1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
|
/*
* Procedures for creating, accessing and interpreting the device tree.
*
* Paul Mackerras August 1996.
* Copyright (C) 1996-2005 Paul Mackerras.
*
* Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
* {engebret|bergner}@us.ibm.com
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <stdarg.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/threads.h>
#include <linux/spinlock.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/stringify.h>
#include <linux/delay.h>
#include <linux/initrd.h>
#include <linux/bitops.h>
#include <linux/module.h>
#include <linux/kexec.h>
#include <linux/debugfs.h>
#include <linux/irq.h>
#include <linux/lmb.h>
#include <asm/prom.h>
#include <asm/page.h>
#include <asm/processor.h>
#include <asm/irq.h>
#include <linux/io.h>
#include <asm/system.h>
#include <asm/mmu.h>
#include <asm/pgtable.h>
#include <asm/sections.h>
#include <asm/pci-bridge.h>
/* export that to outside world */
struct device_node *of_chosen;
#define early_init_dt_scan_drconf_memory(node) 0
static int __init early_init_dt_scan_cpus(unsigned long node,
const char *uname, int depth,
void *data)
{
static int logical_cpuid;
char *type = of_get_flat_dt_prop(node, "device_type", NULL);
const u32 *intserv;
int i, nthreads;
int found = 0;
/* We are scanning "cpu" nodes only */
if (type == NULL || strcmp(type, "cpu") != 0)
return 0;
/* Get physical cpuid */
intserv = of_get_flat_dt_prop(node, "reg", NULL);
nthreads = 1;
/*
* Now see if any of these threads match our boot cpu.
* NOTE: This must match the parsing done in smp_setup_cpu_maps.
*/
for (i = 0; i < nthreads; i++) {
/*
* version 2 of the kexec param format adds the phys cpuid of
* booted proc.
*/
if (initial_boot_params && initial_boot_params->version >= 2) {
if (intserv[i] ==
initial_boot_params->boot_cpuid_phys) {
found = 1;
break;
}
} else {
/*
* Check if it's the boot-cpu, set it's hw index now,
* unfortunately this format did not support booting
* off secondary threads.
*/
if (of_get_flat_dt_prop(node,
"linux,boot-cpu", NULL) != NULL) {
found = 1;
break;
}
}
#ifdef CONFIG_SMP
/* logical cpu id is always 0 on UP kernels */
logical_cpuid++;
#endif
}
if (found) {
pr_debug("boot cpu: logical %d physical %d\n", logical_cpuid,
intserv[i]);
boot_cpuid = logical_cpuid;
}
return 0;
}
void __init early_init_dt_scan_chosen_arch(unsigned long node)
{
/* No Microblaze specific code here */
}
static int __init early_init_dt_scan_memory(unsigned long node,
const char *uname, int depth, void *data)
{
char *type = of_get_flat_dt_prop(node, "device_type", NULL);
__be32 *reg, *endp;
unsigned long l;
/* Look for the ibm,dynamic-reconfiguration-memory node */
/* if (depth == 1 &&
strcmp(uname, "ibm,dynamic-reconfiguration-memory") == 0)
return early_init_dt_scan_drconf_memory(node);
*/
/* We are scanning "memory" nodes only */
if (type == NULL) {
/*
* The longtrail doesn't have a device_type on the
* /memory node, so look for the node called /memory@0.
*/
if (depth != 1 || strcmp(uname, "memory@0") != 0)
return 0;
} else if (strcmp(type, "memory") != 0)
return 0;
reg = (__be32 *)of_get_flat_dt_prop(node, "linux,usable-memory", &l);
if (reg == NULL)
reg = (__be32 *)of_get_flat_dt_prop(node, "reg", &l);
if (reg == NULL)
return 0;
endp = reg + (l / sizeof(__be32));
pr_debug("memory scan node %s, reg size %ld, data: %x %x %x %x,\n",
uname, l, reg[0], reg[1], reg[2], reg[3]);
while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
u64 base, size;
base = dt_mem_next_cell(dt_root_addr_cells, ®);
size = dt_mem_next_cell(dt_root_size_cells, ®);
if (size == 0)
continue;
pr_debug(" - %llx , %llx\n", (unsigned long long)base,
(unsigned long long)size);
lmb_add(base, size);
}
return 0;
}
#ifdef CONFIG_PHYP_DUMP
/**
* phyp_dump_calculate_reserve_size() - reserve variable boot area 5% or arg
*
* Function to find the largest size we need to reserve
* during early boot process.
*
* It either looks for boot param and returns that OR
* returns larger of 256 or 5% rounded down to multiples of 256MB.
