summaryrefslogtreecommitdiffstats
path: root/arch/arm/include/asm/cacheflush.h
blob: 15f2d5bf8875636e1514d377fc61b426534b3f74 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
/*
 *  arch/arm/include/asm/cacheflush.h
 *
 *  Copyright (C) 1999-2002 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#ifndef _ASMARM_CACHEFLUSH_H
#define _ASMARM_CACHEFLUSH_H

#include <linux/mm.h>

#include <asm/glue-cache.h>
#include <asm/shmparam.h>
#include <asm/cachetype.h>
#include <asm/outercache.h>

#define CACHE_COLOUR(vaddr)	((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT)

/*
 * This flag is used to indicate that the page pointed to by a pte is clean
 * and does not require cleaning before returning it to the user.
 */
#define PG_dcache_clean PG_arch_1

/*
 *	MM Cache Management
 *	===================
 *
 *	The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files
 *	implement these methods.
 *
 *	Start addresses are inclusive and end addresses are exclusive;
 *	start addresses should be rounded down, end addresses up.
 *
 *	See Documentation/cachetlb.txt for more information.
 *	Please note that the implementation of these, and the required
 *	effects are cache-type (VIVT/VIPT/PIPT) specific.
 *
 *	flush_icache_all()
 *
 *		Unconditionally clean and invalidate the entire icache.
 *		Currently only needed for cache-v6.S and cache-v7.S, see
 *		__flush_icache_all for the generic implementation.
 *
 *	flush_kern_all()
 *
 *		Unconditionally clean and invalidate the entire cache.
 *
 *     flush_kern_louis()
 *
 *             Flush data cache levels up to the level of unification
 *             inner shareable and invalidate the I-cache.
 *             Only needed from v7 onwards, falls back to flush_cache_all()
 *             for all other processor versions.
 *
 *	flush_user_all()
 *
 *		Clean and invalidate all user space cache entries
 *		before a change of page tables.
 *
 *	flush_user_range(start, end, flags)
 *
 *		Clean and invalidate a range of cache entries in the
 *		specified address space before a change of page tables.
 *		- start - user start address (inclusive, page aligned)
 *		- end   - user end address   (exclusive, page aligned)
 *		- flags - vma->vm_flags field
 *
 *	coherent_kern_range(start, end)
 *
 *		Ensure coherency between the Icache and the Dcache in the
 *		region described by start, end.  If you have non-snooping
 *		Harvard caches, you need to implement this function.
 *		- start  - virtual start address
 *		- end    - virtual end address
 *
 *	coherent_user_range(start, end)
 *
 *		Ensure coherency between the Icache and the Dcache in the
 *		region described by start, end.  If you have non-snooping
 *		Harvard caches, you need to implement this function.
 *		- start  - virtual start address
 *		- end    - virtual end address
 *
 *	flush_kern_dcache_area(kaddr, size)
 *
 *		Ensure that the data held in page is written back.
 *		- kaddr  - page address
 *		- size   - region size
 *
 *	DMA Cache Coherency
 *	===================
 *
 *	dma_flush_range(start, end)
 *
 *		Clean and invalidate the specified virtual address range.
 *		- start  - virtual start address
 *		- end    - virtual end address
 */

struct cpu_cache_fns {
	void (*flush_icache_all)(void);
	void (*flush_kern_all)(void);
	void (*flush_kern_louis)(void);
	void (*flush_user_all)(void);
	void (*flush_user_range)(unsigned long, unsigned long, unsigned int);

	void (*coherent_kern_range)(unsigned long, unsigned long);
	int  (*coherent_user_range)(unsigned long, unsigned long);
	void (*flush_kern_dcache_area)(void *, size_t);

	void (*dma_map_area)(const void *, size_t, int);
	void (*dma_unmap_area)(const void *, size_t, int);

	void (*dma_flush_range)(const void *, const void *);
};

/*
 * Select the calling method
 */
#ifdef MULTI_CACHE

extern struct cpu_cache_fns cpu_cache;

#define __cpuc_flush_icache_all		cpu_cache.flush_icache_all
#define __cpuc_flush_kern_all		cpu_cache.flush_kern_all
#define __cpuc_flush_kern_louis		cpu_cache.flush_kern_louis
#define __cpuc_flush_user_all		cpu_cache.flush_user_all
#define __cpuc_flush_user_range		cpu_cache.flush_user_range
#define __cpuc_coherent_kern_range	cpu_cache.coherent_kern_range
#define __cpuc_coherent_user_range	cpu_cache.coherent_user_range
#define __cpuc_flush_dcache_area	cpu_cache.flush_kern_dcache_area

/*
 * These are private to the dma-mapping API.  Do not use directly.
 * Their sole purpose is to ensure that data held in the cache
 * is visible to DMA, or data written by DMA to system memory is
 * visible to the CPU.
 */
#define dmac_map_area			cpu_cache.dma_map_area
#define dmac_unmap_area			cpu_cache.dma_unmap_area
#define dmac_flush_range		cpu_cache.dma_flush_range

