summaryrefslogtreecommitdiffstats
path: root/arch/mips/mm/dma-default.c
blob: 4fdb7f5216b9d9b136e1c182a0d7afda5b08e855 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * Copyright (C) 2000  Ani Joshi <ajoshi@unixbox.com>
 * Copyright (C) 2000, 2001, 06  Ralf Baechle <ralf@linux-mips.org>
 * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
 */

#include <linux/types.h>
#include <linux/dma-mapping.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/scatterlist.h>
#include <linux/string.h>

#include <asm/cache.h>
#include <asm/io.h>

#include <dma-coherence.h>

static inline unsigned long dma_addr_to_virt(dma_addr_t dma_addr)
{
	unsigned long addr = plat_dma_addr_to_phys(dma_addr);

	return (unsigned long)phys_to_virt(addr);
}

/*
 * Warning on the terminology - Linux calls an uncached area coherent;
 * MIPS terminology calls memory areas with hardware maintained coherency
 * coherent.
 */

static inline int cpu_is_noncoherent_r10000(struct device *dev)
{
	return !plat_device_is_coherent(dev) &&
	       (current_cpu_type() == CPU_R10000 ||
	       current_cpu_type() == CPU_R12000);
}

static gfp_t massage_gfp_flags(const struct device *dev, gfp_t gfp)
{
	/* ignore region specifiers */
	gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);

#ifdef CONFIG_ZONE_DMA
	if (dev == NULL)
		gfp |= __GFP_DMA;
	else if (dev->coherent_dma_mask < DMA_BIT_MASK(24))
		gfp |= __GFP_DMA;
	else
#endif
#ifdef CONFIG_ZONE_DMA32
	     if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
		gfp |= __GFP_DMA32;
	else
#endif
		;

	/* Don't invoke OOM killer */
	gfp |= __GFP_NORETRY;

	return gfp;
}

void *dma_alloc_noncoherent(struct device *dev, size_t size,
	dma_addr_t * dma_handle, gfp_t gfp)
{
	void *ret;

	gfp = massage_gfp_flags(dev, gfp);

	ret = (void *) __get_free_pages(gfp, get_order(size));

	if (ret != NULL) {
		memset(ret, 0, size);
		*dma_handle = plat_map_dma_mem(dev, ret, size);
	}

	return ret;
}

EXPORT_SYMBOL(dma_alloc_noncoherent);

void *dma_alloc_coherent(struct device *dev, size_t size,
	dma_addr_t * dma_handle, gfp_t gfp)
{
	void *ret;

	gfp = massage_gfp_flags(dev, gfp);

	ret = (void *) __get_free_pages(gfp, get_order(size));

	if (ret) {
		memset(ret, 0, size);
		*dma_handle = plat_map_dma_mem(dev, ret, size);

		if (!plat_device_is_coherent(dev)) {
			dma_cache_wback_inv((unsigned long) ret, size);
			ret = UNCAC_ADDR(ret);
		}
	}

	return ret;
}

EXPORT_SYMBOL(dma_alloc_coherent);

void dma_free_noncoherent(struct device *dev, size_t size, void *vaddr,
	dma_addr_t dma_handle)
{
	plat_unmap_dma_mem(dev, dma_handle);
	free_pages((unsigned long) vaddr, get_order(size));
}

EXPORT_SYMBOL(dma_free_noncoherent);

void dma_free_coherent(struct device *dev, size_t size, void *vaddr,
	dma_addr_t dma_handle)
{
	unsigned long addr = (unsigned long) vaddr;

	plat_unmap_dma_mem(dev, dma_handle);

	if (!plat_device_is_coherent(dev))
		addr = CAC_ADDR(addr);

	free_pages(addr, get_order(size));
}

EXPORT_SYMBOL(dma_free_coherent);

static inline void __dma_sync(unsigned long addr, size_t size,
	enum dma_data_direction direction)
{
	switch (direction) {
	case DMA_TO_DEVICE:
		dma_cache_wback(addr, size);
		break;

	case DMA_FROM_DEVICE:
		dma_cache_inv(addr, size);
		break;

	case DMA_BIDIRECTIONAL:
		dma_cache_wback_inv(addr, size);
		break;

	default:
		BUG();
	}
}

dma_addr_t dma_map_single(struct device *dev, void *ptr, size_t size,
	enum dma_data_direction direction)
{
	unsigned long addr = (unsigned long) ptr;

	if (!plat_device_is_coherent(dev))
		__dma_sync(addr, size, direction);

	return plat_map_dma_mem(dev, ptr, size);
}

EXPORT_SYMBOL(dma_map_single);

void dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
	enum dma_data_direction direction)
{
	if (cpu_is_noncoherent_r10000(dev))
		__dma_sync(dma_addr_to_virt(dma_addr), size,
		           direction);

	plat_unmap_dma_mem(dev, dma_addr);
}

EXPORT_SYMBOL(dma_unmap_single);

int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
	enum dma_data_direction direction)
{
	int i;

