1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
|
/*
* arch/sh/kernel/cpu/clock.c - SuperH clock framework
*
* Copyright (C) 2005, 2006, 2007 Paul Mundt
*
* This clock framework is derived from the OMAP version by:
*
* Copyright (C) 2004 - 2005 Nokia Corporation
* Written by Tuukka Tikkanen <tuukka.tikkanen@elektrobit.com>
*
* Modified for omap shared clock framework by Tony Lindgren <tony@atomide.com>
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/list.h>
#include <linux/kobject.h>
#include <linux/sysdev.h>
#include <linux/seq_file.h>
#include <linux/err.h>
#include <linux/platform_device.h>
#include <linux/proc_fs.h>
#include <asm/clock.h>
#include <asm/timer.h>
static LIST_HEAD(clock_list);
static DEFINE_SPINLOCK(clock_lock);
static DEFINE_MUTEX(clock_list_sem);
/*
* Each subtype is expected to define the init routines for these clocks,
* as each subtype (or processor family) will have these clocks at the
* very least. These are all provided through the CPG, which even some of
* the more quirky parts (such as ST40, SH4-202, etc.) still have.
*
* The processor-specific code is expected to register any additional
* clock sources that are of interest.
*/
static struct clk master_clk = {
.name = "master_clk",
.flags = CLK_ALWAYS_ENABLED | CLK_RATE_PROPAGATES,
.rate = CONFIG_SH_PCLK_FREQ,
};
static struct clk module_clk = {
.name = "module_clk",
.parent = &master_clk,
.flags = CLK_ALWAYS_ENABLED | CLK_RATE_PROPAGATES,
};
static struct clk bus_clk = {
.name = "bus_clk",
.parent = &master_clk,
.flags = CLK_ALWAYS_ENABLED | CLK_RATE_PROPAGATES,
};
static struct clk cpu_clk = {
.name = "cpu_clk",
.parent = &master_clk,
.flags = CLK_ALWAYS_ENABLED,
};
/*
* The ordering of these clocks matters, do not change it.
*/
static struct clk *onchip_clocks[] = {
&master_clk,
&module_clk,
&bus_clk,
&cpu_clk,
};
/* Propagate rate to children */
static void propagate_rate(struct clk *clk)
{
struct clk *clkp;
list_for_each_entry(clkp, &clock_list, node) {
if (likely(clkp->parent != clk))
continue;
if (likely(clkp->ops && clkp->ops->recalc))
clkp->rate = clkp->ops->recalc(clkp);
if (unlikely(clkp->flags & CLK_RATE_PROPAGATES))
propagate_rate(clkp);
}
}
/* Used for clocks that always have same value as the parent clock */
unsigned long followparent_recalc(struct clk *clk)
{
return clk->parent->rate;
}
static void __clk_init(struct clk *clk)
{
/*
* See if this is the first time we're enabling the clock, some
* clocks that are always enabled still require "special"
* initialization. This is especially true if the clock mode
* changes and the clock needs to hunt for the proper set of
* divisors to use before it can effectively recalc.