*
*/
static inline unsigned long phyp_dump_calculate_reserve_size(void)
{
unsigned long tmp;
if (phyp_dump_info->reserve_bootvar)
return phyp_dump_info->reserve_bootvar;
/* divide by 20 to get 5% of value */
tmp = lmb_end_of_DRAM();
do_div(tmp, 20);
/* round it down in multiples of 256 */
tmp = tmp & ~0x0FFFFFFFUL;
return (tmp > PHYP_DUMP_RMR_END ? tmp : PHYP_DUMP_RMR_END);
}
/**
* phyp_dump_reserve_mem() - reserve all not-yet-dumped mmemory
*
* This routine may reserve memory regions in the kernel only
* if the system is supported and a dump was taken in last
* boot instance or if the hardware is supported and the
* scratch area needs to be setup. In other instances it returns
* without reserving anything. The memory in case of dump being
* active is freed when the dump is collected (by userland tools).
*/
static void __init phyp_dump_reserve_mem(void)
{
unsigned long base, size;
unsigned long variable_reserve_size;
if (!phyp_dump_info->phyp_dump_configured) {
printk(KERN_ERR "Phyp-dump not supported on this hardware\n");
return;
}
if (!phyp_dump_info->phyp_dump_at_boot) {
printk(KERN_INFO "Phyp-dump disabled at boot time\n");
return;
}
variable_reserve_size = phyp_dump_calculate_reserve_size();
if (phyp_dump_info->phyp_dump_is_active) {
/* Reserve *everything* above RMR.Area freed by userland tools*/
base = variable_reserve_size;
size = lmb_end_of_DRAM() - base;
/* XXX crashed_ram_end is wrong, since it may be beyond
* the memory_limit, it will need to be adjusted. */
lmb_reserve(base, size);
phyp_dump_info->init_reserve_start = base;
phyp_dump_info->init_reserve_size = size;
} else {
size = phyp_dump_info->cpu_state_size +
phyp_dump_info->hpte_region_size +
variable_reserve_size;
base = lmb_end_of_DRAM() - size;
lmb_reserve(base, size);
phyp_dump_info->init_reserve_start = base;
phyp_dump_info->init_reserve_size = size;
}
}
#else
static inline void __init phyp_dump_reserve_mem(void) {}
#endif /* CONFIG_PHYP_DUMP && CONFIG_PPC_RTAS */
#ifdef CONFIG_EARLY_PRINTK
/* MS this is Microblaze specifig function */
static int __init early_init_dt_scan_serial(unsigned long node,
const char *uname, int depth, void *data)
{
unsigned long l;
char *p;
int *addr;
pr_debug("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
/* find all serial nodes */
if (strncmp(uname, "serial", 6) != 0)
return 0;
early_init_dt_check_for_initrd(node);
/* find compatible node with uartlite */
p = of_get_flat_dt_prop(node, "compatible", &l);
if ((strncmp(p, "xlnx,xps-uartlite", 17) != 0) &&
(strncmp(p, "xlnx,opb-uartlite", 17) != 0))
return 0;
addr = of_get_flat_dt_prop(node, "reg", &l);
return *addr; /* return address */
}
/* this function is looking for early uartlite console - Microblaze specific */
int __init early_uartlite_console(void)
{
return of_scan_flat_dt(early_init_dt_scan_serial, NULL);
}
#endif
void __init early_init_devtree(void *params)
{
pr_debug(" -> early_init_devtree(%p)\n", params);
/* Setup flat device-tree pointer */
initial_boot_params = params;
#ifdef CONFIG_PHYP_DUMP
/* scan tree to see if dump occured during last boot */
of_scan_flat_dt(early_init_dt_scan_phyp_dump, NULL);
#endif
/* Retrieve various informations from the /chosen node of the
* device-tree, including the platform type, initrd location and
* size, TCE reserve, and more ...
*/
of_scan_flat_dt(early_init_dt_scan_chosen, NULL);
/* Scan memory nodes and rebuild LMBs */
lmb_init();
of_scan_flat_dt(early_init_dt_scan_root, NULL);
of_scan_flat_dt(early_init_dt_scan_memory, NULL);
/* Save command line for /proc/cmdline and then parse parameters */
strlcpy(boot_command_line, cmd_line, COMMAND_LINE_SIZE);
parse_early_param();
lmb_analyze();
pr_debug("Phys. mem: %lx\n", (unsigned long) lmb_phys_mem_size());
pr_debug("Scanning CPUs ...\n");
/* Retreive CPU related informations from the flat tree
* (altivec support, boot CPU ID, ...)
