summaryrefslogtreecommitdiffstats
path: root/arch/powerpc/platforms/powernv/eeh-ioda.c
blob: 68167cd9ea97dee01184e5983354decb6a134d59 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
/*
 * The file intends to implement the functions needed by EEH, which is
 * built on IODA compliant chip. Actually, lots of functions related
 * to EEH would be built based on the OPAL APIs.
 *
 * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2013.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

#include <linux/bootmem.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/kernel.h>
#include <linux/msi.h>
#include <linux/notifier.h>
#include <linux/pci.h>
#include <linux/string.h>

#include <asm/eeh.h>
#include <asm/eeh_event.h>
#include <asm/io.h>
#include <asm/iommu.h>
#include <asm/msi_bitmap.h>
#include <asm/opal.h>
#include <asm/pci-bridge.h>
#include <asm/ppc-pci.h>
#include <asm/tce.h>

#include "powernv.h"
#include "pci.h"

static int ioda_eeh_nb_init = 0;

static int ioda_eeh_event(struct notifier_block *nb,
			  unsigned long events, void *change)
{
	uint64_t changed_evts = (uint64_t)change;

	/*
	 * We simply send special EEH event if EEH has
	 * been enabled, or clear pending events in
	 * case that we enable EEH soon
	 */
	if (!(changed_evts & OPAL_EVENT_PCI_ERROR) ||
	    !(events & OPAL_EVENT_PCI_ERROR))
		return 0;

	if (eeh_enabled())
		eeh_send_failure_event(NULL);
	else
		opal_notifier_update_evt(OPAL_EVENT_PCI_ERROR, 0x0ul);

	return 0;
}

static struct notifier_block ioda_eeh_nb = {
	.notifier_call	= ioda_eeh_event,
	.next		= NULL,
	.priority	= 0
};

#ifdef CONFIG_DEBUG_FS
static int ioda_eeh_dbgfs_set(void *data, int offset, u64 val)
{
	struct pci_controller *hose = data;
	struct pnv_phb *phb = hose->private_data;

	out_be64(phb->regs + offset, val);
	return 0;
}

static int ioda_eeh_dbgfs_get(void *data, int offset, u64 *val)
{
	struct pci_controller *hose = data;
	struct pnv_phb *phb = hose->private_data;

	*val = in_be64(phb->regs + offset);
	return 0;
}

static int ioda_eeh_outb_dbgfs_set(void *data, u64 val)
{
	return ioda_eeh_dbgfs_set(data, 0xD10, val);
}

static int ioda_eeh_outb_dbgfs_get(void *data, u64 *val)
{
	return ioda_eeh_dbgfs_get(data, 0xD10, val);
}

static int ioda_eeh_inbA_dbgfs_set(void *data, u64 val)
{
	return ioda_eeh_dbgfs_set(data, 0xD90, val);
}

static int ioda_eeh_inbA_dbgfs_get(void *data, u64 *val)
{
	return ioda_eeh_dbgfs_get(data, 0xD90, val);
}

static int ioda_eeh_inbB_dbgfs_set(void *data, u64 val)
{
	return ioda_eeh_dbgfs_set(data, 0xE10, val);
}

static int ioda_eeh_inbB_dbgfs_get(void *data, u64 *val)
{
	return ioda_eeh_dbgfs_get(data, 0xE10, val);
}

DEFINE_SIMPLE_ATTRIBUTE(ioda_eeh_outb_dbgfs_ops, ioda_eeh_outb_dbgfs_get,
			ioda_eeh_outb_dbgfs_set, "0x%llx\n");
DEFINE_SIMPLE_ATTRIBUTE(ioda_eeh_inbA_dbgfs_ops, ioda_eeh_inbA_dbgfs_get,
			ioda_eeh_inbA_dbgfs_set, "0x%llx\n");
DEFINE_SIMPLE_ATTRIBUTE(ioda_eeh_inbB_dbgfs_ops, ioda_eeh_inbB_dbgfs_get,
			ioda_eeh_inbB_dbgfs_set, "0x%llx\n");
#endif /* CONFIG_DEBUG_FS */


