/* * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the BSD-type * license below: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of the Network Appliance, Inc. nor the names of * its contributors may be used to endorse or promote products * derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * rpc_rdma.c * * This file contains the guts of the RPC RDMA protocol, and * does marshaling/unmarshaling, etc. It is also where interfacing * to the Linux RPC framework lives. */ #include "xprt_rdma.h" #include #ifdef RPC_DEBUG # define RPCDBG_FACILITY RPCDBG_TRANS #endif enum rpcrdma_chunktype { rpcrdma_noch = 0, rpcrdma_readch, rpcrdma_areadch, rpcrdma_writech, rpcrdma_replych }; #ifdef RPC_DEBUG static const char transfertypes[][12] = { "pure inline", /* no chunks */ " read chunk", /* some argument via rdma read */ "*read chunk", /* entire request via rdma read */ "write chunk", /* some result via rdma write */ "reply chunk" /* entire reply via rdma write */ }; #endif /* * Chunk assembly from upper layer xdr_buf. * * Prepare the passed-in xdr_buf into representation as RPC/RDMA chunk * elements. Segments are then coalesced when registered, if possible * within the selected memreg mode. * * Note, this routine is never called if the connection's memory * registration strategy is 0 (bounce buffers). */ static int rpcrdma_convert_iovs(struct xdr_buf *xdrbuf, unsigned int pos, enum rpcrdma_chunktype type, struct rpcrdma_mr_seg *seg, int nsegs) { int len, n = 0, p; if (pos == 0 && xdrbuf->head[0].iov_len) { seg[n].mr_page = NULL; seg[n].mr_offset = xdrbuf->head[0].iov_base; seg[n].mr_len = xdrbuf->head[0].iov_len; ++n; } if (xdrbuf->page_len && (xdrbuf->pages[0] != NULL)) { if (n == nsegs) return 0; seg[n].mr_page = xdrbuf->pages[0]; seg[n].mr_offset = (void *)(unsigned long) xdrbuf->page_base; seg[n].mr_len = min_t(u32, PAGE_SIZE - xdrbuf->page_base, xdrbuf->page_len); len = xdrbuf->page_len - seg[n].mr_len; ++n; p = 1; while (len > 0) { if (n == nsegs) return 0; seg[n].mr_page = xdrbuf->pages[p]; seg[n].mr_offset = NULL; seg[n].mr_len = min_t(u32, PAGE_SIZE, len); len -= seg[n].mr_len; ++n; ++p; } } if (xdrbuf->tail[0].iov_len) { if (n == nsegs) return 0; seg[n].mr_page = NULL; seg[n].mr_offset = xdrbuf->tail[0].iov_base; seg[n].mr_len = xdrbuf->tail[0].iov_len; ++n; } return n; } /* * Create read/write chunk lists, and reply chunks, for RDMA * * Assume check against THRESHOLD has been done, and chunks are required. * Assume only encoding one list entry for read|write chunks. The NFSv3 * protocol is simple enough to allow this as it only has a single "bulk * result" in each procedure - complicated NFSv4 COMPOUNDs are not. (The * RDMA/Sessions NFSv4 proposal addresses this for future v4 revs.) * * When used for a single reply chunk (which is a special write * chunk used for the entire reply, rather than just the data), it * is used primarily for READDIR and READLINK which would otherwise * be severely size-limited by a small rdma inline read max. The server * response will come back as an RDMA Write, followed by a message * of type RDMA_NOMSG carrying the xid and length. As a result, reply * chunks do not provide data alignment, however they do not require * "fixup" (moving the response to the upper layer buffer) either. * * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64): * * Read chunklist (a linked list): * N elements, position P (same P for all chunks of same arg!): * 