summaryrefslogtreecommitdiffstats
path: root/arch/parisc/kernel/smp.c
blob: 268b0f2a328ebe1df852a1b6318fb7dd39be182f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
/*
** SMP Support
**
** Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
** Copyright (C) 1999 David Mosberger-Tang <davidm@hpl.hp.com>
** Copyright (C) 2001,2004 Grant Grundler <grundler@parisc-linux.org>
** 
** Lots of stuff stolen from arch/alpha/kernel/smp.c
** ...and then parisc stole from arch/ia64/kernel/smp.c. Thanks David! :^)
**
** Thanks to John Curry and Ullas Ponnadi. I learned alot from their work.
** -grant (1/12/2001)
**
**	This program is free software; you can redistribute it and/or modify
**	it under the terms of the GNU General Public License as published by
**      the Free Software Foundation; either version 2 of the License, or
**      (at your option) any later version.
*/
#undef ENTRY_SYS_CPUS	/* syscall support for iCOD-like functionality */

#include <linux/config.h>

#include <linux/types.h>
#include <linux/spinlock.h>
#include <linux/slab.h>

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/smp.h>
#include <linux/kernel_stat.h>
#include <linux/mm.h>
#include <linux/delay.h>
#include <linux/bitops.h>

#include <asm/system.h>
#include <asm/atomic.h>
#include <asm/current.h>
#include <asm/delay.h>
#include <asm/pgalloc.h>	/* for flush_tlb_all() proto/macro */

#include <asm/io.h>
#include <asm/irq.h>		/* for CPU_IRQ_REGION and friends */
#include <asm/mmu_context.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/pgalloc.h>
#include <asm/processor.h>
#include <asm/ptrace.h>
#include <asm/unistd.h>
#include <asm/cacheflush.h>

#define kDEBUG 0

DEFINE_SPINLOCK(smp_lock);

volatile struct task_struct *smp_init_current_idle_task;

static volatile int cpu_now_booting = 0;	/* track which CPU is booting */

static int parisc_max_cpus = 1;

/* online cpus are ones that we've managed to bring up completely
 * possible cpus are all valid cpu 
 * present cpus are all detected cpu
 *
 * On startup we bring up the "possible" cpus. Since we discover
 * CPUs later, we add them as hotplug, so the possible cpu mask is
 * empty in the beginning.
 */

cpumask_t cpu_online_map = CPU_MASK_NONE;	/* Bitmap of online CPUs */
cpumask_t cpu_possible_map = CPU_MASK_ALL;	/* Bitmap of Present CPUs */

EXPORT_SYMBOL(cpu_online_map);
EXPORT_SYMBOL(cpu_possible_map);


struct smp_call_struct {
	void (*func) (void *info);
	void *info;
	long wait;
	atomic_t unstarted_count;
	atomic_t unfinished_count;
};
static volatile struct smp_call_struct *smp_call_function_data;

enum ipi_message_type {
	IPI_NOP=0,
	IPI_RESCHEDULE=1,
	IPI_CALL_FUNC,
	IPI_CPU_START,
	IPI_CPU_STOP,
	IPI_CPU_TEST
};


/********** SMP inter processor interrupt and communication routines */

#undef PER_CPU_IRQ_REGION
#ifdef PER_CPU_IRQ_REGION
/* XXX REVISIT Ignore for now.
**    *May* need this "hook" to register IPI handler
**    once we have perCPU ExtIntr switch tables.
*/
static void
ipi_init(int cpuid)
{

	/* If CPU is present ... */
#ifdef ENTRY_SYS_CPUS
	/* *and* running (not stopped) ... */
#error iCOD support wants state checked here.
#endif

#error verify IRQ_OFFSET(IPI_IRQ) is ipi_interrupt() in new IRQ region

	if(cpu_online(cpuid) )
	{
		switch_to_idle_task(current);
	}

	return;
}
#endif


/*
** Yoink this CPU from the runnable list... 
**
*/
static void
halt_processor(void) 
{
#ifdef ENTRY_SYS_CPUS
#error halt_processor() needs rework
/*
** o migrate I/O interrupts off this CPU.
** o leave IPI enabled - __cli() will disable IPI.
** o leave CPU in online map - just change the state
*/
	cpu_data[this_cpu].state = STATE_STOPPED;
	mark_bh(IPI_BH);
#else
	/* REVISIT : redirect I/O Interrupts to another CPU? */
	/* REVISIT : does PM *know* this CPU isn't available? */
	cpu_clear(smp_processor_id(), cpu_online_map);
	local_irq_disable();
	for (;;)
		;
#endif
}


irqreturn_t
ipi_interrupt(int irq, void *dev_id, struct pt_regs *regs) 
{
	int this_cpu = smp_processor_id();
	struct cpuinfo_parisc *p = &cpu_data[this_cpu];
	unsigned long ops;
	unsigned long flags;

