summaryrefslogtreecommitdiffstats
path: root/arch/x86/kernel/cpu/cpufreq/powernow-k8.c
blob: 3e90cce3dc8bfe50fa245e8febe2aaf2625df25e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
/*
 *   (c) 2003-2010 Advanced Micro Devices, Inc.
 *  Your use of this code is subject to the terms and conditions of the
 *  GNU general public license version 2. See "COPYING" or
 *  http://www.gnu.org/licenses/gpl.html
 *
 *  Support : mark.langsdorf@amd.com
 *
 *  Based on the powernow-k7.c module written by Dave Jones.
 *  (C) 2003 Dave Jones on behalf of SuSE Labs
 *  (C) 2004 Dominik Brodowski <linux@brodo.de>
 *  (C) 2004 Pavel Machek <pavel@suse.cz>
 *  Licensed under the terms of the GNU GPL License version 2.
 *  Based upon datasheets & sample CPUs kindly provided by AMD.
 *
 *  Valuable input gratefully received from Dave Jones, Pavel Machek,
 *  Dominik Brodowski, Jacob Shin, and others.
 *  Originally developed by Paul Devriendt.
 *  Processor information obtained from Chapter 9 (Power and Thermal Management)
 *  of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD
 *  Opteron Processors" available for download from www.amd.com
 *
 *  Tables for specific CPUs can be inferred from
 *     http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/30430.pdf
 */

#include <linux/kernel.h>
#include <linux/smp.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/cpufreq.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/cpumask.h>
#include <linux/sched.h>	/* for current / set_cpus_allowed() */
#include <linux/io.h>
#include <linux/delay.h>

#include <asm/msr.h>

#include <linux/acpi.h>
#include <linux/mutex.h>
#include <acpi/processor.h>

#define PFX "powernow-k8: "
#define VERSION "version 2.20.00"
#include "powernow-k8.h"
#include "mperf.h"

/* serialize freq changes  */
static DEFINE_MUTEX(fidvid_mutex);

static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data);

static int cpu_family = CPU_OPTERON;

/* core performance boost */
static bool cpb_capable, cpb_enabled;
static struct msr __percpu *msrs;

static struct cpufreq_driver cpufreq_amd64_driver;

#ifndef CONFIG_SMP
static inline const struct cpumask *cpu_core_mask(int cpu)
{
	return cpumask_of(0);
}
#endif

/* Return a frequency in MHz, given an input fid */
static u32 find_freq_from_fid(u32 fid)
{
	return 800 + (fid * 100);
}

/* Return a frequency in KHz, given an input fid */
static u32 find_khz_freq_from_fid(u32 fid)
{
	return 1000 * find_freq_from_fid(fid);
}

static u32 find_khz_freq_from_pstate(struct cpufreq_frequency_table *data,
		u32 pstate)
{
	return data[pstate].frequency;
}

/* Return the vco fid for an input fid
 *
 * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
 * only from corresponding high fids. This returns "high" fid corresponding to
 * "low" one.
 */
static u32 convert_fid_to_vco_fid(u32 fid)
{
	if (fid < HI_FID_TABLE_BOTTOM)
		return 8 + (2 * fid);
	else
		return fid;
}

/*
 * Return 1 if the pending bit is set. Unless we just instructed the processor
 * to transition to a new state, seeing this bit set is really bad news.
 */
static int pending_bit_stuck(void)
{
	u32 lo, hi;

	if (cpu_family == CPU_HW_PSTATE)
		return 0;

	rdmsr(MSR_FIDVID_STATUS, lo, hi);
	return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
}

/*
 * Update the global current fid / vid values from the status msr.
 * Returns 1 on error.
 */
static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
{
	u32 lo, hi;
	u32 i = 0;

	if (cpu_family == CPU_HW_PSTATE) {
		rdmsr(MSR_PSTATE_STATUS, lo, hi);
		i = lo & HW_PSTATE_MASK;
		data->currpstate = i;