/**
 * ioda_eeh_post_init - Chip dependent post initialization
 * @hose: PCI controller
 *
 * The function will be called after eeh PEs and devices
 * have been built. That means the EEH is ready to supply
 * service with I/O cache.
 */
static int ioda_eeh_post_init(struct pci_controller *hose)
{
	struct pnv_phb *phb = hose->private_data;
	int ret;

	/* Register OPAL event notifier */
	if (!ioda_eeh_nb_init) {
		ret = opal_notifier_register(&ioda_eeh_nb);
		if (ret) {
			pr_err("%s: Can't register OPAL event notifier (%d)\n",
			       __func__, ret);
			return ret;
		}

		ioda_eeh_nb_init = 1;
	}

#ifdef CONFIG_DEBUG_FS
	if (!phb->has_dbgfs && phb->dbgfs) {
		phb->has_dbgfs = 1;

		debugfs_create_file("err_injct_outbound", 0600,
				    phb->dbgfs, hose,
				    &ioda_eeh_outb_dbgfs_ops);
		debugfs_create_file("err_injct_inboundA", 0600,
				    phb->dbgfs, hose,
				    &ioda_eeh_inbA_dbgfs_ops);
		debugfs_create_file("err_injct_inboundB", 0600,
				    phb->dbgfs, hose,
				    &ioda_eeh_inbB_dbgfs_ops);
	}
#endif

	/* If EEH is enabled, we're going to rely on that.
	 * Otherwise, we restore to conventional mechanism
	 * to clear frozen PE during PCI config access.
	 */
	if (eeh_enabled())
		phb->flags |= PNV_PHB_FLAG_EEH;
	else
		phb->flags &= ~PNV_PHB_FLAG_EEH;

	return 0;
}

/**
 * ioda_eeh_set_option - Set EEH operation or I/O setting
 * @pe: EEH PE
 * @option: options
 *
 * Enable or disable EEH option for the indicated PE. The
 * function also can be used to enable I/O or DMA for the
 * PE.
 */
static int ioda_eeh_set_option(struct eeh_pe *pe, int option)
{
	s64 ret;
	u32 pe_no;
	struct pci_controller *hose = pe->phb;
	struct pnv_phb *phb = hose->private_data;

	/* Check on PE number */
	if (pe->addr < 0 || pe->addr >= phb->ioda.total_pe) {
		pr_err("%s: PE address %x out of range [0, %x] "
		       "on PHB#%x\n",
			__func__, pe->addr, phb->ioda.total_pe,
			hose->global_number);
		return -EINVAL;
	}

	pe_no = pe->addr;
	switch (option) {
	case EEH_OPT_DISABLE:
		ret = -EEXIST;
		break;
	case EEH_OPT_ENABLE:
		ret = 0;
		break;
	case EEH_OPT_THAW_MMIO:
		ret = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
				OPAL_EEH_ACTION_CLEAR_FREEZE_MMIO);
		if (ret) {
			pr_warning("%s: Failed to enable MMIO for "
				   "PHB#%x-PE#%x, err=%lld\n",
				__func__, hose->global_number, pe_no, ret);
			return -EIO;
		}

		break;
	case EEH_OPT_THAW_DMA:
		ret = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
				OPAL_EEH_ACTION_CLEAR_FREEZE_DMA);
		if (ret) {
			pr_warning("%s: Failed to enable DMA for "
				   "PHB#%x-PE#%x, err=%lld\n",
				__func__, hose->global_number, pe_no, ret);
			return -EIO;
		}

		break;
	default:
		pr_warning("%s: Invalid option %d\n", __func__, option);
		return -EINVAL;
	}

	return ret;
}

static void ioda_eeh_phb_diag(struct pci_controller *hose)
{
	struct pnv_phb *phb = hose->private_data;
	long rc;

	rc = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag.blob,
					 PNV_PCI_DIAG_BUF_SIZE);
	if (rc != OPAL_SUCCESS) {
		pr_warning("%s: Failed to get diag-data for PHB#%x (%ld)\n",
			    __func__, hose->global_number, rc);
		return;
	}