	/* Count this now; we may make a call that never returns. */
	p->ipi_count++;

	mb();	/* Order interrupt and bit testing. */

	for (;;) {
		spin_lock_irqsave(&(p->lock),flags);
		ops = p->pending_ipi;
		p->pending_ipi = 0;
		spin_unlock_irqrestore(&(p->lock),flags);

		mb(); /* Order bit clearing and data access. */

		if (!ops)
		    break;

		while (ops) {
			unsigned long which = ffz(~ops);

			switch (which) {
			case IPI_RESCHEDULE:
#if (kDEBUG>=100)
				printk(KERN_DEBUG "CPU%d IPI_RESCHEDULE\n",this_cpu);
#endif /* kDEBUG */
				ops &= ~(1 << IPI_RESCHEDULE);
				/*
				 * Reschedule callback.  Everything to be
				 * done is done by the interrupt return path.
				 */
				break;

			case IPI_CALL_FUNC:
#if (kDEBUG>=100)
				printk(KERN_DEBUG "CPU%d IPI_CALL_FUNC\n",this_cpu);
#endif /* kDEBUG */
				ops &= ~(1 << IPI_CALL_FUNC);
				{
					volatile struct smp_call_struct *data;
					void (*func)(void *info);
					void *info;
					int wait;

					data = smp_call_function_data;
					func = data->func;
					info = data->info;
					wait = data->wait;

					mb();
					atomic_dec ((atomic_t *)&data->unstarted_count);

					/* At this point, *data can't
					 * be relied upon.
					 */

					(*func)(info);

					/* Notify the sending CPU that the
					 * task is done.
					 */
					mb();
					if (wait)
						atomic_dec ((atomic_t *)&data->unfinished_count);
				}
				break;

			case IPI_CPU_START:
#if (kDEBUG>=100)
				printk(KERN_DEBUG "CPU%d IPI_CPU_START\n",this_cpu);
#endif /* kDEBUG */
				ops &= ~(1 << IPI_CPU_START);
#ifdef ENTRY_SYS_CPUS
				p->state = STATE_RUNNING;
#endif
				break;

			case IPI_CPU_STOP:
#if (kDEBUG>=100)
				printk(KERN_DEBUG "CPU%d IPI_CPU_STOP\n",this_cpu);
#endif /* kDEBUG */
				ops &= ~(1 << IPI_CPU_STOP);
#ifdef ENTRY_SYS_CPUS
#else
				halt_processor();
#endif
				break;

			case IPI_CPU_TEST:
#if (kDEBUG>=100)
				printk(KERN_DEBUG "CPU%d is alive!\n",this_cpu);
#endif /* kDEBUG */
				ops &= ~(1 << IPI_CPU_TEST);
				break;

			default:
				printk(KERN_CRIT "Unknown IPI num on CPU%d: %lu\n",
					this_cpu, which);
				ops &= ~(1 << which);
				return IRQ_NONE;
			} /* Switch */
		} /* while (ops) */
	}
	return IRQ_HANDLED;
}


static inline void
ipi_send(int cpu, enum ipi_message_type op)
{
	struct cpuinfo_parisc *p = &cpu_data[cpu];
	unsigned long flags;

	spin_lock_irqsave(&(p->lock),flags);
	p->pending_ipi |= 1 << op;
	gsc_writel(IPI_IRQ - CPU_IRQ_BASE, cpu_data[cpu].hpa);
	spin_unlock_irqrestore(&(p->lock),flags);
}


static inline void
send_IPI_single(int dest_cpu, enum ipi_message_type op)
{
	if (dest_cpu == NO_PROC_ID) {
		BUG();
		return;
	}

	ipi_send(dest_cpu, op);
}

static inline void
send_IPI_allbutself(enum ipi_message_type op)
{
	int i;
	