*/
if (clk->flags & CLK_NEEDS_INIT) {
if (clk->ops && clk->ops->init)
clk->ops->init(clk);
clk->flags &= ~CLK_NEEDS_INIT;
}
}
static int __clk_enable(struct clk *clk)
{
if (!clk)
return -EINVAL;
clk->usecount++;
/* nothing to do if always enabled */
if (clk->flags & CLK_ALWAYS_ENABLED)
return 0;
if (clk->usecount == 1) {
__clk_init(clk);
__clk_enable(clk->parent);
if (clk->ops && clk->ops->enable)
clk->ops->enable(clk);
}
return 0;
}
int clk_enable(struct clk *clk)
{
unsigned long flags;
int ret;
spin_lock_irqsave(&clock_lock, flags);
ret = __clk_enable(clk);
spin_unlock_irqrestore(&clock_lock, flags);
return ret;
}
EXPORT_SYMBOL_GPL(clk_enable);
static void __clk_disable(struct clk *clk)
{
if (!clk)
return;
clk->usecount--;
WARN_ON(clk->usecount < 0);
if (clk->flags & CLK_ALWAYS_ENABLED)
return;
if (clk->usecount == 0) {
if (likely(clk->ops && clk->ops->disable))
clk->ops->disable(clk);
__clk_disable(clk->parent);
}
}
void clk_disable(struct clk *clk)
{
unsigned long flags;
spin_lock_irqsave(&clock_lock, flags);
__clk_disable(clk);
spin_unlock_irqrestore(&clock_lock, flags);
}
EXPORT_SYMBOL_GPL(clk_disable);
int clk_register(struct clk *clk)
{
mutex_lock(&clock_list_sem);
list_add(&clk->node, &clock_list);
clk->usecount = 0;
clk->flags |= CLK_NEEDS_INIT;
mutex_unlock(&clock_list_sem);
if (clk->flags & CLK_ALWAYS_ENABLED) {
__clk_init(clk);
pr_debug( "Clock '%s' is ALWAYS_ENABLED\n", clk->name);
if (clk->ops && clk->ops->enable)
clk->ops->enable(clk);
pr_debug( "Enabled.");
}
return 0;
}
EXPORT_SYMBOL_GPL(clk_register);
void clk_unregister(struct clk *clk)
{
mutex_lock(&clock_list_sem);
list_del(&clk->node);
mutex_unlock(&clock_list_sem);
}
EXPORT_SYMBOL_GPL(clk_unregister);
unsigned long clk_get_rate(struct clk *clk)
{
return clk->rate;
}
EXPORT_SYMBOL_GPL(clk_get_rate);
int clk_set_rate(struct clk *clk, unsigned long rate)
{
return clk_set_rate_ex(clk, rate, 0);
}
EXPORT_SYMBOL_GPL(clk_set_rate);
int clk_set_rate_ex(struct clk *clk, unsigned long rate, int algo_id)
{
int ret = -EOPNOTSUPP;
if (likely(clk->ops && clk->ops->set_rate)) {
unsigned long flags;
spin_lock_irqsave(&clock_lock, flags);
ret = clk->ops->set_rate(clk, rate, algo_id);
spin_unlock_irqrestore(&clock_lock, flags);
}
if (unlikely(clk->flags & CLK_RATE_PROPAGATES))
propagate_rate(clk);
return ret;
}
EXPORT_SYMBOL_GPL(clk_set_rate_ex);
void clk_recalc_rate(struct clk *clk)
{
if (likely(clk->ops && clk->ops->recalc)) {
unsigned long flags;
spin_lock_irqsave(&clock_lock, flags);
clk->rate = clk->ops->recalc(clk);
spin_unlock_irqrestore(&clock_lock, flags);
}
if (unlikely(clk->flags & CLK_RATE_PROPAGATES))
propagate_rate(clk);
}
EXPORT_SYMBOL_GPL(clk_recalc_rate);
int clk_set_parent(struct clk *clk, struct clk *parent)
{
int ret = -EINVAL;
struct clk *old;
if (!parent || !clk)
return ret;
old = clk->parent;
if (likely(clk->ops && clk->ops->set_parent)) {
unsigned long flags;
spin_lock_irqsave(&clock_lock, flags);
ret = clk->ops->set_parent(clk, parent);
spin_unlock_irqrestore(&clock_lock, flags);
clk->parent = (ret ? old : parent);
}
if (unlikely(clk->flags & CLK_RATE_PROPAGATES))
propagate_rate(clk);
return ret;
}
EXPORT_SYMBOL_GPL(clk_set_parent);
struct clk *clk_get_parent(struct clk *clk)
{
return clk->parent;
}
EXPORT_SYMBOL_GPL(clk_get_parent);
long clk_round_rate(struct clk *clk, unsigned long rate)
{
if (likely(clk->ops && clk->ops->round_rate)) {
unsigned long flags, rounded;
spin_lock_irqsave(&clock_lock, flags);
rounded = clk->ops->round_rate(clk, rate);
spin_unlock_irqrestore(&clock_lock, flags);
return rounded;
}
return clk_get_rate(clk);
}
EXPORT_SYMBOL_GPL(clk_round_rate);
/*
* Returns a clock. Note that we first try to use device id on the bus
* and clock name. If this fails, we try to use clock name only.