	pnv_pci_dump_phb_diag_data(hose, phb->diag.blob);
}

/**
 * ioda_eeh_get_state - Retrieve the state of PE
 * @pe: EEH PE
 *
 * The PE's state should be retrieved from the PEEV, PEST
 * IODA tables. Since the OPAL has exported the function
 * to do it, it'd better to use that.
 */
static int ioda_eeh_get_state(struct eeh_pe *pe)
{
	s64 ret = 0;
	u8 fstate;
	__be16 pcierr;
	u32 pe_no;
	int result;
	struct pci_controller *hose = pe->phb;
	struct pnv_phb *phb = hose->private_data;

	/*
	 * Sanity check on PE address. The PHB PE address should
	 * be zero.
	 */
	if (pe->addr < 0 || pe->addr >= phb->ioda.total_pe) {
		pr_err("%s: PE address %x out of range [0, %x] "
		       "on PHB#%x\n",
		       __func__, pe->addr, phb->ioda.total_pe,
		       hose->global_number);
		return EEH_STATE_NOT_SUPPORT;
	}

	/*
	 * If we're in middle of PE reset, return normal
	 * state to keep EEH core going. For PHB reset, we
	 * still expect to have fenced PHB cleared with
	 * PHB reset.
	 */
	if (!(pe->type & EEH_PE_PHB) &&
	    (pe->state & EEH_PE_RESET)) {
		result = (EEH_STATE_MMIO_ACTIVE |
			  EEH_STATE_DMA_ACTIVE |
			  EEH_STATE_MMIO_ENABLED |
			  EEH_STATE_DMA_ENABLED);
		return result;
	}

	/* Retrieve PE status through OPAL */
	pe_no = pe->addr;
	ret = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
			&fstate, &pcierr, NULL);
	if (ret) {
		pr_err("%s: Failed to get EEH status on "
		       "PHB#%x-PE#%x\n, err=%lld\n",
		       __func__, hose->global_number, pe_no, ret);
		return EEH_STATE_NOT_SUPPORT;
	}

	/* Check PHB status */
	if (pe->type & EEH_PE_PHB) {
		result = 0;
		result &= ~EEH_STATE_RESET_ACTIVE;

		if (be16_to_cpu(pcierr) != OPAL_EEH_PHB_ERROR) {
			result |= EEH_STATE_MMIO_ACTIVE;
			result |= EEH_STATE_DMA_ACTIVE;
			result |= EEH_STATE_MMIO_ENABLED;
			result |= EEH_STATE_DMA_ENABLED;
		} else if (!(pe->state & EEH_PE_ISOLATED)) {
			eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
			ioda_eeh_phb_diag(hose);
		}

		return result;
	}

	/* Parse result out */
	result = 0;
	switch (fstate) {
	case OPAL_EEH_STOPPED_NOT_FROZEN:
		result &= ~EEH_STATE_RESET_ACTIVE;
		result |= EEH_STATE_MMIO_ACTIVE;
		result |= EEH_STATE_DMA_ACTIVE;
		result |= EEH_STATE_MMIO_ENABLED;
		result |= EEH_STATE_DMA_ENABLED;
		break;
	case OPAL_EEH_STOPPED_MMIO_FREEZE:
		result &= ~EEH_STATE_RESET_ACTIVE;
		result |= EEH_STATE_DMA_ACTIVE;
		result |= EEH_STATE_DMA_ENABLED;
		break;
	case OPAL_EEH_STOPPED_DMA_FREEZE:
		result &= ~EEH_STATE_RESET_ACTIVE;
		result |= EEH_STATE_MMIO_ACTIVE;
		result |= EEH_STATE_MMIO_ENABLED;
		break;
	case OPAL_EEH_STOPPED_MMIO_DMA_FREEZE:
		result &= ~EEH_STATE_RESET_ACTIVE;
		break;
	case OPAL_EEH_STOPPED_RESET:
		result |= EEH_STATE_RESET_ACTIVE;
		break;
	case OPAL_EEH_STOPPED_TEMP_UNAVAIL:
		result |= EEH_STATE_UNAVAILABLE;
		break;
	case OPAL_EEH_STOPPED_PERM_UNAVAIL:
		result |= EEH_STATE_NOT_SUPPORT;
		break;
	default:
		pr_warning("%s: Unexpected EEH status 0x%x "
			   "on PHB#%x-PE#%x\n",
			   __func__, fstate, hose->global_number, pe_no);
	}