	for (i = 0; i < NR_CPUS; i++) {
		if (cpu_online(i) && i != smp_processor_id())
			send_IPI_single(i, op);
	}
}


inline void 
smp_send_stop(void)	{ send_IPI_allbutself(IPI_CPU_STOP); }

static inline void
smp_send_start(void)	{ send_IPI_allbutself(IPI_CPU_START); }

void 
smp_send_reschedule(int cpu) { send_IPI_single(cpu, IPI_RESCHEDULE); }


/**
 * Run a function on all other CPUs.
 *  <func>	The function to run. This must be fast and non-blocking.
 *  <info>	An arbitrary pointer to pass to the function.
 *  <retry>	If true, keep retrying until ready.
 *  <wait>	If true, wait until function has completed on other CPUs.
 *  [RETURNS]   0 on success, else a negative status code.
 *
 * Does not return until remote CPUs are nearly ready to execute <func>
 * or have executed.
 */

int
smp_call_function (void (*func) (void *info), void *info, int retry, int wait)
{
	struct smp_call_struct data;
	unsigned long timeout;
	static DEFINE_SPINLOCK(lock);
	int retries = 0;

	if (num_online_cpus() < 2)
		return 0;

	/* Can deadlock when called with interrupts disabled */
	WARN_ON(irqs_disabled());

	/* can also deadlock if IPIs are disabled */
	WARN_ON((get_eiem() & (1UL<<(CPU_IRQ_MAX - IPI_IRQ))) == 0);

	
	data.func = func;
	data.info = info;
	data.wait = wait;
	atomic_set(&data.unstarted_count, num_online_cpus() - 1);
	atomic_set(&data.unfinished_count, num_online_cpus() - 1);

	if (retry) {
		spin_lock (&lock);
		while (smp_call_function_data != 0)
			barrier();
	}
	else {
		spin_lock (&lock);
		if (smp_call_function_data) {
			spin_unlock (&lock);
			return -EBUSY;
		}
	}

	smp_call_function_data = &data;
	spin_unlock (&lock);
	
	/*  Send a message to all other CPUs and wait for them to respond  */
	send_IPI_allbutself(IPI_CALL_FUNC);

 retry:
	/*  Wait for response  */
	timeout = jiffies + HZ;
	while ( (atomic_read (&data.unstarted_count) > 0) &&
		time_before (jiffies, timeout) )
		barrier ();

	if (atomic_read (&data.unstarted_count) > 0) {
		printk(KERN_CRIT "SMP CALL FUNCTION TIMED OUT! (cpu=%d), try %d\n",
		      smp_processor_id(), ++retries);
		goto retry;
	}
	/* We either got one or timed out. Release the lock */

	mb();
	smp_call_function_data = NULL;

	while (wait && atomic_read (&data.unfinished_count) > 0)
			barrier ();

	return 0;
}

EXPORT_SYMBOL(smp_call_function);

/*
 * Flush all other CPU's tlb and then mine.  Do this with on_each_cpu()
 * as we want to ensure all TLB's flushed before proceeding.
 */

extern void flush_tlb_all_local(void);

void
smp_flush_tlb_all(void)
{
	on_each_cpu((void (*)(void *))flush_tlb_all_local, NULL, 1, 1);
}


void 
smp_do_timer(struct pt_regs *regs)
{
	int cpu = smp_processor_id();
	struct cpuinfo_parisc *data = &cpu_data[cpu];

        if (!--data->prof_counter) {
		data->prof_counter = data->prof_multiplier;
		update_process_times(user_mode(regs));
	}
}

/*
 * Called by secondaries to update state and initialize CPU registers.
 */
static void __init
smp_cpu_init(int cpunum)
{
	extern int init_per_cpu(int);  /* arch/parisc/kernel/setup.c */
	extern void init_IRQ(void);    /* arch/parisc/kernel/irq.c */

	/* Set modes and Enable floating point coprocessor */
	(void) init_per_cpu(cpunum);

	disable_sr_hashing();

	mb();

