map them into contiguous * kernel virtual space, using a pagetable protection of @prot. */ void *__vmalloc_node_range(unsigned long size, unsigned long align, unsigned long start, unsigned long end, gfp_t gfp_mask, pgprot_t prot, int node, void *caller) { struct vm_struct *area; void *addr; unsigned long real_size = size; size = PAGE_ALIGN(size); if (!size || (size >> PAGE_SHIFT) > totalram_pages) return NULL; area = __get_vm_area_node(size, align, VM_ALLOC, start, end, node, gfp_mask, caller); if (!area) return NULL; addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller); /* * A ref_count = 3 is needed because the vm_struct and vmap_area * structures allocated in the __get_vm_area_node() function contain * references to the virtual address of the vmalloc'ed block. */ kmemleak_alloc(addr, real_size, 3, gfp_mask); return addr; } /** * __vmalloc_node - allocate virtually contiguous memory * @size: allocation size * @align: desired alignment * @gfp_mask: flags for the page level allocator * @prot: protection mask for the allocated pages * @node: node to use for allocation or -1 * @caller: caller's return address * * Allocate enough pages to cover @size from the page level * allocator with @gfp_mask flags. Map them into contiguous * kernel virtual space, using a pagetable protection of @prot. */ static void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask, pgprot_t prot, int node, void *caller) { return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, gfp_mask, prot, node, caller); } void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) { return __vmalloc_node(size, 1, gfp_mask, prot, -1, __builtin_return_address(0)); } EXPORT_SYMBOL(__vmalloc); static inline void *__vmalloc_node_flags(unsigned long size, int node, gfp_t flags) { return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, __builtin_return_address(0)); } /** * vmalloc - allocate virtually contiguous memory * @size: allocation size * Allocate enough pages to cover @size from the page level * allocator and map them into contiguous kernel virtual space. * * For tight control over page level allocator and protection flags * use __vmalloc() instead. */ void *vmalloc(unsigned long size) { return __vmalloc_node_flags(size, -1, GFP_KERNEL | __GFP_HIGHMEM); } EXPORT_SYMBOL(vmalloc); /** * vzalloc - allocate virtually contiguous memory with zero fill * @size: allocation size * Allocate enough pages to cover @size from the page level * allocator and map them into contiguous kernel virtual space. * The memory allocated is set to zero. * * For tight control over page level allocator and protection flags * use __vmalloc() instead. */ void *vzalloc(unsigned long size) { return __vmalloc_node_flags(size, -1, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); } EXPORT_SYMBOL(vzalloc); /** * vmalloc_user - allocate zeroed virtually contiguous memory for userspace * @size: allocation size * * The resulting memory area is zeroed so it can be mapped to userspace * without leaking data. */ void *vmalloc_user(unsigned long size) { struct vm_struct *area; void *ret; ret = __vmalloc_node(size, SHMLBA, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, PAGE_KERNEL, -1, __builtin_return_address(0)); if (ret) { area = find_vm_area(ret); area->flags |= VM_USERMAP; } return ret; } EXPORT_SYMBOL(vmalloc_user); /** * vmalloc_node - allocate memory on a specific node * @size: allocation size * @node: numa node * * Allocate enough pages to cover @size from the page level * allocator and map them into contiguous kernel virtual space. * * For tight control over page level allocator and protection flags * use __vmalloc() instead. */ void *vmalloc_node(unsigned long size, int node) { return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, node, __builtin_return_address(0)); } EXPORT_SYMBOL(vmalloc_node); /** * vzalloc_node - allocate memory on a specific node with zero fill * @size: allocation size * @node: numa node * * Allocate enough pages to cover @size