	/* Dump PHB diag-data for frozen PE */
	if (result != EEH_STATE_NOT_SUPPORT &&
	    (result & (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) !=
	    (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE) &&
	    !(pe->state & EEH_PE_ISOLATED)) {
		eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
		ioda_eeh_phb_diag(hose);
	}

	return result;
}

static s64 ioda_eeh_phb_poll(struct pnv_phb *phb)
{
	s64 rc = OPAL_HARDWARE;

	while (1) {
		rc = opal_pci_poll(phb->opal_id);
		if (rc <= 0)
			break;

		if (system_state < SYSTEM_RUNNING)
			udelay(1000 * rc);
		else
			msleep(rc);
	}

	return rc;
}

int ioda_eeh_phb_reset(struct pci_controller *hose, int option)
{
	struct pnv_phb *phb = hose->private_data;
	s64 rc = OPAL_HARDWARE;

	pr_debug("%s: Reset PHB#%x, option=%d\n",
		 __func__, hose->global_number, option);

	/* Issue PHB complete reset request */
	if (option == EEH_RESET_FUNDAMENTAL ||
	    option == EEH_RESET_HOT)
		rc = opal_pci_reset(phb->opal_id,
				OPAL_PHB_COMPLETE,
				OPAL_ASSERT_RESET);
	else if (option == EEH_RESET_DEACTIVATE)
		rc = opal_pci_reset(phb->opal_id,
				OPAL_PHB_COMPLETE,
				OPAL_DEASSERT_RESET);
	if (rc < 0)
		goto out;

	/*
	 * Poll state of the PHB until the request is done
	 * successfully. The PHB reset is usually PHB complete
	 * reset followed by hot reset on root bus. So we also
	 * need the PCI bus settlement delay.
	 */
	rc = ioda_eeh_phb_poll(phb);
	if (option == EEH_RESET_DEACTIVATE) {
		if (system_state < SYSTEM_RUNNING)
			udelay(1000 * EEH_PE_RST_SETTLE_TIME);
		else
			msleep(EEH_PE_RST_SETTLE_TIME);
	}
out:
	if (rc != OPAL_SUCCESS)
		return -EIO;

	return 0;
}

static int ioda_eeh_root_reset(struct pci_controller *hose, int option)
{
	struct pnv_phb *phb = hose->private_data;
	s64 rc = OPAL_SUCCESS;

	pr_debug("%s: Reset PHB#%x, option=%d\n",
		 __func__, hose->global_number, option);

	/*
	 * During the reset deassert time, we needn't care
	 * the reset scope because the firmware does nothing
	 * for fundamental or hot reset during deassert phase.
	 */
	if (option == EEH_RESET_FUNDAMENTAL)
		rc = opal_pci_reset(phb->opal_id,
				OPAL_PCI_FUNDAMENTAL_RESET,
				OPAL_ASSERT_RESET);
	else if (option == EEH_RESET_HOT)
		rc = opal_pci_reset(phb->opal_id,
				OPAL_PCI_HOT_RESET,
				OPAL_ASSERT_RESET);
	else if (option == EEH_RESET_DEACTIVATE)
		rc = opal_pci_reset(phb->opal_id,
				OPAL_PCI_HOT_RESET,
				OPAL_DEASSERT_RESET);
	if (rc < 0)
		goto out;

	/* Poll state of the PHB until the request is done */
	rc = ioda_eeh_phb_poll(phb);
	if (option == EEH_RESET_DEACTIVATE)
		msleep(EEH_PE_RST_SETTLE_TIME);
out:
	if (rc != OPAL_SUCCESS)
		return -EIO;

	return 0;
}

static int ioda_eeh_bridge_reset(struct pci_dev *dev, int option)