	/* Well, support 2.4 linux scheme as well. */
	if (cpu_test_and_set(cpunum, cpu_online_map))
	{
		extern void machine_halt(void); /* arch/parisc.../process.c */

		printk(KERN_CRIT "CPU#%d already initialized!\n", cpunum);
		machine_halt();
	}  

	/* Initialise the idle task for this CPU */
	atomic_inc(&init_mm.mm_count);
	current->active_mm = &init_mm;
	if(current->mm)
		BUG();
	enter_lazy_tlb(&init_mm, current);

	init_IRQ();   /* make sure no IRQ's are enabled or pending */
}


/*
 * Slaves start using C here. Indirectly called from smp_slave_stext.
 * Do what start_kernel() and main() do for boot strap processor (aka monarch)
 */
void __init smp_callin(void)
{
	int slave_id = cpu_now_booting;
#if 0
	void *istack;
#endif

	smp_cpu_init(slave_id);
	preempt_disable();

#if 0	/* NOT WORKING YET - see entry.S */
	istack = (void *)__get_free_pages(GFP_KERNEL,ISTACK_ORDER);
	if (istack == NULL) {
	    printk(KERN_CRIT "Failed to allocate interrupt stack for cpu %d\n",slave_id);
	    BUG();
	}
	mtctl(istack,31);
#endif

	flush_cache_all_local(); /* start with known state */
	flush_tlb_all_local();

	local_irq_enable();  /* Interrupts have been off until now */

	cpu_idle();      /* Wait for timer to schedule some work */

	/* NOTREACHED */
	panic("smp_callin() AAAAaaaaahhhh....\n");
}

/*
 * Bring one cpu online.
 */
int __init smp_boot_one_cpu(int cpuid)
{
	struct task_struct *idle;
	long timeout;

	/* 
	 * Create an idle task for this CPU.  Note the address wed* give 
	 * to kernel_thread is irrelevant -- it's going to start
	 * where OS_BOOT_RENDEVZ vector in SAL says to start.  But
	 * this gets all the other task-y sort of data structures set
	 * up like we wish.   We need to pull the just created idle task 
	 * off the run queue and stuff it into the init_tasks[] array.  
	 * Sheesh . . .
	 */

	idle = fork_idle(cpuid);
	if (IS_ERR(idle))
		panic("SMP: fork failed for CPU:%d", cpuid);

	idle->thread_info->cpu = cpuid;

	/* Let _start know what logical CPU we're booting
	** (offset into init_tasks[],cpu_data[])
	*/
	cpu_now_booting = cpuid;

	/* 
	** boot strap code needs to know the task address since
	** it also contains the process stack.
	*/
	smp_init_current_idle_task = idle ;
	mb();

	printk("Releasing cpu %d now, hpa=%lx\n", cpuid, cpu_data[cpuid].hpa);

	/*
	** This gets PDC to release the CPU from a very tight loop.
	**
	** From the PA-RISC 2.0 Firmware Architecture Reference Specification:
	** "The MEM_RENDEZ vector specifies the location of OS_RENDEZ which 
	** is executed after receiving the rendezvous signal (an interrupt to 
	** EIR{0}). MEM_RENDEZ is valid only when it is nonzero and the 
	** contents of memory are valid."
	*/
	gsc_writel(TIMER_IRQ - CPU_IRQ_BASE, cpu_data[cpuid].hpa);
	mb();

	/* 
	 * OK, wait a bit for that CPU to finish staggering about. 
	 * Slave will set a bit when it reaches smp_cpu_init().
	 * Once the "monarch CPU" sees the bit change, it can move on.
	 */
	for (timeout = 0; timeout < 10000; timeout++) {
		if(cpu_online(cpuid)) {
			/* Which implies Slave has started up */
			cpu_now_booting = 0;
			smp_init_current_idle_task = NULL;
			goto alive ;
		}
		udelay(100);
		barrier();
	}

	put_task_struct(idle);
	idle = NULL;

	printk(KERN_CRIT "SMP: CPU:%d is stuck.\n", cpuid);
	return -1;

alive:
	/* Remember the Slave data */
#if (kDEBUG>=100)
	printk(KERN_DEBUG "SMP: CPU:%d came alive after %ld _us\n",
		cpuid, timeout * 100);
#endif /* kDEBUG */
#ifdef ENTRY_SYS_CPUS
	cpu_data[cpuid].state = STATE_RUNNING;
#endif
	return 0;
}

void __devinit smp_prepare_boot_cpu(void)
{
	int bootstrap_processor=cpu_data[0].cpuid;	/* CPU ID of BSP */