		/*
		 * a workaround for family 11h erratum 311 might cause
		 * an "out-of-range Pstate if the core is in Pstate-0
		 */
		if ((boot_cpu_data.x86 == 0x11) && (i >= data->numps))
			data->currpstate = HW_PSTATE_0;

		return 0;
	}
	do {
		if (i++ > 10000) {
			dprintk("detected change pending stuck\n");
			return 1;
		}
		rdmsr(MSR_FIDVID_STATUS, lo, hi);
	} while (lo & MSR_S_LO_CHANGE_PENDING);

	data->currvid = hi & MSR_S_HI_CURRENT_VID;
	data->currfid = lo & MSR_S_LO_CURRENT_FID;

	return 0;
}

/* the isochronous relief time */
static void count_off_irt(struct powernow_k8_data *data)
{
	udelay((1 << data->irt) * 10);
	return;
}

/* the voltage stabilization time */
static void count_off_vst(struct powernow_k8_data *data)
{
	udelay(data->vstable * VST_UNITS_20US);
	return;
}

/* need to init the control msr to a safe value (for each cpu) */
static void fidvid_msr_init(void)
{
	u32 lo, hi;
	u8 fid, vid;

	rdmsr(MSR_FIDVID_STATUS, lo, hi);
	vid = hi & MSR_S_HI_CURRENT_VID;
	fid = lo & MSR_S_LO_CURRENT_FID;
	lo = fid | (vid << MSR_C_LO_VID_SHIFT);
	hi = MSR_C_HI_STP_GNT_BENIGN;
	dprintk("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
	wrmsr(MSR_FIDVID_CTL, lo, hi);
}

/* write the new fid value along with the other control fields to the msr */
static int write_new_fid(struct powernow_k8_data *data, u32 fid)
{
	u32 lo;
	u32 savevid = data->currvid;
	u32 i = 0;

	if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
		printk(KERN_ERR PFX "internal error - overflow on fid write\n");
		return 1;
	}

	lo = fid;
	lo |= (data->currvid << MSR_C_LO_VID_SHIFT);
	lo |= MSR_C_LO_INIT_FID_VID;

	dprintk("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
		fid, lo, data->plllock * PLL_LOCK_CONVERSION);

	do {
		wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
		if (i++ > 100) {
			printk(KERN_ERR PFX
				"Hardware error - pending bit very stuck - "
				"no further pstate changes possible\n");
			return 1;
		}
	} while (query_current_values_with_pending_wait(data));

	count_off_irt(data);

	if (savevid != data->currvid) {
		printk(KERN_ERR PFX
			"vid change on fid trans, old 0x%x, new 0x%x\n",
			savevid, data->currvid);
		return 1;
	}

	if (fid != data->currfid) {
		printk(KERN_ERR PFX
			"fid trans failed, fid 0x%x, curr 0x%x\n", fid,
			data->currfid);
		return 1;
	}

	return 0;
}

/* Write a new vid to the hardware */
static int write_new_vid(struct powernow_k8_data *data, u32 vid)
{
	u32 lo;
	u32 savefid = data->currfid;
	int i = 0;

	if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
		printk(KERN_ERR PFX "internal error - overflow on vid write\n");
		return 1;
	}

	lo = data->currfid;
	lo |= (vid << MSR_C_LO_VID_SHIFT);
	lo |= MSR_C_LO_INIT_FID_VID;

	dprintk("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
		vid, lo, STOP_GRANT_5NS);

	do {
		wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
		if (i++ > 100) {
			printk(KERN_ERR PFX "internal error - pending bit "
					"very stuck - no further pstate "
					"changes possible\n");
			return 1;
		}
	} while (query_current_values_with_pending_wait(data));

	if (savefid != data->currfid) {
		printk(KERN_ERR PFX "fid changed on vid trans, old "
			"0x%x new 0x%x\n",
		       savefid, data->currfid);
		return 1;
	}