{
	struct device_node *dn = pci_device_to_OF_node(dev);
	struct eeh_dev *edev = of_node_to_eeh_dev(dn);
	int aer = edev ? edev->aer_cap : 0;
	u32 ctrl;

	pr_debug("%s: Reset PCI bus %04x:%02x with option %d\n",
		 __func__, pci_domain_nr(dev->bus),
		 dev->bus->number, option);

	switch (option) {
	case EEH_RESET_FUNDAMENTAL:
	case EEH_RESET_HOT:
		/* Don't report linkDown event */
		if (aer) {
			eeh_ops->read_config(dn, aer + PCI_ERR_UNCOR_MASK,
					     4, &ctrl);
			ctrl |= PCI_ERR_UNC_SURPDN;
                        eeh_ops->write_config(dn, aer + PCI_ERR_UNCOR_MASK,
					      4, ctrl);
                }

		eeh_ops->read_config(dn, PCI_BRIDGE_CONTROL, 2, &ctrl);
		ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
		eeh_ops->write_config(dn, PCI_BRIDGE_CONTROL, 2, ctrl);
		msleep(EEH_PE_RST_HOLD_TIME);

		break;
	case EEH_RESET_DEACTIVATE:
		eeh_ops->read_config(dn, PCI_BRIDGE_CONTROL, 2, &ctrl);
		ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
		eeh_ops->write_config(dn, PCI_BRIDGE_CONTROL, 2, ctrl);
		msleep(EEH_PE_RST_SETTLE_TIME);

		/* Continue reporting linkDown event */
		if (aer) {
			eeh_ops->read_config(dn, aer + PCI_ERR_UNCOR_MASK,
					     4, &ctrl);
			ctrl &= ~PCI_ERR_UNC_SURPDN;
			eeh_ops->write_config(dn, aer + PCI_ERR_UNCOR_MASK,
					      4, ctrl);
		}

		break;
	}

	return 0;
}

void pnv_pci_reset_secondary_bus(struct pci_dev *dev)
{
	struct pci_controller *hose;

	if (pci_is_root_bus(dev->bus)) {
		hose = pci_bus_to_host(dev->bus);
		ioda_eeh_root_reset(hose, EEH_RESET_HOT);
		ioda_eeh_root_reset(hose, EEH_RESET_DEACTIVATE);
	} else {
		ioda_eeh_bridge_reset(dev, EEH_RESET_HOT);
		ioda_eeh_bridge_reset(dev, EEH_RESET_DEACTIVATE);
	}
}

/**
 * ioda_eeh_reset - Reset the indicated PE
 * @pe: EEH PE
 * @option: reset option
 *
 * Do reset on the indicated PE. For PCI bus sensitive PE,
 * we need to reset the parent p2p bridge. The PHB has to
 * be reinitialized if the p2p bridge is root bridge. For
 * PCI device sensitive PE, we will try to reset the device
 * through FLR. For now, we don't have OPAL APIs to do HARD
 * reset yet, so all reset would be SOFT (HOT) reset.
 */
static int ioda_eeh_reset(struct eeh_pe *pe, int option)
{
	struct pci_controller *hose = pe->phb;
	struct pci_bus *bus;
	int ret;

	/*
	 * For PHB reset, we always have complete reset. For those PEs whose
	 * primary bus derived from root complex (root bus) or root port
	 * (usually bus#1), we apply hot or fundamental reset on the root port.
	 * For other PEs, we always have hot reset on the PE primary bus.
	 *
	 * Here, we have different design to pHyp, which always clear the
	 * frozen state during PE reset. However, the good idea here from
	 * benh is to keep frozen state before we get PE reset done completely
	 * (until BAR restore). With the frozen state, HW drops illegal IO
	 * or MMIO access, which can incur recrusive frozen PE during PE
	 * reset. The side effect is that EEH core has to clear the frozen
	 * state explicitly after BAR restore.
	 */
	if (pe->type & EEH_PE_PHB) {
		ret = ioda_eeh_phb_reset(hose, option);
	} else {
		bus = eeh_pe_bus_get(pe);
		if (pci_is_root_bus(bus) ||
		    pci_is_root_bus(bus->parent))
			ret = ioda_eeh_root_reset(hose, option);
		else
			ret = ioda_eeh_bridge_reset(bus->self, option);
	}