#else

extern void __cpuc_flush_icache_all(void);
extern void __cpuc_flush_kern_all(void);
extern void __cpuc_flush_kern_louis(void);
extern void __cpuc_flush_user_all(void);
extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int);
extern void __cpuc_coherent_kern_range(unsigned long, unsigned long);
extern int  __cpuc_coherent_user_range(unsigned long, unsigned long);
extern void __cpuc_flush_dcache_area(void *, size_t);

/*
 * These are private to the dma-mapping API.  Do not use directly.
 * Their sole purpose is to ensure that data held in the cache
 * is visible to DMA, or data written by DMA to system memory is
 * visible to the CPU.
 */
extern void dmac_map_area(const void *, size_t, int);
extern void dmac_unmap_area(const void *, size_t, int);
extern void dmac_flush_range(const void *, const void *);

#endif

/*
 * Copy user data from/to a page which is mapped into a different
 * processes address space.  Really, we want to allow our "user
 * space" model to handle this.
 */
extern void copy_to_user_page(struct vm_area_struct *, struct page *,
	unsigned long, void *, const void *, unsigned long);
#define copy_from_user_page(vma, page, vaddr, dst, src, len) \
	do {							\
		memcpy(dst, src, len);				\
	} while (0)

/*
 * Convert calls to our calling convention.
 */

/* Invalidate I-cache */
#define __flush_icache_all_generic()					\
	asm("mcr	p15, 0, %0, c7, c5, 0"				\
	    : : "r" (0));

/* Invalidate I-cache inner shareable */
#define __flush_icache_all_v7_smp()					\
	asm("mcr	p15, 0, %0, c7, c1, 0"				\
	    : : "r" (0));

/*
 * Optimized __flush_icache_all for the common cases. Note that UP ARMv7
 * will fall through to use __flush_icache_all_generic.
 */
#if (defined(CONFIG_CPU_V7) && \
     (defined(CONFIG_CPU_V6) || defined(CONFIG_CPU_V6K))) || \
	defined(CONFIG_SMP_ON_UP)
#define __flush_icache_preferred	__cpuc_flush_icache_all
#elif __LINUX_ARM_ARCH__ >= 7 && defined(CONFIG_SMP)
#define __flush_icache_preferred	__flush_icache_all_v7_smp
#elif __LINUX_ARM_ARCH__ == 6 && defined(CONFIG_ARM_ERRATA_411920)
#define __flush_icache_preferred	__cpuc_flush_icache_all
#else
#define __flush_icache_preferred	__flush_icache_all_generic
#endif

static inline void __flush_icache_all(void)
{
	__flush_icache_preferred();
}

/*
 * Flush caches up to Level of Unification Inner Shareable
 */
#define flush_cache_louis()		__cpuc_flush_kern_louis()

#define flush_cache_all()		__cpuc_flush_kern_all()

static inline void vivt_flush_cache_mm(struct mm_struct *mm)
{
	if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm)))
		__cpuc_flush_user_all();
}

static inline void
vivt_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
{
	struct mm_struct *mm = vma->vm_mm;

	if (!mm || cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm)))
		__cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end),
					vma->vm_flags);
}

static inline void
vivt_flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn)
{
	struct mm_struct *mm = vma->vm_mm;

	if (!mm || cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm))) {
		unsigned long addr = user_addr & PAGE_MASK;
		__cpuc_flush_user_range(addr, addr + PAGE_SIZE, vma->vm_flags);
	}
}

#ifndef CONFIG_CPU_CACHE_VIPT
#define flush_cache_mm(mm) \
		vivt_flush_cache_mm(mm)
#define flush_cache_range(vma,start,end) \
		vivt_flush_cache_range(vma,start,end)
#define flush_cache_page(vma,addr,pfn) \
		vivt_flush_cache_page(vma,addr,pfn)
#else
extern void flush_cache_mm(struct mm_struct *mm);
extern void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
extern void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn);
#endif

#define flush_cache_dup_mm(mm) flush_cache_mm(mm)

/*
 * flush_cache_user_range is used when we want to ensure that the
 * Harvard caches are synchronised for the user space address range.
 * This is used for the ARM private sys_cacheflush system call.
 */
#define flush_cache_user_range(s,e)	__cpuc_coherent_user_range(s,e)

/*
 * Perform necessary cache operations to ensure that data previously
 * stored within this range of addresses can be executed by the CPU.
 */
#define flush_icache_range(s,e)		__cpuc_coherent_kern_range(s,e)

/*
 * Perform necessary cache operations to ensure that the TLB will
 * see data written in the specified area.
 */
#define clean_dcache_area(start,size)	cpu_dcache_clean_area(start, size)