1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0 * * Write chunklist (a list of (one) counted array): * N elements: * 1 - N - HLOO - HLOO - ... - HLOO - 0 * * Reply chunk (a counted array): * N elements: * 1 - N - HLOO - HLOO - ... - HLOO */ static unsigned int rpcrdma_create_chunks(struct rpc_rqst *rqst, struct xdr_buf *target, struct rpcrdma_msg *headerp, enum rpcrdma_chunktype type) { struct rpcrdma_req *req = rpcr_to_rdmar(rqst); struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_task->tk_xprt); int nsegs, nchunks = 0; unsigned int pos; struct rpcrdma_mr_seg *seg = req->rl_segments; struct rpcrdma_read_chunk *cur_rchunk = NULL; struct rpcrdma_write_array *warray = NULL; struct rpcrdma_write_chunk *cur_wchunk = NULL; __be32 *iptr = headerp->rm_body.rm_chunks; if (type == rpcrdma_readch || type == rpcrdma_areadch) { /* a read chunk - server will RDMA Read our memory */ cur_rchunk = (struct rpcrdma_read_chunk *) iptr; } else { /* a write or reply chunk - server will RDMA Write our memory */ *iptr++ = xdr_zero; /* encode a NULL read chunk list */ if (type == rpcrdma_replych) *iptr++ = xdr_zero; /* a NULL write chunk list */ warray = (struct rpcrdma_write_array *) iptr; cur_wchunk = (struct rpcrdma_write_chunk *) (warray + 1); } if (type == rpcrdma_replych || type == rpcrdma_areadch) pos = 0; else pos = target->head[0].iov_len; nsegs = rpcrdma_convert_iovs(target, pos, type, seg, RPCRDMA_MAX_SEGS); if (nsegs == 0) return 0; do { /* bind/register the memory, then build chunk from result. */ int n = rpcrdma_register_external(seg, nsegs, cur_wchunk != NULL, r_xprt); if (n <= 0) goto out; if (cur_rchunk) { /* read */ cur_rchunk->rc_discrim = xdr_one; /* all read chunks have the same "position" */ cur_rchunk->rc_position = htonl(pos); cur_rchunk->rc_target.rs_handle = htonl(seg->mr_rkey); cur_rchunk->rc_target.rs_length = htonl(seg->mr_len); xdr_encode_hyper( (__be32 *)&cur_rchunk->rc_target.rs_offset, seg->mr_base); dprintk("RPC: %s: read chunk " "elem %d@0x%llx:0x%x pos %u (%s)\n", __func__, seg->mr_len, (unsigned long long)seg->mr_base, seg->mr_rkey, pos, n < nsegs ? "more" : "last"); cur_rchunk++; r_xprt->rx_stats.read_chunk_count++; } else { /* write/reply */ cur_wchunk->wc_target.rs_handle = htonl(seg->mr_rkey); cur_wchunk->wc_target.rs_length = htonl(seg->mr_len); xdr_encode_hyper( (__be32 *)&cur_wchunk->wc_target.rs_offset, seg->mr_base); dprintk("RPC: %s: %s chunk " "elem %d@0x%llx:0x%x (%s)\n", __func__, (type == rpcrdma_replych) ? "reply" : "write", seg->mr_len, (unsigned long long)seg->mr_base, seg->mr_rkey, n < nsegs ? "more" : "last"); cur_wchunk++; if (type == rpcrdma_replych) r_xprt->rx_stats.reply_chunk_count++; else r_xprt->rx_stats.write_chunk_count++; r_xprt->rx_stats.total_rdma_request += seg->mr_len; } nchunks++; seg += n; nsegs -= n; } while (nsegs); /* success. all failures return above */ req->rl_nchunks = nchunks; BUG_ON(nchunks == 0); /* * finish off header. If write, marshal discrim and nchunks. */ if (cur_rchunk) { iptr = (__be32 *) cur_rchunk; *iptr++ = xdr_zero; /* finish the read chunk list */ *iptr++ = xdr_zero; /* encode a NULL write chunk list */ *iptr++ = xdr_zero; /* encode a NULL reply chunk */ } else { warray->wc_discrim = xdr_one; warray->wc_nchunks = htonl(nchunks); iptr = (__be32 *) cur_wchunk; if (type == rpcrdma_writech) { *iptr++ = xdr_zero; /* finish the write chunk list */ *iptr++ = xdr_zero; /* encode a NULL reply chunk */ } } /* * Return header size. */ return (unsigned char *)iptr - (unsigned char *)headerp; out: for (pos = 0; nchunks--;) pos += rpcrdma_deregister_external( &req->rl_segments[pos], r_xprt, NULL); return 0; } /* * Copy write data inline. * This function is used for "small" requests. Data which is passed * to RPC via iovecs (or page list) is copied directly into the * pre-registered memory buffer for this request. For small amounts * of data, this is efficient. The cutoff value is tunable. */ static int rpcrdma_inline_pullup(struct rpc_rqst *rqst, int pad) { int i, npages, curlen; int copy_len; unsigned char *srcp, *destp; struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt); destp = rqst->rq_svec[0].iov_base; curlen = rqst->rq_svec[0].iov_len; destp += curlen; /* * Do optional padding where it makes sense. Alignment of write * payload can help the server, if our setting is accurate. */ pad -= (curlen + 36/*sizeof(struct rpcrdma_msg_padded)*/); if (pad < 0 || rqst->rq_slen - curlen < RPCRDMA_INLINE_PAD_THRESH) pad = 0; /* don't pad this request */ dprintk("RPC: %s: pad %d destp 0x%p len %d hdrlen %d\n", __func__, pad, destp, rqst->rq_slen, curlen); copy_len = rqst->rq_snd_buf.page_len; r_xprt->rx_stats.pullup_copy_count += copy_len; npages = PAGE_ALIGN(rqst->rq_snd_buf.page_base+copy_len) >> PAGE_SHIFT; for (i = 0; copy_len && i < npages; i++) { if (i == 0) curlen = PAGE_SIZE - rqst->rq_snd_buf.page_base; else curlen = PAGE_SIZE; if (curlen > copy_len) curlen = copy_len; dprintk("RPC: %s: page %d destp 0x%p len %d curlen %d\n", __func__, i, destp, copy_len, curlen); srcp = kmap_atomic(rqst->rq_snd_buf.pages[i], KM_SKB_SUNRPC_DATA); if (i == 0) memcpy(destp, srcp+rqst->rq_snd_buf.page_base, curlen); else memcpy(destp, srcp, curlen); kunmap_atomic(srcp, KM_SKB_SUNRPC_DATA); rqst->rq_svec[0].iov_len += curlen; destp += curlen; copy_len -= curlen; } if (rqst->rq_snd_buf.tail[0].iov_len) { curlen = rqst->rq_snd_buf.tail[0].iov_len; if (destp != rqst->rq_snd_buf.tail[0].iov_base) { memcpy(destp, rqst->rq_snd_buf.tail[0].iov_base, curlen); r_xprt->rx_stats.pullup_copy_count += curlen; } dprintk("RPC: %s: tail destp 0x%p len %d curlen %d\n", __func__, destp, copy_len, curlen); rqst->rq_svec[0].iov_len += curlen; } /* header now contains entire send message */ return pad; } /* * Marshal a request: the primary job of this routine is to choose * the transfer modes. See comments below. * * Uses multiple RDMA IOVs for a request: * [0] -- RPC RDMA header, which uses memory from the *start* of the * preregistered buffer that already holds the RPC data in * its middle. * [1] -- the RPC header/data, marshaled by RPC and the NFS protocol. * [2] -- optional padding. * [3] -- if padded, header only in [1] and data here. */ int rpcrdma_marshal_req(struct rpc_rqst *rqst) { struct rpc_xprt *xprt = rqst->rq_task->tk_xprt; struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); struct rpcrdma_req *req = rpcr_to_rdmar(rqst); char *base; size_t hdrlen, rpclen, padlen; enum rpcrdma_chunktype rtype, wtype; struct rpcrdma_msg *headerp; /* * rpclen gets amount of data in first buffer, which is the * pre-registered buffer. */ base = rqst->rq_svec[0].iov_base; rpclen = rqst->rq_svec[0].iov_len; /* build RDMA header in private area at front */ headerp = (struct rpcrdma_msg *) req->rl_base; /* don't htonl XID, it's already done in request */ headerp->rm_xid = rqst->rq_xid; headerp->rm_vers = xdr_one; headerp->rm_credit = htonl(r_xprt->rx_buf.rb_max_requests); headerp->rm_type = htonl(RDMA_MSG); /* * Chunks needed for results? * * o If the expected result is under the inline threshold, all ops * return as inline (but see later). * o Large non-read ops return as a single reply chunk. * o Large read ops return data as write chunk(s), header as inline. * * Note: the NFS code sending down multiple result segments implies * the op is one of read, readdir[plus], readlink or NFSv4 getacl. */ /* * This code can handle read chunks, write chunks OR reply * chunks -- only one type. If the request is too big to fit * inline, then we will choose read chunks. If the request is * a READ, then use write chunks to separate the file data * into pages; otherwise use reply chunks. */ if (rqst->rq_rcv_buf.buflen <= RPCRDMA_INLINE_READ_THRESHOLD(rqst)) wtype = rpcrdma_noch; else if (rqst->rq_rcv_buf.page_len == 0) wtype = rpcrdma_replych; else if (rqst->rq_rcv_buf.flags & XDRBUF_READ) wtype = rpcrdma_writech; else wtype = rpcrdma_replych; /* * Chunks needed for arguments? * * o If the total request is under the inline threshold, all ops * are sent as inline. * o Large non-write ops are sent with the entire message as a * single read chunk (protocol 0-position special case). * o Large write ops transmit data as read chunk(s), header as * inline. * * Note: the NFS code sending down multiple argument segments * implies the op is a write. * TBD check NFSv4 setacl */ if (rqst->rq_snd_buf.len <= RPCRDMA_INLINE_WRITE_THRESHOLD(rqst)) rtype = rpcrdma_noch; else if (rqst->rq_snd_buf.page_len == 0) rtype = rpcrdma_areadch; else rtype = rpcrdma_readch; /* The following simplification is not true forever */ if (rtype != rpcrdma_noch && wtype == rpcrdma_replych) wtype = rpcrdma_noch; BUG_ON(rtype != rpcrdma_noch && wtype != rpcrdma_noch); if (r_xprt->rx_ia.ri_memreg_strategy == RPCRDMA_BOUNCEBUFFERS && (rtype != rpcrdma_noch || wtype != rpcrdma_noch)) { /* forced to "pure inline"? */ dprintk("RPC: %s: too much data (%d/%d) for inline\n", __func__, rqst->rq_rcv_buf.len, rqst->rq_snd_buf.len); return -1; } hdrlen = 28; /*sizeof *headerp;*/ padlen = 0; /* * Pull up any extra send data into the preregistered buffer. * When padding is in use and applies to the transfer, insert * it and change the message type. */ if (rtype == rpcrdma_noch) { padlen = rpcrdma_inline_pullup(rqst, RPCRDMA_INLINE_PAD_VALUE(rqst)); if (padlen) { headerp->rm_type = htonl(RDMA_MSGP); headerp->rm_body.rm_padded.rm_align = htonl(RPCRDMA_INLINE_PAD_VALUE(rqst)); headerp->rm_body.rm_padded.rm_thresh = htonl(RPCRDMA_INLINE_PAD_THRESH); headerp->rm_body.rm_padded.rm_pempty[0] = xdr_zero; headerp->rm_body.rm_padded.rm_pempty[1] = xdr_zero; headerp->rm_body.rm_padded.rm_pempty[2] = xdr_zero; hdrlen += 2 * sizeof(u32); /* extra words in padhdr */ BUG_ON(wtype != rpcrdma_noch); } else { headerp->rm_body.rm_nochunks.rm_empty[0] = xdr_zero; headerp->rm_body.rm_nochunks.rm_empty[1] = xdr_zero; headerp->rm_body.rm_nochunks.rm_empty[2] = xdr_zero; /* new length after pullup */ rpclen = rqst->rq_svec[0].iov_len; /* * Currently we try to not actually use read inline. * Reply chunks have the desirable property that * they land, packed, directly in the target buffers * without headers, so they require no fixup. The * additional RDMA Write op sends the same amount * of data, streams on-the-wire and adds no overhead * on receive. Therefore, we request a reply chunk * for non-writes wherever feasible and efficient. */ if (wtype == rpcrdma_noch && r_xprt->rx_ia.ri_memreg_strategy > RPCRDMA_REGISTER) wtype = rpcrdma_replych; } } /* * Marshal chunks. This routine will return the header length * consumed by marshaling. */ if (rtype != rpcrdma_noch) { hdrlen = rpcrdma_create_chunks(rqst, &rqst->rq_snd_buf, headerp, rtype); wtype = rtype; /* simplify dprintk */ } else if (wtype != rpcrdma_noch) { hdrlen = rpcrdma_create_chunks(rqst, &rqst->rq_rcv_buf, headerp, wtype); } if (hdrlen == 0) return -1; dprintk("RPC: %s: %s: hdrlen %zd rpclen %zd padlen %zd\n" " headerp 0x%p base 0x%p lkey 0x%x\n", __func__, transfertypes[wtype], hdrlen, rpclen, padlen, headerp, base, req->rl_iov.lkey); /* * initialize send_iov's - normally only two: rdma chunk header and * single preregistered RPC header buffer, but if padding is present, * then use a preregistered (and zeroed) pad buffer between the RPC * header and any write data. In all non-rdma cases, any following * data has been copied into the RPC header buffer. */ req->rl_send_iov[0].addr = req->rl_iov.addr; req->rl_send_iov[0].length = hdrlen; req->rl_send_iov[0].lkey = req->rl_iov.lkey; req->rl_send_iov[1].addr = req->rl_iov.addr + (base - req->rl_base); req->rl_send_iov[1].length = rpclen; req->rl_send_iov[1].lkey = req->rl_iov.lkey; req->rl_niovs = 2; if (padlen) { struct rpcrdma_ep *ep = &r_xprt->rx_ep; req->rl_send_iov[2].addr = ep->rep_pad.addr; req->rl_send_iov[2].length = padlen; req->rl_send_iov[2].lkey = ep->rep_pad.lkey; req->rl_send_iov[3].addr = req->rl_send_iov[1].addr + rpclen; req->rl_send_iov[3].length = rqst->rq_slen - rpclen; req->rl_send_iov[3].lkey = req->rl_iov.lkey; req->rl_niovs = 4; } return 0; } /* * Chase down a received write or reply chunklist to get length * RDMA'd by server. See map at rpcrdma_create_chunks()! :-) */ static int rpcrdma_count_chunks(struct rpcrdma_rep *rep, int max, int wrchunk, __be32 **iptrp) { unsigned int i, total_len; struct rpcrdma_write_chunk *cur_wchunk; i = ntohl(**iptrp); /* get array count */ if (i > max) return -1; cur_wchunk = (struct rpcrdma_write_chunk *) (*iptrp + 1); total_len = 0; while (i--) { struct rpcrdma_segment *seg = &cur_wchunk->wc_target; ifdebug(FACILITY) { u64 off; xdr_decode_hyper((__be32 *)&seg->rs_offset, &off); dprintk("RPC: %s: chunk %d@0x%llx:0x%x\n", __func__, ntohl(seg->rs_length), (unsigned long long)off, ntohl(seg->rs_handle)); } total_len += ntohl(seg->rs_length); ++cur_wchunk; } /* check and adjust for properly terminated write chunk */ if (wrchunk) { __be32 *w = (__be32 *) cur_wchunk; if (*w++ != xdr_zero) return -1; cur_wchunk = (struct rpcrdma_write_chunk *) w; } if ((char *) cur_wchunk > rep->rr_base + rep->rr_len) return -1; *iptrp = (__be32 *) cur_wchunk; return total_len; } /* * Scatter inline received data back into provided iov's. */ static void rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len) { int i, npages, curlen, olen; char *destp; curlen = rqst->rq_rcv_buf.head[0].iov_len; if (curlen > copy_len) { /* write chunk header fixup */ curlen = copy_len; rqst->rq_rcv_buf.head[0].iov_len = curlen; } dprintk("RPC: %s: srcp 0x%p len %d hdrlen %d\n", __func__, srcp, copy_len, curlen); /* Shift pointer for first receive segment only */ rqst->rq_rcv_buf.head[0].iov_base = srcp; srcp += curlen; copy_len -= curlen; olen = copy_len; i = 0; rpcx_to_rdmax(rqst->rq_xprt)->rx_stats.fixup_copy_count += olen; if (copy_len && rqst->rq_rcv_buf.page_len) { npages = PAGE_ALIGN(rqst->rq_rcv_buf.page_base + rqst->rq_rcv_buf.page_len) >> PAGE_SHIFT; for (; i < npages; i++) { if (i == 0) curlen = PAGE_SIZE - rqst->rq_rcv_buf.page_base; else curlen = PAGE_SIZE; if (curlen > copy_len) curlen = copy_len; dprintk("RPC: %s: page %d" " srcp 0x%p len %d curlen %d\n", __func__, i, srcp, copy_len, curlen); destp = kmap_atomic(rqst->rq_rcv_buf.pages[i], KM_SKB_SUNRPC_DATA); if (i == 0) memcpy(destp + rqst->rq_rcv_buf.page_base, srcp, curlen); else memcpy(destp, srcp, curlen); flush_dcache_page(rqst->rq_rcv_buf.pages[i]); kunmap_atomic(destp, KM_SKB_SUNRPC_DATA); srcp += curlen; copy_len -= curlen; if (copy_len == 0) break; } rqst->rq_rcv_buf.page_len = olen - copy_len; } else rqst->rq_rcv_buf.page_len = 0; if (copy_len && rqst->rq_rcv_buf.tail[0].iov_len) { curlen = copy_len; if (curlen > rqst->rq_rcv_buf.tail[0].iov_len) curlen = rqst->rq_rcv_buf.tail[0].iov_len; if (rqst->rq_rcv_buf.tail[0].iov_base != srcp) memcpy(rqst->rq_rcv_buf.tail[0].iov_base, srcp, curlen); dprintk("RPC: %s: tail srcp 0x%p len %d curlen %d\n", __func__, srcp, copy_len, curlen); rqst->rq_rcv_buf.tail[0].iov_len = curlen; copy_len -= curlen; ++i; } else rqst->rq_rcv_buf.tail[0].iov_len = 0; if (copy_len) dprintk("RPC: %s: %d bytes in" " %d extra segments (%d lost)\n", __func__, olen, i, copy_len); /* TBD avoid a warning from call_decode() */ rqst->rq_private_buf = rqst->rq_rcv_buf; } /* * This function is called when an async event is posted to * the connection which changes the connection state. All it * does at this point is mark the connection up/down, the rpc * timers do the rest. */ void rpcrdma_conn_func(struct rpcrdma_ep *ep) { struct rpc_xprt *xprt = ep->rep_xprt; spin_lock_bh(&xprt->transport_lock); if (ep->rep_connected > 0) { if (!xprt_test_and_set_connected(xprt)) xprt_wake_pending_tasks(xprt, 0); } else { if (xprt_test_and_clear_connected(xprt)) xprt_wake_pending_tasks(xprt, ep->rep_connected); } spin_unlock_bh(&xprt->transport_lock); } /* * This function is called when memory window unbind which we are waiting * for completes. Just use rr_func (zeroed by upcall) to signal completion. */ static void rpcrdma_unbind_func(struct rpcrdma_rep *rep) { wake_up(&rep->rr_unbind); } /* * Called as a tasklet to do req/reply match and complete a request * Errors must result in the RPC task either being awakened, or * allowed to timeout, to discover the errors at that time. */ void rpcrdma_reply_handler(struct rpcrdma_rep *rep) { struct rpcrdma_msg *headerp; struct rpcrdma_req *req; struct rpc_rqst *rqst; struct rpc_xprt *xprt = rep->rr_xprt; struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); __be32 *iptr; int i, rdmalen, status; /* Check status. If bad, signal disconnect and return rep to pool */ if (rep->rr_len == ~0U) { rpcrdma_recv_buffer_put(rep); if (r_xprt->rx_ep.rep_connected == 1) { r_xprt->rx_ep.rep_connected = -EIO; rpcrdma_conn_func(&r_xprt->rx_ep); } return; } if (rep->rr_len < 28) { dprintk("RPC: %s: short/invalid reply\n", __func__); goto repost; } headerp = (struct rpcrdma_msg *) rep->rr_base; if (headerp->rm_vers != xdr_one) { dprintk("RPC: %s: invalid version %d\n", __func__, ntohl(headerp->rm_vers)); goto repost; } /* Get XID and try for a match. */ spin_lock(&xprt->transport_lock); rqst = xprt_lookup_rqst(xprt, headerp->rm_xid); if (rqst == NULL) { spin_unlock(&xprt->transport_lock); dprintk("RPC: %s: reply 0x%p failed " "to match any request xid 0x%08x len %d\n", __func__, rep, headerp->rm_xid, rep->rr_len); repost: r_xprt->rx_stats.bad_reply_count++; rep->rr_func = rpcrdma_reply_handler; if (rpcrdma_ep_post_recv(&r_xprt->rx_ia, &r_xprt->rx_ep, rep)) rpcrdma_recv_buffer_put(rep); return; } /* get request object */ req = rpcr_to_rdmar(rqst); dprintk("RPC: %s: reply 0x%p completes request 0x%p\n" " RPC request 0x%p xid 0x%08x\n", __func__, rep, req, rqst, headerp->rm_xid); BUG_ON(!req || req->rl_reply); /* from here on, the reply is no longer an orphan */ req->rl_reply = rep; /* check for expected message types */ /* The order of some of these tests is important. */ switch (headerp->rm_type) { case __constant_htonl(RDMA_MSG): /* never expect read chunks */ /* never expect reply chunks (two ways to check) */ /* never expect write chunks without having offered RDMA */ if (headerp->rm_body.rm_chunks[0] != xdr_zero || (headerp->rm_body.rm_chunks[1] == xdr_zero && headerp->rm_body.rm_chunks[2] != xdr_zero) || (headerp->rm_body.rm_chunks[1] != xdr_zero && req->rl_nchunks == 0)) goto badheader; if (headerp->rm_body.rm_chunks[1] != xdr_zero) { /* count any expected write chunks in read reply */ /* start at write chunk array count */ iptr = &headerp->rm_body.rm_chunks[2]; rdmalen = rpcrdma_count_chunks(rep, req->rl_nchunks, 1, &iptr); /* check for validity, and no reply chunk after */ if (rdmalen < 0 || *iptr++ != xdr_zero) goto badheader; rep->rr_len -= ((unsigned char *)iptr - (unsigned char *)headerp); status = rep->rr_len + rdmalen; r_xprt->rx_stats.total_rdma_reply += rdmalen; } else { /* else ordinary inline */ iptr = (__be32 *)((unsigned char *)headerp + 28); rep->rr_len -= 28; /*sizeof *headerp;*/ status = rep->rr_len; } /* Fix up the rpc results for upper layer */ rpcrdma_inline_fixup(rqst, (char *)iptr, rep->rr_len); break; case __constant_htonl(RDMA_NOMSG): /* never expect read or write chunks, always reply chunks */ if (headerp->rm_body.rm_chunks[0] != xdr_zero || headerp->rm_body.rm_chunks[1] != xdr_zero || headerp->rm_body.rm_chunks[2] != xdr_one || req->rl_nchunks == 0) goto badheader; iptr = (__be32 *)((unsigned char *)headerp + 28); rdmalen = rpcrdma_count_chunks(rep, req->rl_nchunks, 0, &iptr); if (rdmalen < 0) goto badheader; r_xprt->rx_stats.total_rdma_reply += rdmalen; /* Reply chunk buffer already is the reply vector - no fixup. */ status = rdmalen; break; badheader: default: dprintk("%s: invalid rpcrdma reply header (type %d):" " chunks[012] == %d %d %d" " expected chunks <= %d\n", __func__, ntohl(headerp->rm_type), headerp->rm_body.rm_chunks[0], headerp->rm_body.rm_chunks[1], headerp->rm_body.rm_chunks[2], req->rl_nchunks); status = -EIO; r_xprt->rx_stats.bad_reply_count++; break; } /* If using mw bind, start the deregister process now. */ /* (Note: if mr_free(), cannot perform it here, in tasklet context) */ if (req->rl_nchunks) switch (r_xprt->rx_ia.ri_memreg_strategy) { case RPCRDMA_MEMWINDOWS: for (i = 0; req->rl_nchunks-- > 1;) i += rpcrdma_deregister_external( &req->rl_segments[i], r_xprt, NULL); /* Optionally wait (not here) for unbinds to complete */ rep->rr_func = rpcrdma_unbind_func; (void) rpcrdma_deregister_external(&req->rl_segments[i], r_xprt, rep); break; case RPCRDMA_MEMWINDOWS_ASYNC: for (i = 0; req->rl_nchunks--;) i += rpcrdma_deregister_external(&req->rl_segments[i], r_xprt, NULL); break; default: break; } dprintk("RPC: %s: xprt_complete_rqst(0x%p, 0x%p, %d)\n", __func__, xprt, rqst, status); xprt_complete_rqst(rqst->rq_task, status); spin_unlock(&xprt->transport_lock); }