	if (vid != data->currvid) {
		printk(KERN_ERR PFX "vid trans failed, vid 0x%x, "
				"curr 0x%x\n",
				vid, data->currvid);
		return 1;
	}

	return 0;
}

/*
 * Reduce the vid by the max of step or reqvid.
 * Decreasing vid codes represent increasing voltages:
 * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
 */
static int decrease_vid_code_by_step(struct powernow_k8_data *data,
		u32 reqvid, u32 step)
{
	if ((data->currvid - reqvid) > step)
		reqvid = data->currvid - step;

	if (write_new_vid(data, reqvid))
		return 1;

	count_off_vst(data);

	return 0;
}

/* Change hardware pstate by single MSR write */
static int transition_pstate(struct powernow_k8_data *data, u32 pstate)
{
	wrmsr(MSR_PSTATE_CTRL, pstate, 0);
	data->currpstate = pstate;
	return 0;
}

/* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
static int transition_fid_vid(struct powernow_k8_data *data,
		u32 reqfid, u32 reqvid)
{
	if (core_voltage_pre_transition(data, reqvid, reqfid))
		return 1;

	if (core_frequency_transition(data, reqfid))
		return 1;

	if (core_voltage_post_transition(data, reqvid))
		return 1;

	if (query_current_values_with_pending_wait(data))
		return 1;

	if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
		printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, "
				"curr 0x%x 0x%x\n",
				smp_processor_id(),
				reqfid, reqvid, data->currfid, data->currvid);
		return 1;
	}

	dprintk("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
		smp_processor_id(), data->currfid, data->currvid);

	return 0;
}

/* Phase 1 - core voltage transition ... setup voltage */
static int core_voltage_pre_transition(struct powernow_k8_data *data,
		u32 reqvid, u32 reqfid)
{
	u32 rvosteps = data->rvo;
	u32 savefid = data->currfid;
	u32 maxvid, lo, rvomult = 1;

	dprintk("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, "
		"reqvid 0x%x, rvo 0x%x\n",
		smp_processor_id(),
		data->currfid, data->currvid, reqvid, data->rvo);

	if ((savefid < LO_FID_TABLE_TOP) && (reqfid < LO_FID_TABLE_TOP))
		rvomult = 2;
	rvosteps *= rvomult;
	rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
	maxvid = 0x1f & (maxvid >> 16);
	dprintk("ph1 maxvid=0x%x\n", maxvid);
	if (reqvid < maxvid) /* lower numbers are higher voltages */
		reqvid = maxvid;

	while (data->currvid > reqvid) {
		dprintk("ph1: curr 0x%x, req vid 0x%x\n",
			data->currvid, reqvid);
		if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
			return 1;
	}

	while ((rvosteps > 0) &&
			((rvomult * data->rvo + data->currvid) > reqvid)) {
		if (data->currvid == maxvid) {
			rvosteps = 0;
		} else {
			dprintk("ph1: changing vid for rvo, req 0x%x\n",
				data->currvid - 1);
			if (decrease_vid_code_by_step(data, data->currvid-1, 1))
				return 1;
			rvosteps--;
		}
	}

	if (query_current_values_with_pending_wait(data))
		return 1;

	if (savefid != data->currfid) {
		printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n",
				data->currfid);
		return 1;
	}

	dprintk("ph1 complete, currfid 0x%x, currvid 0x%x\n",
		data->currfid, data->currvid);

	return 0;
}

/* Phase 2 - core frequency transition */
static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
{
	u32 vcoreqfid, vcocurrfid, vcofiddiff;
	u32 fid_interval, savevid = data->currvid;

	if (data->currfid == reqfid) {
		printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n",
				data->currfid);
		return 0;
	}

	dprintk("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, "
		"reqfid 0x%x\n",
		smp_processor_id(),
		data->currfid, data->currvid, reqfid);

