summaryrefslogtreecommitdiffstats
path: root/arch/i386/mm/discontig.c
blob: c369a8bf7cbec4c5bee790c9ef5a06e41ceab2cd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
/*
 * Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation
 * August 2002: added remote node KVA remap - Martin J. Bligh 
 *
 * Copyright (C) 2002, IBM Corp.
 *
 * All rights reserved.          
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 * NON INFRINGEMENT.  See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/config.h>
#include <linux/mm.h>
#include <linux/bootmem.h>
#include <linux/mmzone.h>
#include <linux/highmem.h>
#include <linux/initrd.h>
#include <linux/nodemask.h>
#include <linux/module.h>
#include <linux/kexec.h>

#include <asm/e820.h>
#include <asm/setup.h>
#include <asm/mmzone.h>
#include <bios_ebda.h>

struct pglist_data *node_data[MAX_NUMNODES];
EXPORT_SYMBOL(node_data);
bootmem_data_t node0_bdata;

/*
 * numa interface - we expect the numa architecture specfic code to have
 *                  populated the following initialisation.
 *
 * 1) node_online_map  - the map of all nodes configured (online) in the system
 * 2) node_start_pfn   - the starting page frame number for a node
 * 3) node_end_pfn     - the ending page fram number for a node
 */
unsigned long node_start_pfn[MAX_NUMNODES];
unsigned long node_end_pfn[MAX_NUMNODES];


#ifdef CONFIG_DISCONTIGMEM
/*
 * 4) physnode_map     - the mapping between a pfn and owning node
 * physnode_map keeps track of the physical memory layout of a generic
 * numa node on a 256Mb break (each element of the array will
 * represent 256Mb of memory and will be marked by the node id.  so,
 * if the first gig is on node 0, and the second gig is on node 1
 * physnode_map will contain:
 *
 *     physnode_map[0-3] = 0;
 *     physnode_map[4-7] = 1;
 *     physnode_map[8- ] = -1;
 */
s8 physnode_map[MAX_ELEMENTS] = { [0 ... (MAX_ELEMENTS - 1)] = -1};
EXPORT_SYMBOL(physnode_map);

void memory_present(int nid, unsigned long start, unsigned long end)
{
	unsigned long pfn;

	printk(KERN_INFO "Node: %d, start_pfn: %ld, end_pfn: %ld\n",
			nid, start, end);
	printk(KERN_DEBUG "  Setting physnode_map array to node %d for pfns:\n", nid);
	printk(KERN_DEBUG "  ");
	for (pfn = start; pfn < end; pfn += PAGES_PER_ELEMENT) {
		physnode_map[pfn / PAGES_PER_ELEMENT] = nid;
		printk("%ld ", pfn);
	}
	printk("\n");
}

unsigned long node_memmap_size_bytes(int nid, unsigned long start_pfn,
					      unsigned long end_pfn)
{
	unsigned long nr_pages = end_pfn - start_pfn;

	if (!nr_pages)
		return 0;

	return (nr_pages + 1) * sizeof(struct page);
}
#endif

extern unsigned long find_max_low_pfn(void);
extern void find_max_pfn(void);
extern void one_highpage_init(struct page *, int, int);

extern struct e820map e820;
extern unsigned long init_pg_tables_end;
extern unsigned long highend_pfn, highstart_pfn;
extern unsigned long max_low_pfn;
extern unsigned long totalram_pages;
extern unsigned long totalhigh_pages;

#define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE)

unsigned long node_remap_start_pfn[MAX_NUMNODES];
unsigned long node_remap_size[MAX_NUMNODES];
unsigned long node_remap_offset[MAX_NUMNODES];
void *node_remap_start_vaddr[MAX_NUMNODES];
void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags);

void *node_remap_end_vaddr[MAX_NUMNODES];
void *node_remap_alloc_vaddr[MAX_NUMNODES];

/*
 * FLAT - support for basic PC memory model with discontig enabled, essentially
 *        a single node with all available processors in it with a flat
 *        memory map.
 */
int __init get_memcfg_numa_flat(void)
{
	printk("NUMA - single node, flat memory mode\n");

	/* Run the memory configuration and find the top of memory. */
	find_max_pfn();
	node_start_pfn[0] = 0;
	node_end_pfn[0] = max_pfn;
	memory_present(0, 0, max_pfn);

        /* Indicate there is one node available. */
	nodes_clear(node_online_map);
	node_set_online(0);
	return 1;
}

/*
 * Find the highest page frame number we have available for the node
 */
static void __init find_max_pfn_node(int nid)
{
	if (node_end_pfn[nid] > max_pfn)
		node_end_pfn[nid] = max_pfn;
	/*
	 * if a user has given mem=XXXX, then we need to make sure 
	 * that the node _starts_ before that, too, not just ends
	 */
	if (node_start_pfn[nid] > max_pfn)
		node_start_pfn[nid] = max_pfn;
	if (node_start_pfn[nid] > node_end_pfn[nid])
		BUG();
}