from the page level * allocator and map them into contiguous kernel virtual space. * The memory allocated is set to zero. * * For tight control over page level allocator and protection flags * use __vmalloc_node() instead. */ void *vzalloc_node(unsigned long size, int node) { return __vmalloc_node_flags(size, node, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); } EXPORT_SYMBOL(vzalloc_node); #ifndef PAGE_KERNEL_EXEC # define PAGE_KERNEL_EXEC PAGE_KERNEL #endif /** * vmalloc_exec - allocate virtually contiguous, executable memory * @size: allocation size * * Kernel-internal function to allocate enough pages to cover @size * the page level allocator and map them into contiguous and * executable kernel virtual space. * * For tight control over page level allocator and protection flags * use __vmalloc() instead. */ void *vmalloc_exec(unsigned long size) { return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC, -1, __builtin_return_address(0)); } #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL #else #define GFP_VMALLOC32 GFP_KERNEL #endif /** * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) * @size: allocation size * * Allocate enough 32bit PA addressable pages to cover @size from the * page level allocator and map them into contiguous kernel virtual space. */ void *vmalloc_32(unsigned long size) { return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL, -1, __builtin_return_address(0)); } EXPORT_SYMBOL(vmalloc_32); /** * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory * @size: allocation size * * The resulting memory area is 32bit addressable and zeroed so it can be * mapped to userspace without leaking data. */ void *vmalloc_32_user(unsigned long size) { struct vm_struct *area; void *ret; ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, -1, __builtin_return_address(0)); if (ret) { area = find_vm_area(ret); area->flags |= VM_USERMAP; } return ret; } EXPORT_SYMBOL(vmalloc_32_user); /* * small helper routine , copy contents to buf from addr. * If the page is not present, fill zero. */ static int aligned_vread(char *buf, char *addr, unsigned long count) { struct page *p; int copied = 0; while (count) { unsigned long offset, length; offset = (unsigned long)addr & ~PAGE_MASK; length = PAGE_SIZE - offset; if (length > count) length = count; p = vmalloc_to_page(addr); /* * To do safe access to this _mapped_ area, we need * lock. But adding lock here means that we need to add * overhead of vmalloc()/vfree() calles for this _debug_ * interface, rarely used. Instead of that, we'll use * kmap() and get small overhead in this access function. */ if (p) { /* * we can expect USER0 is not used (see vread/vwrite's * function description) */ void *map = kmap_atomic(p, KM_USER0); memcpy(buf, map + offset, length); kunmap_atomic(map, KM_USER0); } else memset(buf, 0, length); addr += length; buf += length; copied += length; count -= length; } return copied; } static int aligned_vwrite(char *buf, char *addr, unsigned long count) { struct page *p; int copied = 0; while (count) { unsigned long offset, length; offset = (unsigned long)addr & ~PAGE_MASK; length = PAGE_SIZE - offset; if (length > count) length = count; p = vmalloc_to_page(addr); /* * To do safe access to this _mapped_ area, we need * lock. But adding lock here means that we need to add * overhead of vmalloc()/vfree() calles for this _debug_ * interface, rarely used. Instead of that, we'll use * kmap() and get small overhead in this access function. */ if (p) { /* * we can expect USER0 is not used (see vread/vwrite's * function description) */ void *map = kmap_atomic(p, KM_USER0); memcpy(map + offset, buf, length); kunmap_atomic(map, KM_USER0); } addr += length; buf += length; copied += length; count -= length; } return copied; } /** * vread() - read vmalloc area in a safe way. * @buf: buffer for reading data * @addr: vm address. * @count: number of bytes to be read. * * Returns # of bytes which addr and buf should be increased. * (same