	BUG_ON(direction == DMA_NONE);

	for (i = 0; i < nents; i++, sg++) {
		unsigned long addr;

		addr = (unsigned long) sg_virt(sg);
		if (!plat_device_is_coherent(dev) && addr)
			__dma_sync(addr, sg->length, direction);
		sg->dma_address = plat_map_dma_mem(dev,
				                   (void *)addr, sg->length);
	}

	return nents;
}

EXPORT_SYMBOL(dma_map_sg);

dma_addr_t dma_map_page(struct device *dev, struct page *page,
	unsigned long offset, size_t size, enum dma_data_direction direction)
{
	BUG_ON(direction == DMA_NONE);

	if (!plat_device_is_coherent(dev)) {
		unsigned long addr;

		addr = (unsigned long) page_address(page) + offset;
		__dma_sync(addr, size, direction);
	}

	return plat_map_dma_mem_page(dev, page) + offset;
}

EXPORT_SYMBOL(dma_map_page);

void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nhwentries,
	enum dma_data_direction direction)
{
	unsigned long addr;
	int i;

	BUG_ON(direction == DMA_NONE);

	for (i = 0; i < nhwentries; i++, sg++) {
		if (!plat_device_is_coherent(dev) &&
		    direction != DMA_TO_DEVICE) {
			addr = (unsigned long) sg_virt(sg);
			if (addr)
				__dma_sync(addr, sg->length, direction);
		}
		plat_unmap_dma_mem(dev, sg->dma_address);
	}
}

EXPORT_SYMBOL(dma_unmap_sg);

void dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle,
	size_t size, enum dma_data_direction direction)
{
	BUG_ON(direction == DMA_NONE);

	if (cpu_is_noncoherent_r10000(dev)) {
		unsigned long addr;

		addr = dma_addr_to_virt(dma_handle);
		__dma_sync(addr, size, direction);
	}
}

EXPORT_SYMBOL(dma_sync_single_for_cpu);

void dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle,
	size_t size, enum dma_data_direction direction)
{
	BUG_ON(direction == DMA_NONE);

	plat_extra_sync_for_device(dev);
	if (!plat_device_is_coherent(dev)) {
		unsigned long addr;

		addr = dma_addr_to_virt(dma_handle);
		__dma_sync(addr, size, direction);
	}
}

EXPORT_SYMBOL(dma_sync_single_for_device);

void dma_sync_single_range_for_cpu(struct device *dev, dma_addr_t dma_handle,
	unsigned long offset, size_t size, enum dma_data_direction direction)
{
	BUG_ON(direction == DMA_NONE);

	if (cpu_is_noncoherent_r10000(dev)) {
		unsigned long addr;

		addr = dma_addr_to_virt(dma_handle);
		__dma_sync(addr + offset, size, direction);
	}
}

EXPORT_SYMBOL(dma_sync_single_range_for_cpu);

void dma_sync_single_range_for_device(struct device *dev, dma_addr_t dma_handle,
	unsigned long offset, size_t size, enum dma_data_direction direction)
{
	BUG_ON(direction == DMA_NONE);

	plat_extra_sync_for_device(dev);
	if (!plat_device_is_coherent(dev)) {
		unsigned long addr;

		addr = dma_addr_to_virt(dma_handle);
		__dma_sync(addr + offset, size, direction);
	}
}

EXPORT_SYMBOL(dma_sync_single_range_for_device);

void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nelems,
	enum dma_data_direction direction)
{
	int i;

	BUG_ON(direction == DMA_NONE);

	/* Make sure that gcc doesn't leave the empty loop body.  */
	for (i = 0; i < nelems; i++, sg++) {
		if (cpu_is_noncoherent_r10000(dev))
			__dma_sync((unsigned long)page_address(sg_page(sg)),
			           sg->length, direction);
	}
}

EXPORT_SYMBOL(dma_sync_sg_for_cpu);

void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nelems,
	enum dma_data_direction direction)
{
	int i;

	BUG_ON(direction == DMA_NONE);

	/* Make sure that gcc doesn't leave the empty loop body.  */
	for (i = 0; i < nelems; i++, sg++) {
		if (!plat_device_is_coherent(dev))
			__dma_sync((unsigned long)page_address(sg_page(sg)),
			           sg->length, direction);
	}
}

EXPORT_SYMBOL(dma_sync_sg_for_device);

int dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
	return plat_dma_mapping_error(dev, dma_addr);
}

EXPORT_SYMBOL(dma_mapping_error);

int dma_supported(struct device *dev, u64 mask)
{
	return plat_dma_supported(dev, mask);
}

EXPORT_SYMBOL(dma_supported);

int dma_is_consistent(struct device *dev, dma_addr_t dma_addr)
{
	return plat_device_is_coherent(dev);
}

EXPORT_SYMBOL(dma_is_consistent);

void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
	       enum dma_data_direction direction)
{
	BUG_ON(direction == DMA_NONE);

	plat_extra_sync_for_device(dev);
	if (!plat_device_is_coherent(dev))
		__dma_sync((unsigned long)vaddr, size, direction);
}

EXPORT_SYMBOL(dma_cache_sync);