*/
struct clk *clk_get(struct device *dev, const char *id)
{
struct clk *p, *clk = ERR_PTR(-ENOENT);
int idno;
if (dev == NULL || dev->bus != &platform_bus_type)
idno = -1;
else
idno = to_platform_device(dev)->id;
mutex_lock(&clock_list_sem);
list_for_each_entry(p, &clock_list, node) {
if (p->id == idno &&
strcmp(id, p->name) == 0 && try_module_get(p->owner)) {
clk = p;
goto found;
}
}
list_for_each_entry(p, &clock_list, node) {
if (strcmp(id, p->name) == 0 && try_module_get(p->owner)) {
clk = p;
break;
}
}
found:
mutex_unlock(&clock_list_sem);
return clk;
}
EXPORT_SYMBOL_GPL(clk_get);
void clk_put(struct clk *clk)
{
if (clk && !IS_ERR(clk))
module_put(clk->owner);
}
EXPORT_SYMBOL_GPL(clk_put);
void __init __attribute__ ((weak))
arch_init_clk_ops(struct clk_ops **ops, int type)
{
}
int __init __attribute__ ((weak))
arch_clk_init(void)
{
return 0;
}
static int show_clocks(char *buf, char **start, off_t off,
int len, int *eof, void *data)
{
struct clk *clk;
char *p = buf;
list_for_each_entry_reverse(clk, &clock_list, node) {
unsigned long rate = clk_get_rate(clk);
p += sprintf(p, "%-12s\t: %ld.%02ldMHz\t%s\n", clk->name,
rate / 1000000, (rate % 1000000) / 10000,
((clk->flags & CLK_ALWAYS_ENABLED) ||
clk->usecount > 0) ?
"enabled" : "disabled");
}
return p - buf;
}
#ifdef CONFIG_PM
static int clks_sysdev_suspend(struct sys_device *dev, pm_message_t state)
{
static pm_message_t prev_state;
struct clk *clkp;
switch (state.event) {
case PM_EVENT_ON:
/* Resumeing from hibernation */
if (prev_state.event != PM_EVENT_FREEZE)
break;
list_for_each_entry(clkp, &clock_list, node) {
if (likely(clkp->ops)) {
unsigned long rate = clkp->rate;
if (likely(clkp->ops->set_parent))
clkp->ops->set_parent(clkp,
clkp->parent);
if (likely(clkp->ops->set_rate))
clkp->ops->set_rate(clkp,
rate, NO_CHANGE);
else if (likely(clkp->ops->recalc))
clkp->rate = clkp->ops->recalc(clkp);
}
}
break;
case PM_EVENT_FREEZE:
break;
case PM_EVENT_SUSPEND:
break;
}
prev_state = state;
return 0;
}
static int clks_sysdev_resume(struct sys_device *dev)
{
return clks_sysdev_suspend(dev, PMSG_ON);
}
static struct sysdev_class clks_sysdev_class = {
.name = "clks",
};
static struct sysdev_driver clks_sysdev_driver = {
.suspend = clks_sysdev_suspend,
.resume = clks_sysdev_resume,
};
static struct sys_device clks_sysdev_dev = {
.cls = &clks_sysdev_class,
};
static int __init clk_sysdev_init(void)
{
sysdev_class_register(&clks_sysdev_class);
sysdev_driver_register(&clks_sysdev_class, &clks_sysdev_driver);
sysdev_register(&clks_sysdev_dev);
return 0;
}
subsys_initcall(clk_sysdev_init);
#endif
int __init clk_init(void)
{
int i, ret = 0;
BUG_ON(!master_clk.rate);
for (i = 0; i < ARRAY_SIZE(onchip_clocks); i++) {
struct clk *clk = onchip_clocks[i];
arch_init_clk_ops(&clk->ops, i);
ret |= clk_register(clk);
}
ret |= arch_clk_init();
/* Kick the child clocks.. */
propagate_rate(&master_clk);
propagate_rate(&bus_clk);
return ret;
}
static int __init clk_proc_init(void)
{
struct proc_dir_entry *p;
p = create_proc_read_entry("clocks", S_IRUSR, NULL,
show_clocks, NULL);
if (unlikely(!p))
return -EINVAL;
return 0;
}
subsys_initcall(clk_proc_init);
|