number to @count). Returns 0 if [addr...addr+count) doesn't * includes any intersect with alive vmalloc area. * * This function checks that addr is a valid vmalloc'ed area, and * copy data from that area to a given buffer. If the given memory range * of [addr...addr+count) includes some valid address, data is copied to * proper area of @buf. If there are memory holes, they'll be zero-filled. * IOREMAP area is treated as memory hole and no copy is done. * * If [addr...addr+count) doesn't includes any intersects with alive * vm_struct area, returns 0. * @buf should be kernel's buffer. Because this function uses KM_USER0, * the caller should guarantee KM_USER0 is not used. * * Note: In usual ops, vread() is never necessary because the caller * should know vmalloc() area is valid and can use memcpy(). * This is for routines which have to access vmalloc area without * any informaion, as /dev/kmem. * */ long vread(char *buf, char *addr, unsigned long count) { struct vm_struct *tmp; char *vaddr, *buf_start = buf; unsigned long buflen = count; unsigned long n; /* Don't allow overflow */ if ((unsigned long) addr + count < count) count = -(unsigned long) addr; read_lock(&vmlist_lock); for (tmp = vmlist; count && tmp; tmp = tmp->next) { vaddr = (char *) tmp->addr; if (addr >= vaddr + tmp->size - PAGE_SIZE) continue; while (addr < vaddr) { if (count == 0) goto finished; *buf = '\0'; buf++; addr++; count--; } n = vaddr + tmp->size - PAGE_SIZE - addr; if (n > count) n = count; if (!(tmp->flags & VM_IOREMAP)) aligned_vread(buf, addr, n); else /* IOREMAP area is treated as memory hole */ memset(buf, 0, n); buf += n; addr += n; count -= n; } finished: read_unlock(&vmlist_lock); if (buf == buf_start) return 0; /* zero-fill memory holes */ if (buf != buf_start + buflen) memset(buf, 0, buflen - (buf - buf_start)); return buflen; } /** * vwrite() - write vmalloc area in a safe way. * @buf: buffer for source data * @addr: vm address. * @count: number of bytes to be read. * * Returns # of bytes which addr and buf should be incresed. * (same number to @count). * If [addr...addr+count) doesn't includes any intersect with valid * vmalloc area, returns 0. * * This function checks that addr is a valid vmalloc'ed area, and * copy data from a buffer to the given addr. If specified range of * [addr...addr+count) includes some valid address, data is copied from * proper area of @buf. If there are memory holes, no copy to hole. * IOREMAP area is treated as memory hole and no copy is done. * * If [addr...addr+count) doesn't includes any intersects with alive * vm_struct area, returns 0. * @buf should be kernel's buffer. Because this function uses KM_USER0, * the caller should guarantee KM_USER0 is not used. * * Note: In usual ops, vwrite() is never necessary because the caller * should know vmalloc() area is valid and can use memcpy(). * This is for routines which have to access vmalloc area without * any informaion, as /dev/kmem. */ long vwrite(char *buf, char *addr, unsigned long count) { struct vm_struct *tmp; char *vaddr; unsigned long n, buflen; int copied = 0; /* Don't allow overflow */ if ((unsigned long) addr + count < count) count = -(unsigned long) addr; buflen = count; read_lock(&vmlist_lock); for (tmp = vmlist; count && tmp; tmp = tmp->next) { vaddr = (char *) tmp->addr; if (addr >= vaddr + tmp->size - PAGE_SIZE) continue; while (addr < vaddr) { if (count == 0) goto finished; buf++; addr++; count--; } n = vaddr + tmp->size - PAGE_SIZE - addr; if (n > count) n = count; if (!(tmp->flags & VM_IOREMAP)) { aligned_vwrite(buf, addr, n); copied++; } buf += n; addr += n; count -= n; } finished: read_unlock(&vmlist_lock); if (!copied) return 0; return buflen; } /** * remap_vmalloc_range - map vmalloc pages to userspace * @vma: vma to cover (map full range of vma) * @addr: vmalloc memory * @pgoff: number of pages into addr before first page to map * * Returns: 0 for success, -Exxx on failure * * This function checks that addr is a valid vmalloc'ed area, and * that it is big enough to cover the vma. Will return failure if * that criteria isn't met. * * Similar to remap_pfn_range() (see mm/memory.c) */ int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, unsigned long pgoff) { struct vm_struct *area; unsigned long uaddr = vma->vm_start; unsigned long usize = vma->vm_end - vma->vm_start; if ((PAGE_SIZE-1) & (unsigned long)addr) return -EINVAL; area = find_vm_area(addr); if (!area) return -EINVAL; if (!