	vcoreqfid = convert_fid_to_vco_fid(reqfid);
	vcocurrfid = convert_fid_to_vco_fid(data->currfid);
	vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
	    : vcoreqfid - vcocurrfid;

	if ((reqfid <= LO_FID_TABLE_TOP) && (data->currfid <= LO_FID_TABLE_TOP))
		vcofiddiff = 0;

	while (vcofiddiff > 2) {
		(data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2);

		if (reqfid > data->currfid) {
			if (data->currfid > LO_FID_TABLE_TOP) {
				if (write_new_fid(data,
						data->currfid + fid_interval))
					return 1;
			} else {
				if (write_new_fid
				    (data,
				     2 + convert_fid_to_vco_fid(data->currfid)))
					return 1;
			}
		} else {
			if (write_new_fid(data, data->currfid - fid_interval))
				return 1;
		}

		vcocurrfid = convert_fid_to_vco_fid(data->currfid);
		vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
		    : vcoreqfid - vcocurrfid;
	}

	if (write_new_fid(data, reqfid))
		return 1;

	if (query_current_values_with_pending_wait(data))
		return 1;

	if (data->currfid != reqfid) {
		printk(KERN_ERR PFX
			"ph2: mismatch, failed fid transition, "
			"curr 0x%x, req 0x%x\n",
			data->currfid, reqfid);
		return 1;
	}

	if (savevid != data->currvid) {
		printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n",
			savevid, data->currvid);
		return 1;
	}

	dprintk("ph2 complete, currfid 0x%x, currvid 0x%x\n",
		data->currfid, data->currvid);

	return 0;
}

/* Phase 3 - core voltage transition flow ... jump to the final vid. */
static int core_voltage_post_transition(struct powernow_k8_data *data,
		u32 reqvid)
{
	u32 savefid = data->currfid;
	u32 savereqvid = reqvid;

	dprintk("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
		smp_processor_id(),
		data->currfid, data->currvid);

	if (reqvid != data->currvid) {
		if (write_new_vid(data, reqvid))
			return 1;

		if (savefid != data->currfid) {
			printk(KERN_ERR PFX
			       "ph3: bad fid change, save 0x%x, curr 0x%x\n",
			       savefid, data->currfid);
			return 1;
		}

		if (data->currvid != reqvid) {
			printk(KERN_ERR PFX
			       "ph3: failed vid transition\n, "
			       "req 0x%x, curr 0x%x",
			       reqvid, data->currvid);
			return 1;
		}
	}

	if (query_current_values_with_pending_wait(data))
		return 1;

	if (savereqvid != data->currvid) {
		dprintk("ph3 failed, currvid 0x%x\n", data->currvid);
		return 1;
	}

	if (savefid != data->currfid) {
		dprintk("ph3 failed, currfid changed 0x%x\n",
			data->currfid);
		return 1;
	}

	dprintk("ph3 complete, currfid 0x%x, currvid 0x%x\n",
		data->currfid, data->currvid);

	return 0;
}

static void check_supported_cpu(void *_rc)
{
	u32 eax, ebx, ecx, edx;
	int *rc = _rc;

	*rc = -ENODEV;

	if (current_cpu_data.x86_vendor != X86_VENDOR_AMD)
		return;

	eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
	if (((eax & CPUID_XFAM) != CPUID_XFAM_K8) &&
	    ((eax & CPUID_XFAM) < CPUID_XFAM_10H))
		return;

	if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) {
		if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
		    ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) {
			printk(KERN_INFO PFX
				"Processor cpuid %x not supported\n", eax);
			return;
		}

		eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
		if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
			printk(KERN_INFO PFX
			       "No frequency change capabilities detected\n");
			return;
		}

		cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
		if ((edx & P_STATE_TRANSITION_CAPABLE)
			!= P_STATE_TRANSITION_CAPABLE) {
			printk(KERN_INFO PFX
				"Power state transitions not supported\n");
			return;
		}
	} else { /* must be a HW Pstate capable processor */
		cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
		if ((edx & USE_HW_PSTATE) == USE_HW_PSTATE)
			cpu_family = CPU_HW_PSTATE;
		else
			return;
	}