*/
of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
pr_debug(" <- early_init_devtree()\n");
}
/*******
*
* New implementation of the OF "find" APIs, return a refcounted
* object, call of_node_put() when done. The device tree and list
* are protected by a rw_lock.
*
* Note that property management will need some locking as well,
* this isn't dealt with yet.
*
*******/
/**
* of_find_node_by_phandle - Find a node given a phandle
* @handle: phandle of the node to find
*
* Returns a node pointer with refcount incremented, use
* of_node_put() on it when done.
*/
struct device_node *of_find_node_by_phandle(phandle handle)
{
struct device_node *np;
read_lock(&devtree_lock);
for (np = allnodes; np != NULL; np = np->allnext)
if (np->linux_phandle == handle)
break;
of_node_get(np);
read_unlock(&devtree_lock);
return np;
}
EXPORT_SYMBOL(of_find_node_by_phandle);
/**
* of_node_get - Increment refcount of a node
* @node: Node to inc refcount, NULL is supported to
* simplify writing of callers
*
* Returns node.
*/
struct device_node *of_node_get(struct device_node *node)
{
if (node)
kref_get(&node->kref);
return node;
}
EXPORT_SYMBOL(of_node_get);
static inline struct device_node *kref_to_device_node(struct kref *kref)
{
return container_of(kref, struct device_node, kref);
}
/**
* of_node_release - release a dynamically allocated node
* @kref: kref element of the node to be released
*
* In of_node_put() this function is passed to kref_put()
* as the destructor.
*/
static void of_node_release(struct kref *kref)
{
struct device_node *node = kref_to_device_node(kref);
struct property *prop = node->properties;
/* We should never be releasing nodes that haven't been detached. */
if (!of_node_check_flag(node, OF_DETACHED)) {
printk(KERN_INFO "WARNING: Bad of_node_put() on %s\n",
node->full_name);
dump_stack();
kref_init(&node->kref);
return;
}
if (!of_node_check_flag(node, OF_DYNAMIC))
return;
while (prop) {
struct property *next = prop->next;
kfree(prop->name);
kfree(prop->value);
kfree(prop);
prop = next;
if (!prop) {
prop = node->deadprops;
node->deadprops = NULL;
}
}
kfree(node->full_name);
kfree(node->data);
kfree(node);
}
/**
* of_node_put - Decrement refcount of a node
* @node: Node to dec refcount, NULL is supported to
* simplify writing of callers
*
*/
void of_node_put(struct device_node *node)
{
if (node)
kref_put(&node->kref, of_node_release);
}
EXPORT_SYMBOL(of_node_put);
/*
* Plug a device node into the tree and global list.
*/
void of_attach_node(struct device_node *np)
{
unsigned long flags;
write_lock_irqsave(&devtree_lock, flags);
np->sibling = np->parent->child;
np->allnext = allnodes;
np->parent->child = np;
allnodes = np;
write_unlock_irqrestore(&devtree_lock, flags);
}
/*
* "Unplug" a node from the device tree. The caller must hold
* a reference to the node. The memory associated with the node
* is not freed until its refcount goes to zero.
*/
void of_detach_node(struct device_node *np)
{
struct device_node *parent;
unsigned long flags;
write_lock_irqsave(&devtree_lock, flags);
parent = np->parent;
if (!parent)
goto out_unlock;
if (allnodes == np)
allnodes = np->allnext;
else {
struct device_node *prev;
for (prev = allnodes;
prev->allnext != np;
prev = prev->allnext)
;
prev->allnext = np->allnext;
}
if (parent->child == np)
parent->child = np->sibling;
else {
struct device_node *prevsib;
for (prevsib = np->parent->child;
prevsib->sibling != np;
prevsib = prevsib->sibling)
;
prevsib->sibling = np->sibling;
}
of_node_set_flag(np, OF_DETACHED);
out_unlock:
write_unlock_irqrestore(&devtree_lock, flags);
}
#if defined(CONFIG_DEBUG_FS) && defined(DEBUG)
static struct debugfs_blob_wrapper flat_dt_blob;
static int __init export_flat_device_tree(void)
{
struct dentry *d;
flat_dt_blob.data = initial_boot_params;
flat_dt_blob.size = initial_boot_params->totalsize;
d = debugfs_create_blob("flat-device-tree", S_IFREG | S_IRUSR,
of_debugfs_root, &flat_dt_blob);
if (!d)
return 1;
return 0;
}
device_initcall(export_flat_device_tree);
#endif
|