/* Find the owning node for a pfn. */
int early_pfn_to_nid(unsigned long pfn)
{
	int nid;

	for_each_node(nid) {
		if (node_end_pfn[nid] == 0)
			break;
		if (node_start_pfn[nid] <= pfn && node_end_pfn[nid] >= pfn)
			return nid;
	}

	return 0;
}

/* 
 * Allocate memory for the pg_data_t for this node via a crude pre-bootmem
 * method.  For node zero take this from the bottom of memory, for
 * subsequent nodes place them at node_remap_start_vaddr which contains
 * node local data in physically node local memory.  See setup_memory()
 * for details.
 */
static void __init allocate_pgdat(int nid)
{
	if (nid && node_has_online_mem(nid))
		NODE_DATA(nid) = (pg_data_t *)node_remap_start_vaddr[nid];
	else {
		NODE_DATA(nid) = (pg_data_t *)(__va(min_low_pfn << PAGE_SHIFT));
		min_low_pfn += PFN_UP(sizeof(pg_data_t));
	}
}

void *alloc_remap(int nid, unsigned long size)
{
	void *allocation = node_remap_alloc_vaddr[nid];

	size = ALIGN(size, L1_CACHE_BYTES);

	if (!allocation || (allocation + size) >= node_remap_end_vaddr[nid])
		return 0;

	node_remap_alloc_vaddr[nid] += size;
	memset(allocation, 0, size);

	return allocation;
}

void __init remap_numa_kva(void)
{
	void *vaddr;
	unsigned long pfn;
	int node;

	for_each_online_node(node) {
		for (pfn=0; pfn < node_remap_size[node]; pfn += PTRS_PER_PTE) {
			vaddr = node_remap_start_vaddr[node]+(pfn<<PAGE_SHIFT);
			set_pmd_pfn((ulong) vaddr, 
				node_remap_start_pfn[node] + pfn, 
				PAGE_KERNEL_LARGE);
		}
	}
}

static unsigned long calculate_numa_remap_pages(void)
{
	int nid;
	unsigned long size, reserve_pages = 0;
	unsigned long pfn;

	for_each_online_node(nid) {
		/*
		 * The acpi/srat node info can show hot-add memroy zones
		 * where memory could be added but not currently present.
		 */
		if (node_start_pfn[nid] > max_pfn)
			continue;
		if (node_end_pfn[nid] > max_pfn)
			node_end_pfn[nid] = max_pfn;

		/* ensure the remap includes space for the pgdat. */
		size = node_remap_size[nid] + sizeof(pg_data_t);

		/* convert size to large (pmd size) pages, rounding up */
		size = (size + LARGE_PAGE_BYTES - 1) / LARGE_PAGE_BYTES;
		/* now the roundup is correct, convert to PAGE_SIZE pages */
		size = size * PTRS_PER_PTE;

		if (node_end_pfn[nid] & (PTRS_PER_PTE-1)) {
			/*
			 * Adjust size if node_end_pfn is not on a proper
			 * pmd boundary. remap_numa_kva will barf otherwise.
			 */
			size +=  node_end_pfn[nid] & (PTRS_PER_PTE-1);
		}

		/*
		 * Validate the region we are allocating only contains valid
		 * pages.
		 */
		for (pfn = node_end_pfn[nid] - size;
		     pfn < node_end_pfn[nid]; pfn++)
			if (!page_is_ram(pfn))
				break;

		if (pfn != node_end_pfn[nid])
			size = 0;

		printk("Reserving %ld pages of KVA for lmem_map of node %d\n",
				size, nid);
		node_remap_size[nid] = size;
		node_remap_offset[nid] = reserve_pages;
		reserve_pages += size;
		printk("Shrinking node %d from %ld pages to %ld pages\n",
			nid, node_end_pfn[nid], node_end_pfn[nid] - size);
		node_end_pfn[nid] -= size;
		node_remap_start_pfn[nid] = node_end_pfn[nid];
	}
	printk("Reserving total of %ld pages for numa KVA remap\n",
			reserve_pages);
	return reserve_pages;
}

extern void setup_bootmem_allocator(void);
unsigned long __init setup_memory(void)
{
	int nid;
	unsigned long system_start_pfn, system_max_low_pfn;
	unsigned long reserve_pages;

	/*
	 * When mapping a NUMA machine we allocate the node_mem_map arrays
	 * from node local memory.  They are then mapped directly into KVA
	 * between zone normal and vmalloc space.  Calculate the size of
	 * this space and use it to adjust the boundry between ZONE_NORMAL
	 * and ZONE_HIGHMEM.
	 */
	find_max_pfn();
	get_memcfg_numa();

	reserve_pages = calculate_numa_remap_pages();