	return ret;
}

/**
 * ioda_eeh_configure_bridge - Configure the PCI bridges for the indicated PE
 * @pe: EEH PE
 *
 * For particular PE, it might have included PCI bridges. In order
 * to make the PE work properly, those PCI bridges should be configured
 * correctly. However, we need do nothing on P7IOC since the reset
 * function will do everything that should be covered by the function.
 */
static int ioda_eeh_configure_bridge(struct eeh_pe *pe)
{
	return 0;
}

static void ioda_eeh_hub_diag_common(struct OpalIoP7IOCErrorData *data)
{
	/* GEM */
	pr_info("  GEM XFIR:        %016llx\n", data->gemXfir);
	pr_info("  GEM RFIR:        %016llx\n", data->gemRfir);
	pr_info("  GEM RIRQFIR:     %016llx\n", data->gemRirqfir);
	pr_info("  GEM Mask:        %016llx\n", data->gemMask);
	pr_info("  GEM RWOF:        %016llx\n", data->gemRwof);

	/* LEM */
	pr_info("  LEM FIR:         %016llx\n", data->lemFir);
	pr_info("  LEM Error Mask:  %016llx\n", data->lemErrMask);
	pr_info("  LEM Action 0:    %016llx\n", data->lemAction0);
	pr_info("  LEM Action 1:    %016llx\n", data->lemAction1);
	pr_info("  LEM WOF:         %016llx\n", data->lemWof);
}

static void ioda_eeh_hub_diag(struct pci_controller *hose)
{
	struct pnv_phb *phb = hose->private_data;
	struct OpalIoP7IOCErrorData *data = &phb->diag.hub_diag;
	long rc;

	rc = opal_pci_get_hub_diag_data(phb->hub_id, data, sizeof(*data));
	if (rc != OPAL_SUCCESS) {
		pr_warning("%s: Failed to get HUB#%llx diag-data (%ld)\n",
			   __func__, phb->hub_id, rc);
		return;
	}

	switch (data->type) {
	case OPAL_P7IOC_DIAG_TYPE_RGC:
		pr_info("P7IOC diag-data for RGC\n\n");
		ioda_eeh_hub_diag_common(data);
		pr_info("  RGC Status:      %016llx\n", data->rgc.rgcStatus);
		pr_info("  RGC LDCP:        %016llx\n", data->rgc.rgcLdcp);
		break;
	case OPAL_P7IOC_DIAG_TYPE_BI:
		pr_info("P7IOC diag-data for BI %s\n\n",
			data->bi.biDownbound ? "Downbound" : "Upbound");
		ioda_eeh_hub_diag_common(data);
		pr_info("  BI LDCP 0:       %016llx\n", data->bi.biLdcp0);
		pr_info("  BI LDCP 1:       %016llx\n", data->bi.biLdcp1);
		pr_info("  BI LDCP 2:       %016llx\n", data->bi.biLdcp2);
		pr_info("  BI Fence Status: %016llx\n", data->bi.biFenceStatus);
		break;
	case OPAL_P7IOC_DIAG_TYPE_CI:
		pr_info("P7IOC diag-data for CI Port %d\\nn",
			data->ci.ciPort);
		ioda_eeh_hub_diag_common(data);
		pr_info("  CI Port Status:  %016llx\n", data->ci.ciPortStatus);
		pr_info("  CI Port LDCP:    %016llx\n", data->ci.ciPortLdcp);
		break;
	case OPAL_P7IOC_DIAG_TYPE_MISC:
		pr_info("P7IOC diag-data for MISC\n\n");
		ioda_eeh_hub_diag_common(data);
		break;
	case OPAL_P7IOC_DIAG_TYPE_I2C:
		pr_info("P7IOC diag-data for I2C\n\n");
		ioda_eeh_hub_diag_common(data);
		break;
	default:
		pr_warning("%s: Invalid type of HUB#%llx diag-data (%d)\n",
			   __func__, phb->hub_id, data->type);
	}
}

static int ioda_eeh_get_pe(struct pci_controller *hose,
			   u16 pe_no, struct eeh_pe **pe)
{
	struct eeh_pe *phb_pe, *dev_pe;
	struct eeh_dev dev;