/*
 * flush_dcache_page is used when the kernel has written to the page
 * cache page at virtual address page->virtual.
 *
 * If this page isn't mapped (ie, page_mapping == NULL), or it might
 * have userspace mappings, then we _must_ always clean + invalidate
 * the dcache entries associated with the kernel mapping.
 *
 * Otherwise we can defer the operation, and clean the cache when we are
 * about to change to user space.  This is the same method as used on SPARC64.
 * See update_mmu_cache for the user space part.
 */
#define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1
extern void flush_dcache_page(struct page *);

static inline void flush_kernel_vmap_range(void *addr, int size)
{
	if ((cache_is_vivt() || cache_is_vipt_aliasing()))
	  __cpuc_flush_dcache_area(addr, (size_t)size);
}
static inline void invalidate_kernel_vmap_range(void *addr, int size)
{
	if ((cache_is_vivt() || cache_is_vipt_aliasing()))
	  __cpuc_flush_dcache_area(addr, (size_t)size);
}

#define ARCH_HAS_FLUSH_ANON_PAGE
static inline void flush_anon_page(struct vm_area_struct *vma,
			 struct page *page, unsigned long vmaddr)
{
	extern void __flush_anon_page(struct vm_area_struct *vma,
				struct page *, unsigned long);
	if (PageAnon(page))
		__flush_anon_page(vma, page, vmaddr);
}

#define ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE
extern void flush_kernel_dcache_page(struct page *);

#define flush_dcache_mmap_lock(mapping) \
	spin_lock_irq(&(mapping)->tree_lock)
#define flush_dcache_mmap_unlock(mapping) \
	spin_unlock_irq(&(mapping)->tree_lock)

#define flush_icache_user_range(vma,page,addr,len) \
	flush_dcache_page(page)

/*
 * We don't appear to need to do anything here.  In fact, if we did, we'd
 * duplicate cache flushing elsewhere performed by flush_dcache_page().
 */
#define flush_icache_page(vma,page)	do { } while (0)

/*
 * flush_cache_vmap() is used when creating mappings (eg, via vmap,
 * vmalloc, ioremap etc) in kernel space for pages.  On non-VIPT
 * caches, since the direct-mappings of these pages may contain cached
 * data, we need to do a full cache flush to ensure that writebacks
 * don't corrupt data placed into these pages via the new mappings.
 */
static inline void flush_cache_vmap(unsigned long start, unsigned long end)
{
	if (!cache_is_vipt_nonaliasing())
		flush_cache_all();
	else
		/*
		 * set_pte_at() called from vmap_pte_range() does not
		 * have a DSB after cleaning the cache line.
		 */
		dsb(ishst);
}

static inline void flush_cache_vunmap(unsigned long start, unsigned long end)
{
	if (!cache_is_vipt_nonaliasing())
		flush_cache_all();
}

/*
 * Memory synchronization helpers for mixed cached vs non cached accesses.
 *
 * Some synchronization algorithms have to set states in memory with the
 * cache enabled or disabled depending on the code path.  It is crucial
 * to always ensure proper cache maintenance to update main memory right
 * away in that case.
 *
 * Any cached write must be followed by a cache clean operation.
 * Any cached read must be preceded by a cache invalidate operation.
 * Yet, in the read case, a cache flush i.e. atomic clean+invalidate
 * operation is needed to avoid discarding possible concurrent writes to the
 * accessed memory.
 *
 * Also, in order to prevent a cached writer from interfering with an
 * adjacent non-cached writer, each state variable must be located to
 * a separate cache line.
 */

/*
 * This needs to be >= the max cache writeback size of all
 * supported platforms included in the current kernel configuration.
 * This is used to align state variables to their own cache lines.
 */
#define __CACHE_WRITEBACK_ORDER 6  /* guessed from existing platforms */
#define __CACHE_WRITEBACK_GRANULE (1 << __CACHE_WRITEBACK_ORDER)

/*
 * There is no __cpuc_clean_dcache_area but we use it anyway for
 * code intent clarity, and alias it to __cpuc_flush_dcache_area.
 */
#define __cpuc_clean_dcache_area __cpuc_flush_dcache_area

/*
 * Ensure preceding writes to *p by this CPU are visible to
 * subsequent reads by other CPUs:
 */
static inline void __sync_cache_range_w(volatile void *p, size_t size)
{
	char *_p = (char *)p;

	__cpuc_clean_dcache_area(_p, size);
	outer_clean_range(__pa(_p), __pa(_p + size));
}

/*
 * Ensure preceding writes to *p by other CPUs are visible to
 * subsequent reads by this CPU.  We must be careful not to
 * discard data simultaneously written by another CPU, hence the
 * usage of flush rather than invalidate operations.
 */
static inline void __sync_cache_range_r(volatile void *p, size_t size)
{
	char *_p = (char *)p;

#ifdef CONFIG_OUTER_CACHE
	if (outer_cache.flush_range) {
		/*
		 * Ensure dirty data migrated from other CPUs into our cache
		 * are cleaned out safely before the outer cache is cleaned:
		 */
		__cpuc_clean_dcache_area(_p, size);

		/* Clean and invalidate stale data for *p from outer ... */
		outer_flush_range(__pa(_p), __pa(_p + size));
	}
#endif

	/* ... and inner cache: */
	__cpuc_flush_dcache_area(_p, size);
}

#define sync_cache_w(ptr) __sync_cache_range_w(ptr, sizeof *(ptr))
#define sync_cache_r(ptr) __sync_cache_range_r(ptr, sizeof *(ptr))

#endif