#ifdef ENTRY_SYS_CPUS
	cpu_data[0].state = STATE_RUNNING;
#endif

	/* Setup BSP mappings */
	printk("SMP: bootstrap CPU ID is %d\n",bootstrap_processor);

	cpu_set(bootstrap_processor, cpu_online_map);
	cpu_set(bootstrap_processor, cpu_present_map);
}



/*
** inventory.c:do_inventory() hasn't yet been run and thus we
** don't 'discover' the additional CPU's until later.
*/
void __init smp_prepare_cpus(unsigned int max_cpus)
{
	cpus_clear(cpu_present_map);
	cpu_set(0, cpu_present_map);

	parisc_max_cpus = max_cpus;
	if (!max_cpus)
		printk(KERN_INFO "SMP mode deactivated.\n");
}


void smp_cpus_done(unsigned int cpu_max)
{
	return;
}


int __devinit __cpu_up(unsigned int cpu)
{
	if (cpu != 0 && cpu < parisc_max_cpus)
		smp_boot_one_cpu(cpu);

	return cpu_online(cpu) ? 0 : -ENOSYS;
}



#ifdef ENTRY_SYS_CPUS
/* Code goes along with:
**    entry.s:        ENTRY_NAME(sys_cpus)   / * 215, for cpu stat * /
*/
int sys_cpus(int argc, char **argv)
{
	int i,j=0;
	extern int current_pid(int cpu);

	if( argc > 2 ) {
		printk("sys_cpus:Only one argument supported\n");
		return (-1);
	}
	if ( argc == 1 ){
	
#ifdef DUMP_MORE_STATE
		for(i=0; i<NR_CPUS; i++) {
			int cpus_per_line = 4;
			if(cpu_online(i)) {
				if (j++ % cpus_per_line)
					printk(" %3d",i);
				else
					printk("\n %3d",i);
			}
		}
		printk("\n"); 
#else
	    	printk("\n 0\n"); 
#endif
	} else if((argc==2) && !(strcmp(argv[1],"-l"))) {
		printk("\nCPUSTATE  TASK CPUNUM CPUID HARDCPU(HPA)\n");
#ifdef DUMP_MORE_STATE
		for(i=0;i<NR_CPUS;i++) {
			if (!cpu_online(i))
				continue;
			if (cpu_data[i].cpuid != NO_PROC_ID) {
				switch(cpu_data[i].state) {
					case STATE_RENDEZVOUS:
						printk("RENDEZVS ");
						break;
					case STATE_RUNNING:
						printk((current_pid(i)!=0) ? "RUNNING  " : "IDLING   ");
						break;
					case STATE_STOPPED:
						printk("STOPPED  ");
						break;
					case STATE_HALTED:
						printk("HALTED   ");
						break;
					default:
						printk("%08x?", cpu_data[i].state);
						break;
				}
				if(cpu_online(i)) {
					printk(" %4d",current_pid(i));
				}	
				printk(" %6d",cpu_number_map(i));
				printk(" %5d",i);
				printk(" 0x%lx\n",cpu_data[i].hpa);
			}	
		}
#else
		printk("\n%s  %4d      0     0 --------",
			(current->pid)?"RUNNING ": "IDLING  ",current->pid); 
#endif
	} else if ((argc==2) && !(strcmp(argv[1],"-s"))) { 
#ifdef DUMP_MORE_STATE
     		printk("\nCPUSTATE   CPUID\n");
		for (i=0;i<NR_CPUS;i++) {
			if (!cpu_online(i))
				continue;
			if (cpu_data[i].cpuid != NO_PROC_ID) {
				switch(cpu_data[i].state) {
					case STATE_RENDEZVOUS:
						printk("RENDEZVS");break;
					case STATE_RUNNING:
						printk((current_pid(i)!=0) ? "RUNNING " : "IDLING");
						break;
					case STATE_STOPPED:
						printk("STOPPED ");break;
					case STATE_HALTED:
						printk("HALTED  ");break;
					default:
				}
				printk("  %5d\n",i);
			}	
		}
#else
		printk("\n%s    CPU0",(current->pid==0)?"RUNNING ":"IDLING  "); 
#endif
	} else {
		printk("sys_cpus:Unknown request\n");
		return (-1);
	}
	return 0;
}
#endif /* ENTRY_SYS_CPUS */

#ifdef CONFIG_PROC_FS
int __init
setup_profiling_timer(unsigned int multiplier)
{
	return -EINVAL;
}
#endif