	/* Find the PHB PE */
	phb_pe = eeh_phb_pe_get(hose);
	if (!phb_pe)
		return -EEXIST;

	/* Find the PE according to PE# */
	memset(&dev, 0, sizeof(struct eeh_dev));
	dev.phb = hose;
	dev.pe_config_addr = pe_no;
	dev_pe = eeh_pe_get(&dev);
	if (!dev_pe) return -EEXIST;

	*pe = dev_pe;
	return 0;
}

/**
 * ioda_eeh_next_error - Retrieve next error for EEH core to handle
 * @pe: The affected PE
 *
 * The function is expected to be called by EEH core while it gets
 * special EEH event (without binding PE). The function calls to
 * OPAL APIs for next error to handle. The informational error is
 * handled internally by platform. However, the dead IOC, dead PHB,
 * fenced PHB and frozen PE should be handled by EEH core eventually.
 */
static int ioda_eeh_next_error(struct eeh_pe **pe)
{
	struct pci_controller *hose;
	struct pnv_phb *phb;
	struct eeh_pe *phb_pe, *parent_pe;
	__be64 frozen_pe_no;
	__be16 err_type, severity;
	int active_flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
	long rc;
	int state, ret = EEH_NEXT_ERR_NONE;

	/*
	 * While running here, it's safe to purge the event queue.
	 * And we should keep the cached OPAL notifier event sychronized
	 * between the kernel and firmware.
	 */
	eeh_remove_event(NULL);
	opal_notifier_update_evt(OPAL_EVENT_PCI_ERROR, 0x0ul);

	list_for_each_entry(hose, &hose_list, list_node) {
		/*
		 * If the subordinate PCI buses of the PHB has been
		 * removed or is exactly under error recovery, we
		 * needn't take care of it any more.
		 */
		phb = hose->private_data;
		phb_pe = eeh_phb_pe_get(hose);
		if (!phb_pe || (phb_pe->state & EEH_PE_ISOLATED))
			continue;

		rc = opal_pci_next_error(phb->opal_id,
				&frozen_pe_no, &err_type, &severity);

		/* If OPAL API returns error, we needn't proceed */
		if (rc != OPAL_SUCCESS) {
			pr_devel("%s: Invalid return value on "
				 "PHB#%x (0x%lx) from opal_pci_next_error",
				 __func__, hose->global_number, rc);
			continue;
		}

		/* If the PHB doesn't have error, stop processing */
		if (be16_to_cpu(err_type) == OPAL_EEH_NO_ERROR ||
		    be16_to_cpu(severity) == OPAL_EEH_SEV_NO_ERROR) {
			pr_devel("%s: No error found on PHB#%x\n",
				 __func__, hose->global_number);
			continue;
		}

		/*
		 * Processing the error. We're expecting the error with
		 * highest priority reported upon multiple errors on the
		 * specific PHB.
		 */
		pr_devel("%s: Error (%d, %d, %llu) on PHB#%x\n",
			 __func__, be16_to_cpu(err_type), be16_to_cpu(severity),
			 be64_to_cpu(frozen_pe_no), hose->global_number);
		switch (be16_to_cpu(err_type)) {
		case OPAL_EEH_IOC_ERROR:
			if (be16_to_cpu(severity) == OPAL_EEH_SEV_IOC_DEAD) {
				pr_err("EEH: dead IOC detected\n");
				ret = EEH_NEXT_ERR_DEAD_IOC;
			} else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) {
				pr_info("EEH: IOC informative error "
					"detected\n");
				ioda_eeh_hub_diag(hose);
				ret = EEH_NEXT_ERR_NONE;
			}