	*rc = 0;
}

static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst,
		u8 maxvid)
{
	unsigned int j;
	u8 lastfid = 0xff;

	for (j = 0; j < data->numps; j++) {
		if (pst[j].vid > LEAST_VID) {
			printk(KERN_ERR FW_BUG PFX "vid %d invalid : 0x%x\n",
			       j, pst[j].vid);
			return -EINVAL;
		}
		if (pst[j].vid < data->rvo) {
			/* vid + rvo >= 0 */
			printk(KERN_ERR FW_BUG PFX "0 vid exceeded with pstate"
			       " %d\n", j);
			return -ENODEV;
		}
		if (pst[j].vid < maxvid + data->rvo) {
			/* vid + rvo >= maxvid */
			printk(KERN_ERR FW_BUG PFX "maxvid exceeded with pstate"
			       " %d\n", j);
			return -ENODEV;
		}
		if (pst[j].fid > MAX_FID) {
			printk(KERN_ERR FW_BUG PFX "maxfid exceeded with pstate"
			       " %d\n", j);
			return -ENODEV;
		}
		if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
			/* Only first fid is allowed to be in "low" range */
			printk(KERN_ERR FW_BUG PFX "two low fids - %d : "
			       "0x%x\n", j, pst[j].fid);
			return -EINVAL;
		}
		if (pst[j].fid < lastfid)
			lastfid = pst[j].fid;
	}
	if (lastfid & 1) {
		printk(KERN_ERR FW_BUG PFX "lastfid invalid\n");
		return -EINVAL;
	}
	if (lastfid > LO_FID_TABLE_TOP)
		printk(KERN_INFO FW_BUG PFX
			"first fid not from lo freq table\n");

	return 0;
}

static void invalidate_entry(struct cpufreq_frequency_table *powernow_table,
		unsigned int entry)
{
	powernow_table[entry].frequency = CPUFREQ_ENTRY_INVALID;
}

static void print_basics(struct powernow_k8_data *data)
{
	int j;
	for (j = 0; j < data->numps; j++) {
		if (data->powernow_table[j].frequency !=
				CPUFREQ_ENTRY_INVALID) {
			if (cpu_family == CPU_HW_PSTATE) {
				printk(KERN_INFO PFX
					"   %d : pstate %d (%d MHz)\n", j,
					data->powernow_table[j].index,
					data->powernow_table[j].frequency/1000);
			} else {
				printk(KERN_INFO PFX
					"   %d : fid 0x%x (%d MHz), vid 0x%x\n",
					j,
					data->powernow_table[j].index & 0xff,
					data->powernow_table[j].frequency/1000,
					data->powernow_table[j].index >> 8);
			}
		}
	}
	if (data->batps)
		printk(KERN_INFO PFX "Only %d pstates on battery\n",
				data->batps);
}

static u32 freq_from_fid_did(u32 fid, u32 did)
{
	u32 mhz = 0;

	if (boot_cpu_data.x86 == 0x10)
		mhz = (100 * (fid + 0x10)) >> did;
	else if (boot_cpu_data.x86 == 0x11)
		mhz = (100 * (fid + 8)) >> did;
	else
		BUG();

	return mhz * 1000;
}

static int fill_powernow_table(struct powernow_k8_data *data,
		struct pst_s *pst, u8 maxvid)
{
	struct cpufreq_frequency_table *powernow_table;
	unsigned int j;

	if (data->batps) {
		/* use ACPI support to get full speed on mains power */
		printk(KERN_WARNING PFX
			"Only %d pstates usable (use ACPI driver for full "
			"range\n", data->batps);
		data->numps = data->batps;
	}

	for (j = 1; j < data->numps; j++) {
		if (pst[j-1].fid >= pst[j].fid) {
			printk(KERN_ERR PFX "PST out of sequence\n");
			return -EINVAL;
		}
	}

