summaryrefslogtreecommitdiffstats
path: root/Documentation/filesystems/tmpfs.txt
blob: 1773106976a26ebf7aaf425141797ea43f4563f1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
Tmpfs is a file system which keeps all files in virtual memory.


Everything in tmpfs is temporary in the sense that no files will be
created on your hard drive. If you unmount a tmpfs instance,
everything stored therein is lost.

tmpfs puts everything into the kernel internal caches and grows and
shrinks to accommodate the files it contains and is able to swap
unneeded pages out to swap space. It has maximum size limits which can
be adjusted on the fly via 'mount -o remount ...'

If you compare it to ramfs (which was the template to create tmpfs)
you gain swapping and limit checking. Another similar thing is the RAM
disk (/dev/ram*), which simulates a fixed size hard disk in physical
RAM, where you have to create an ordinary filesystem on top. Ramdisks
cannot swap and you do not have the possibility to resize them. 

Since tmpfs lives completely in the page cache and on swap, all tmpfs
pages currently in memory will show up as cached. It will not show up
as shared or something like that. Further on you can check the actual
RAM+swap use of a tmpfs instance with df(1) and du(1).


tmpfs has the following uses:

1) There is always a kernel internal mount which you will not see at
   all. This is used for shared anonymous mappings and SYSV shared
   memory. 

   This mount does not depend on CONFIG_TMPFS. If CONFIG_TMPFS is not
   set, the user visible part of tmpfs is not build. But the internal
   mechanisms are always present.

2) glibc 2.2 and above expects tmpfs to be mounted at /dev/shm for
   POSIX shared memory (shm_open, shm_unlink). Adding the following
   line to /etc/fstab should take care of this:

	tmpfs	/dev/shm	tmpfs	defaults	0 0

   Remember to create the directory that you intend to mount tmpfs on
   if necessary (/dev/shm is automagically created if you use devfs).

   This mount is _not_ needed for SYSV shared memory. The internal
   mount is used for that. (In the 2.3 kernel versions it was
   necessary to mount the predecessor of tmpfs (shm fs) to use SYSV
   shared memory)

3) Some people (including me) find it very convenient to mount it
   e.g. on /tmp and /var/tmp and have a big swap partition. And now
   loop mounts of tmpfs files do work, so mkinitrd shipped by most
   distributions should succeed with a tmpfs /tmp.

4) And probably a lot more I do not know about :-)


tmpfs has three mount options for sizing:

size:      The limit of allocated bytes for this tmpfs instance. The 
           default is half of your physical RAM without swap. If you
           oversize your tmpfs instances the machine will deadlock
           since the OOM handler will not be able to free that memory.
nr_blocks: The same as size, but in blocks of PAGE_CACHE_SIZE.
nr_inodes: The maximum number of inodes for this instance. The default
           is half of the number of your physical RAM pages, or (on a
           a machine with highmem) the number of lowmem RAM pages,
           whichever is the lower.

These parameters accept a suffix k, m or g for kilo, mega and giga and
can be changed on remount.  The size parameter also accepts a suffix %
to limit this tmpfs instance to that percentage of your physical RAM:
the default, when neither size nor nr_blocks is specified, is size=50%

If nr_blocks=0 (or size=0), blocks will not be limited in that instance;
if nr_inodes=0, inodes will not be limited.  It is generally unwise to
mount with such options, since it allows any user with write access to
use up all the memory on the machine; but enhances the scalability of
that instance in a system with many cpus making intensive use of it.


tmpfs has a mount option to set the NUMA memory allocation policy for
all files in that instance (if CONFIG_NUMA is enabled) - which can be
adjusted on the fly via 'mount -o remount ...'

mpol=default             prefers to allocate memory from the local node
mpol=prefer:Node         prefers to allocate memory from the given Node
mpol=bind:NodeList       allocates memory only from nodes in NodeList
mpol=interleave          prefers to allocate from each node in turn
mpol=interleave:NodeList allocates from each node of NodeList in turn

NodeList format is a comma-separated list of decimal numbers and ranges,
a range being two hyphen-separated decimal numbers, the smallest and
largest node numbers in the range.  For example, mpol=bind:0-3,5,7,9-15

Note that trying to mount a tmpfs with an mpol option will fail if the
running kernel does not support NUMA; and will fail if its nodelist
specifies a node >= MAX_NUMNODES.  If your system relies on that tmpfs
being mounted, but from time to time runs a kernel built without NUMA
capability (perhaps a safe recovery kernel), or configured to support
fewer nodes, then it is advisable to omit the mpol option from automatic
mount options.  It can be added later, when the tmpfs is already mounted
on MountPoint, by 'mount -o remount,mpol=Policy:NodeList MountPoint'.


To specify the initial root directory you can use the following mount
options:

mode:	The permissions as an octal number
uid:	The user id 
gid:	The group id

These options do not have any effect on remount. You can change these
parameters with chmod(1), chown(1) and chgrp(1) on a mounted filesystem.


So 'mount -t tmpfs -o size=10G,nr_inodes=10k,mode=700 tmpfs /mytmpfs'
will give you tmpfs instance on /mytmpfs which can allocate 10GB
RAM/SWAP in 10240 inodes and it is only accessible by root.


Author:
   Christoph Rohland <cr@sap.com>, 1.12.01
Updated:
   Hugh Dickins <hugh@veritas.com>, 19 February 2006