			break;
		case OPAL_EEH_PHB_ERROR:
			if (be16_to_cpu(severity) == OPAL_EEH_SEV_PHB_DEAD) {
				*pe = phb_pe;
				pr_err("EEH: dead PHB#%x detected\n",
					hose->global_number);
				ret = EEH_NEXT_ERR_DEAD_PHB;
			} else if (be16_to_cpu(severity) ==
						OPAL_EEH_SEV_PHB_FENCED) {
				*pe = phb_pe;
				pr_err("EEH: fenced PHB#%x detected\n",
					hose->global_number);
				ret = EEH_NEXT_ERR_FENCED_PHB;
			} else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) {
				pr_info("EEH: PHB#%x informative error "
					"detected\n",
					hose->global_number);
				ioda_eeh_phb_diag(hose);
				ret = EEH_NEXT_ERR_NONE;
			}

			break;
		case OPAL_EEH_PE_ERROR:
			/*
			 * If we can't find the corresponding PE, the
			 * PEEV / PEST would be messy. So we force an
			 * fenced PHB so that it can be recovered.
			 *
			 * If the PE has been marked as isolated, that
			 * should have been removed permanently or in
			 * progress with recovery. We needn't report
			 * it again.
			 */
			if (ioda_eeh_get_pe(hose,
					be64_to_cpu(frozen_pe_no), pe)) {
				*pe = phb_pe;
				pr_err("EEH: Escalated fenced PHB#%x "
				       "detected for PE#%llx\n",
					hose->global_number,
					be64_to_cpu(frozen_pe_no));
				ret = EEH_NEXT_ERR_FENCED_PHB;
			} else if ((*pe)->state & EEH_PE_ISOLATED) {
				ret = EEH_NEXT_ERR_NONE;
			} else {
				pr_err("EEH: Frozen PE#%x on PHB#%x detected\n",
					(*pe)->addr, (*pe)->phb->global_number);
				ret = EEH_NEXT_ERR_FROZEN_PE;
			}

			break;
		default:
			pr_warn("%s: Unexpected error type %d\n",
				__func__, be16_to_cpu(err_type));
		}

		/*
		 * EEH core will try recover from fenced PHB or
		 * frozen PE. In the time for frozen PE, EEH core
		 * enable IO path for that before collecting logs,
		 * but it ruins the site. So we have to dump the
		 * log in advance here.
		 */
		if ((ret == EEH_NEXT_ERR_FROZEN_PE  ||
		    ret == EEH_NEXT_ERR_FENCED_PHB) &&
		    !((*pe)->state & EEH_PE_ISOLATED)) {
			eeh_pe_state_mark(*pe, EEH_PE_ISOLATED);
			ioda_eeh_phb_diag(hose);
		}

		/*
		 * We probably have the frozen parent PE out there and
		 * we need have to handle frozen parent PE firstly.
		 */
		if (ret == EEH_NEXT_ERR_FROZEN_PE) {
			parent_pe = (*pe)->parent;
			while (parent_pe) {
				/* Hit the ceiling ? */
				if (parent_pe->type & EEH_PE_PHB)
					break;

				/* Frozen parent PE ? */
				state = ioda_eeh_get_state(parent_pe);
				if (state > 0 &&
				    (state & active_flags) != active_flags)
					*pe = parent_pe;

				/* Next parent level */
				parent_pe = parent_pe->parent;
			}

			/* We possibly migrate to another PE */
			eeh_pe_state_mark(*pe, EEH_PE_ISOLATED);
		}

		/*
		 * If we have no errors on the specific PHB or only
		 * informative error there, we continue poking it.
		 * Otherwise, we need actions to be taken by upper
		 * layer.
		 */
		if (ret > EEH_NEXT_ERR_INF)
			break;
	}

	return ret;
}

struct pnv_eeh_ops ioda_eeh_ops = {
	.post_init		= ioda_eeh_post_init,
	.set_option		= ioda_eeh_set_option,
	.get_state		= ioda_eeh_get_state,
	.reset			= ioda_eeh_reset,
	.configure_bridge	= ioda_eeh_configure_bridge,
	.next_error		= ioda_eeh_next_error
};