summaryrefslogtreecommitdiffstats
path: root/arch/arm/mach-omap2/gpmc-nand.c
blob: d66b85692a58cc767b2f70842f3171fad6ffd6d4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
/*
 * gpmc-nand.c
 *
 * Copyright (C) 2009 Texas Instruments
 * Vimal Singh <vimalsingh@ti.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/kernel.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/mtd/nand.h>
#include <linux/platform_data/mtd-nand-omap2.h>

#include <asm/mach/flash.h>

#include "gpmc.h"
#include "soc.h"
#include "gpmc-nand.h"

/* minimum size for IO mapping */
#define	NAND_IO_SIZE	4

static struct resource gpmc_nand_resource[] = {
	{
		.flags		= IORESOURCE_MEM,
	},
	{
		.flags		= IORESOURCE_IRQ,
	},
	{
		.flags		= IORESOURCE_IRQ,
	},
};

static struct platform_device gpmc_nand_device = {
	.name		= "omap2-nand",
	.id		= 0,
	.num_resources	= ARRAY_SIZE(gpmc_nand_resource),
	.resource	= gpmc_nand_resource,
};

static bool gpmc_hwecc_bch_capable(enum omap_ecc ecc_opt)
{
	/* support only OMAP3 class */
	if (!cpu_is_omap34xx() && !soc_is_am33xx()) {
		pr_err("BCH ecc is not supported on this CPU\n");
		return 0;
	}

	/*
	 * For now, assume 4-bit mode is only supported on OMAP3630 ES1.x, x>=1
	 * and AM33xx derivates. Other chips may be added if confirmed to work.
	 */
	if ((ecc_opt == OMAP_ECC_BCH4_CODE_HW) &&
	    (!cpu_is_omap3630() || (GET_OMAP_REVISION() == 0)) &&
	    (!soc_is_am33xx())) {
		pr_err("BCH 4-bit mode is not supported on this CPU\n");
		return 0;
	}

	return 1;
}

int gpmc_nand_init(struct omap_nand_platform_data *gpmc_nand_data,
		   struct gpmc_timings *gpmc_t)
{
	int err	= 0;
	struct gpmc_settings s;
	struct device *dev = &gpmc_nand_device.dev;

	memset(&s, 0, sizeof(struct gpmc_settings));

	gpmc_nand_device.dev.platform_data = gpmc_nand_data;

	err = gpmc_cs_request(gpmc_nand_data->cs, NAND_IO_SIZE,
				(unsigned long *)&gpmc_nand_resource[0].start);
	if (err < 0) {
		dev_err(dev, "Cannot request GPMC CS %d, error %d\n",
			gpmc_nand_data->cs, err);
		return err;
	}

	gpmc_nand_resource[0].end = gpmc_nand_resource[0].start +
							NAND_IO_SIZE - 1;

	gpmc_nand_resource[1].start =
				gpmc_get_client_irq(GPMC_IRQ_FIFOEVENTENABLE);
	gpmc_nand_resource[2].start =
				gpmc_get_client_irq(GPMC_IRQ_COUNT_EVENT);

	if (gpmc_t) {
		err = gpmc_cs_set_timings(gpmc_nand_data->cs, gpmc_t);
		if (err < 0) {
			dev_err(dev, "Unable to set gpmc timings: %d\n", err);
			return err;
		}
	}

	if (gpmc_nand_data->of_node) {
		gpmc_read_settings_dt(gpmc_nand_data->of_node, &s);
	} else {
		/* Enable RD PIN Monitoring Reg */
		if (gpmc_nand_data->dev_ready) {
			s.wait_on_read = true;
			s.wait_on_write = true;
		}
	}

	s.device_nand = true;

	if (gpmc_nand_data->devsize == NAND_BUSWIDTH_16)
		s.device_width = GPMC_DEVWIDTH_16BIT;
	else
		s.device_width = GPMC_DEVWIDTH_8BIT;

	err = gpmc_cs_program_settings(gpmc_nand_data->cs, &s);
	if (err < 0)
		goto out_free_cs;

	err = gpmc_configure(GPMC_CONFIG_WP, 0);
	if (err < 0)
		goto out_free_cs;

	gpmc_update_nand_reg(&gpmc_nand_data->reg, gpmc_nand_data->cs);

	if (!gpmc_hwecc_bch_capable(gpmc_nand_data->ecc_opt))
		return -EINVAL;

	err = platform_device_register(&gpmc_nand_device);
	if (err < 0) {
		dev_err(dev, "Unable to register NAND device\n");
		goto out_free_cs;
	}

	return 0;

out_free_cs:
	gpmc_cs_free(gpmc_nand_data->cs);

	return err;
}