(area->flags & VM_USERMAP)) return -EINVAL; if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE) return -EINVAL; addr += pgoff << PAGE_SHIFT; do { struct page *page = vmalloc_to_page(addr); int ret; ret = vm_insert_page(vma, uaddr, page); if (ret) return ret; uaddr += PAGE_SIZE; addr += PAGE_SIZE; usize -= PAGE_SIZE; } while (usize > 0); /* Prevent "things" like memory migration? VM_flags need a cleanup... */ vma->vm_flags |= VM_RESERVED; return 0; } EXPORT_SYMBOL(remap_vmalloc_range); /* * Implement a stub for vmalloc_sync_all() if the architecture chose not to * have one. */ void __attribute__((weak)) vmalloc_sync_all(void) { } static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) { /* apply_to_page_range() does all the hard work. */ return 0; } /** * alloc_vm_area - allocate a range of kernel address space * @size: size of the area * * Returns: NULL on failure, vm_struct on success * * This function reserves a range of kernel address space, and * allocates pagetables to map that range. No actual mappings * are created. If the kernel address space is not shared * between processes, it syncs the pagetable across all * processes. */ struct vm_struct *alloc_vm_area(size_t size) { struct vm_struct *area; area = get_vm_area_caller(size, VM_IOREMAP, __builtin_return_address(0)); if (area == NULL) return NULL; /* * This ensures that page tables are constructed for this region * of kernel virtual address space and mapped into init_mm. */ if (apply_to_page_range(&init_mm, (unsigned long)area->addr, area->size, f, NULL)) { free_vm_area(area); return NULL; } /* * If the allocated address space is passed to a hypercall * before being used then we cannot rely on a page fault to * trigger an update of the page tables. So sync all the page * tables here. */ vmalloc_sync_all(); return area; } EXPORT_SYMBOL_GPL(alloc_vm_area); void free_vm_area(struct vm_struct *area) { struct vm_struct *ret; ret = remove_vm_area(area->addr); BUG_ON(ret != area); kfree(area); } EXPORT_SYMBOL_GPL(free_vm_area); #ifdef CONFIG_SMP static struct vmap_area *node_to_va(struct rb_node *n) { return n ? rb_entry(n, struct vmap_area, rb_node) : NULL; } /** * pvm_find_next_prev - find the next and prev vmap_area surrounding @end * @end: target address * @pnext: out arg for the next vmap_area * @pprev: out arg for the previous vmap_area * * Returns: %true if either or both of next and prev are found, * %false if no vmap_area exists * * Find vmap_areas end addresses of which enclose @end. ie. if not * NULL, *pnext->va_end > @end and *pprev->va_end <= @end. */ static bool pvm_find_next_prev(unsigned long end, struct vmap_area **pnext, struct vmap_area **pprev) { struct rb_node *n = vmap_area_root.rb_node; struct vmap_area *va = NULL; while (n) { va = rb_entry(n, struct vmap_area, rb_node); if (end < va->va_end) n = n->rb_left; else if (end > va->va_end) n = n->rb_right; else break; } if (!va) return false; if (va->va_end > end) { *pnext = va; *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); } else { *pprev = va; *pnext = node_to_va(rb_next(&(*pprev)->rb_node)); } return true; } /** * pvm_determine_end - find the highest aligned address between two vmap_areas * @pnext: in/out arg for the next vmap_area * @pprev: in/out arg for the previous vmap_area * @align: alignment * * Returns: determined end address * * Find the highest aligned address between *@pnext and *@pprev below * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned * down address is between the end addresses of the two