	/* partially used pages are not usable - thus round upwards */
	system_start_pfn = min_low_pfn = PFN_UP(init_pg_tables_end);

	system_max_low_pfn = max_low_pfn = find_max_low_pfn() - reserve_pages;
	printk("reserve_pages = %ld find_max_low_pfn() ~ %ld\n",
			reserve_pages, max_low_pfn + reserve_pages);
	printk("max_pfn = %ld\n", max_pfn);
#ifdef CONFIG_HIGHMEM
	highstart_pfn = highend_pfn = max_pfn;
	if (max_pfn > system_max_low_pfn)
		highstart_pfn = system_max_low_pfn;
	printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
	       pages_to_mb(highend_pfn - highstart_pfn));
#endif
	printk(KERN_NOTICE "%ldMB LOWMEM available.\n",
			pages_to_mb(system_max_low_pfn));
	printk("min_low_pfn = %ld, max_low_pfn = %ld, highstart_pfn = %ld\n", 
			min_low_pfn, max_low_pfn, highstart_pfn);

	printk("Low memory ends at vaddr %08lx\n",
			(ulong) pfn_to_kaddr(max_low_pfn));
	for_each_online_node(nid) {
		node_remap_start_vaddr[nid] = pfn_to_kaddr(
				highstart_pfn + node_remap_offset[nid]);
		/* Init the node remap allocator */
		node_remap_end_vaddr[nid] = node_remap_start_vaddr[nid] +
			(node_remap_size[nid] * PAGE_SIZE);
		node_remap_alloc_vaddr[nid] = node_remap_start_vaddr[nid] +
			ALIGN(sizeof(pg_data_t), PAGE_SIZE);

		allocate_pgdat(nid);
		printk ("node %d will remap to vaddr %08lx - %08lx\n", nid,
			(ulong) node_remap_start_vaddr[nid],
			(ulong) pfn_to_kaddr(highstart_pfn
			   + node_remap_offset[nid] + node_remap_size[nid]));
	}
	printk("High memory starts at vaddr %08lx\n",
			(ulong) pfn_to_kaddr(highstart_pfn));
	vmalloc_earlyreserve = reserve_pages * PAGE_SIZE;
	for_each_online_node(nid)
		find_max_pfn_node(nid);

	memset(NODE_DATA(0), 0, sizeof(struct pglist_data));
	NODE_DATA(0)->bdata = &node0_bdata;
	setup_bootmem_allocator();
	return max_low_pfn;
}

void __init zone_sizes_init(void)
{
	int nid;

	/*
	 * Insert nodes into pgdat_list backward so they appear in order.
	 * Clobber node 0's links and NULL out pgdat_list before starting.
	 */
	pgdat_list = NULL;
	for (nid = MAX_NUMNODES - 1; nid >= 0; nid--) {
		if (!node_online(nid))
			continue;
		NODE_DATA(nid)->pgdat_next = pgdat_list;
		pgdat_list = NODE_DATA(nid);
	}

	for_each_online_node(nid) {
		unsigned long zones_size[MAX_NR_ZONES] = {0, 0, 0};
		unsigned long *zholes_size;
		unsigned int max_dma;

		unsigned long low = max_low_pfn;
		unsigned long start = node_start_pfn[nid];
		unsigned long high = node_end_pfn[nid];

		max_dma = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;

		if (node_has_online_mem(nid)){
			if (start > low) {
#ifdef CONFIG_HIGHMEM
				BUG_ON(start > high);
				zones_size[ZONE_HIGHMEM] = high - start;
#endif
			} else {
				if (low < max_dma)
					zones_size[ZONE_DMA] = low;
				else {
					BUG_ON(max_dma > low);
					BUG_ON(low > high);
					zones_size[ZONE_DMA] = max_dma;
					zones_size[ZONE_NORMAL] = low - max_dma;
#ifdef CONFIG_HIGHMEM
					zones_size[ZONE_HIGHMEM] = high - low;
#endif
				}
			}
		}

		zholes_size = get_zholes_size(nid);

		free_area_init_node(nid, NODE_DATA(nid), zones_size, start,
				zholes_size);
	}
	return;
}

void __init set_highmem_pages_init(int bad_ppro) 
{
#ifdef CONFIG_HIGHMEM
	struct zone *zone;
	struct page *page;

	for_each_zone(zone) {
		unsigned long node_pfn, zone_start_pfn, zone_end_pfn;

		if (!is_highmem(zone))
			continue;

		zone_start_pfn = zone->zone_start_pfn;
		zone_end_pfn = zone_start_pfn + zone->spanned_pages;

		printk("Initializing %s for node %d (%08lx:%08lx)\n",
				zone->name, zone->zone_pgdat->node_id,
				zone_start_pfn, zone_end_pfn);

		for (node_pfn = zone_start_pfn; node_pfn < zone_end_pfn; node_pfn++) {
			if (!pfn_valid(node_pfn))
				continue;
			page = pfn_to_page(node_pfn);
			one_highpage_init(page, node_pfn, bad_ppro);
		}
	}
	totalram_pages += totalhigh_pages;
#endif
}