vmap_areas. * * Please note that the address returned by this function may fall * inside *@pnext vmap_area. The caller is responsible for checking * that. */ static unsigned long pvm_determine_end(struct vmap_area **pnext, struct vmap_area **pprev, unsigned long align) { const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); unsigned long addr; if (*pnext) addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end); else addr = vmalloc_end; while (*pprev && (*pprev)->va_end > addr) { *pnext = *pprev; *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); } return addr; } /** * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator * @offsets: array containing offset of each area * @sizes: array containing size of each area * @nr_vms: the number of areas to allocate * @align: alignment, all entries in @offsets and @sizes must be aligned to this * * Returns: kmalloc'd vm_struct pointer array pointing to allocated * vm_structs on success, %NULL on failure * * Percpu allocator wants to use congruent vm areas so that it can * maintain the offsets among percpu areas. This function allocates * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to * be scattered pretty far, distance between two areas easily going up * to gigabytes. To avoid interacting with regular vmallocs, these * areas are allocated from top. * * Despite its complicated look, this allocator is rather simple. It * does everything top-down and scans areas from the end looking for * matching slot. While scanning, if any of the areas overlaps with * existing vmap_area, the base address is pulled down to fit the * area. Scanning is repeated till all the areas fit and then all * necessary data structres are inserted and the result is returned. */ struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, const size_t *sizes, int nr_vms, size_t align) { const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); struct vmap_area **vas, *prev, *next; struct vm_struct **vms; int area, area2, last_area, term_area; unsigned long base, start, end, last_end; bool purged = false; /* verify parameters and allocate data structures */ BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align)); for (last_area = 0, area = 0; area < nr_vms; area++) { start = offsets[area]; end = start + sizes[area]; /* is everything aligned properly? */ BUG_ON(!IS_ALIGNED(offsets[area], align)); BUG_ON(!IS_ALIGNED(sizes[area], align)); /* detect the area with the highest address */ if (start > offsets[last_area]) last_area = area; for (area2 = 0; area2 < nr_vms; area2++) { unsigned long start2 = offsets[area2]; unsigned long end2 = start2 + sizes[area2]; if (area2 == area) continue; BUG_ON(start2 >= start && start2 < end); BUG_ON(end2 <= end && end2 > start); } } last_end = offsets[last_area] + sizes[last_area]; if (vmalloc_end - vmalloc_start < last_end) { WARN_ON(true); return NULL; } vms = kzalloc(sizeof(vms[0]) * nr_vms, GFP_KERNEL); vas = kzalloc(sizeof(vas[0]) * nr_vms, GFP_KERNEL); if (!vas || !vms) goto err_free; for (area = 0; area < nr_vms; area++) { vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL); vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); if (!vas[area] || !vms[area]) goto err_free; } retry: spin_lock(&vmap_area_lock); /* start scanning - we scan from the top, begin with the last area */ area = term_area = last_area; start = offsets[area]; end = start + sizes[area]; if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) { base = vmalloc_end - last_end; goto found; } base = pvm_determine_end(&next, &prev, align) - end; while (true) { BUG_ON(next && next->va_end <= base + end); BUG_ON(prev && prev->va_end > base + end); /* * base might have underflowed, add last_end before * comparing. */ if (base + last_end < vmalloc_start + last_end) { spin_unlock(&vmap_area_lock); if (!purged) { purge_vmap_area_lazy(); purged = true; goto retry; } goto err_free; } /* * If next overlaps, move base downwards so that it's * right below next and then recheck. */ if (next && next->va_start < base + end) { base = pvm_determine_end(&next, &prev, align) - end; term_area = area; continue; } /* * If prev overlaps, shift down next and prev and move * base so that it's right below new next and then * recheck. */ if (prev && prev->va_end > base + start) { next = prev; prev = node_to_va(rb_prev(&next->rb_node)); base = pvm_determine_end(&next, &prev, align) - end; term_area = area; continue; } /* * This area fits, move on to the previous one. If * the previous one is the terminal one, we're done. */ area = (area + nr_vms - 1) % nr_vms; if (area == term_area) break; start = offsets[area]; end = start + sizes[area]; pvm_find_next_prev(base + end, &next, &prev); } found: /* we've found a fitting base, insert all va's */ for (area = 0; area < nr_vms; area++) { struct vmap_area *va = vas[area]; va->va_start = base + offsets[area]; va->va_end = va->va_start + sizes[area]; __insert_vmap_area(va); } vmap_area_pcpu_hole = base + offsets[last_area]; spin_unlock(&vmap_area_lock); /* insert all vm's */ for (area = 0; area < nr_vms; area++) insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC, pcpu_get_vm_areas); kfree(vas); return vms; err_free: for (area = 0; area < nr_vms; area++) { if (vas) kfree(vas[area]); if (vms) kfree(vms[area]); } kfree(vas); kfree(vms); return NULL; } /** * pcpu_free_vm_areas - free vmalloc areas for percpu allocator * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() * @nr_vms: the number of allocated areas * * Free vm_structs and the array allocated by pcpu_get_vm_areas(). */ void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) { int i; for (i = 0; i < nr_vms; i++) free_vm_area(vms[i]); kfree(vms); } #endif /* CONFIG_SMP */ #ifdef CONFIG_PROC_FS static void *s_start(struct seq_file *m, loff_t *pos) __acquires(&vmlist_lock) { loff_t n = *pos; struct vm_struct *v; read_lock(&vmlist_lock); v = vmlist; while (n > 0 && v) { n--; v = v->next; } if (!n) return v; return NULL; } static void *s_next(struct seq_file *m, void *p, loff_t *pos) { struct vm_struct *v = p; ++*pos; return v->next; } static void s_stop(struct seq_file *m, void *p) __releases(&vmlist_lock) { read_unlock(&vmlist_lock); } static void show_numa_info(struct seq_file *m, struct vm_struct *v) { if (NUMA_BUILD) { unsigned int nr, *counters = m->private; if (!counters) return; memset(counters, 0, nr_node_ids * sizeof(unsigned int)); for (nr = 0; nr < v->nr_pages; nr++) counters[page_to_nid(v->pages[nr])]++; for_each_node_state(nr, N_HIGH_MEMORY) if (counters[nr]) seq_printf(m, " N%u=%u", nr, counters[nr]); } } static int s_show(struct seq_file *m, void *p) { struct vm_struct *v = p; seq_printf(m, "0x%p-0x%p %7ld", v->addr, v->addr + v->size, v->size); if (v->caller) seq_printf(m, " %pS", v->caller); if (v->nr_pages) seq_printf(m, " pages=%d", v->nr_pages); if (v->phys_addr) seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr); if (v->flags & VM_IOREMAP) seq_printf(m, " ioremap"); if (v->flags & VM_ALLOC) seq_printf(m, " vmalloc"); if (v->flags & VM_MAP) seq_printf(m, " vmap"); if (v->flags & VM_USERMAP) seq_printf(m, " user"); if (v->flags & VM_VPAGES) seq_printf(m, " vpages"); show_numa_info(m, v); seq_putc(m, '\n'); return 0; } static const struct seq_operations vmalloc_op = { .start = s_start, .next = s_next, .stop = s_stop, .show = s_show, }; static int vmalloc_open(struct inode *inode, struct file *file) { unsigned int *ptr = NULL; int ret; if (NUMA_BUILD) { ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL); if (ptr == NULL) return -ENOMEM; } ret = seq_open(file, &vmalloc_op); if (!ret) { struct seq_file *m = file->private_data; m->private = ptr; } else kfree(ptr); return ret; } static const struct file_operations proc_vmalloc_operations = { .open = vmalloc_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release_private, }; static int __init proc_vmalloc_init(void) { proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations); return 0; } module_init(proc_vmalloc_init); #endif