	if (data->numps < 2) {
		printk(KERN_ERR PFX "no p states to transition\n");
		return -ENODEV;
	}

	if (check_pst_table(data, pst, maxvid))
		return -EINVAL;

	powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
		* (data->numps + 1)), GFP_KERNEL);
	if (!powernow_table) {
		printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
		return -ENOMEM;
	}

	for (j = 0; j < data->numps; j++) {
		int freq;
		powernow_table[j].index = pst[j].fid; /* lower 8 bits */
		powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
		freq = find_khz_freq_from_fid(pst[j].fid);
		powernow_table[j].frequency = freq;
	}
	powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
	powernow_table[data->numps].index = 0;

	if (query_current_values_with_pending_wait(data)) {
		kfree(powernow_table);
		return -EIO;
	}

	dprintk("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
	data->powernow_table = powernow_table;
	if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
		print_basics(data);

	for (j = 0; j < data->numps; j++)
		if ((pst[j].fid == data->currfid) &&
		    (pst[j].vid == data->currvid))
			return 0;

	dprintk("currfid/vid do not match PST, ignoring\n");
	return 0;
}

/* Find and validate the PSB/PST table in BIOS. */
static int find_psb_table(struct powernow_k8_data *data)
{
	struct psb_s *psb;
	unsigned int i;
	u32 mvs;
	u8 maxvid;
	u32 cpst = 0;
	u32 thiscpuid;

	for (i = 0xc0000; i < 0xffff0; i += 0x10) {
		/* Scan BIOS looking for the signature. */
		/* It can not be at ffff0 - it is too big. */

		psb = phys_to_virt(i);
		if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
			continue;

		dprintk("found PSB header at 0x%p\n", psb);

		dprintk("table vers: 0x%x\n", psb->tableversion);
		if (psb->tableversion != PSB_VERSION_1_4) {
			printk(KERN_ERR FW_BUG PFX "PSB table is not v1.4\n");
			return -ENODEV;
		}

		dprintk("flags: 0x%x\n", psb->flags1);
		if (psb->flags1) {
			printk(KERN_ERR FW_BUG PFX "unknown flags\n");
			return -ENODEV;
		}

		data->vstable = psb->vstable;
		dprintk("voltage stabilization time: %d(*20us)\n",
				data->vstable);

		dprintk("flags2: 0x%x\n", psb->flags2);
		data->rvo = psb->flags2 & 3;
		data->irt = ((psb->flags2) >> 2) & 3;
		mvs = ((psb->flags2) >> 4) & 3;
		data->vidmvs = 1 << mvs;
		data->batps = ((psb->flags2) >> 6) & 3;

		dprintk("ramp voltage offset: %d\n", data->rvo);
		dprintk("isochronous relief time: %d\n", data->irt);
		dprintk("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);

		dprintk("numpst: 0x%x\n", psb->num_tables);
		cpst = psb->num_tables;
		if ((psb->cpuid == 0x00000fc0) ||
		    (psb->cpuid == 0x00000fe0)) {
			thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
			if ((thiscpuid == 0x00000fc0) ||
			    (thiscpuid == 0x00000fe0))
				cpst = 1;
		}
		if (cpst != 1) {
			printk(KERN_ERR FW_BUG PFX "numpst must be 1\n");
			return -ENODEV;
		}

		data->plllock = psb->plllocktime;
		dprintk("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
		dprintk("maxfid: 0x%x\n", psb->maxfid);
		dprintk("maxvid: 0x%x\n", psb->maxvid);
		maxvid = psb->maxvid;

		data->numps = psb->numps;
		dprintk("numpstates: 0x%x\n", data->numps);
		return fill_powernow_table(data,
				(struct pst_s *)(psb+1), maxvid);
	}
	/*
	 * If you see this message, complain to BIOS manufacturer. If
	 * he tells you "we do not support Linux" or some similar
	 * nonsense, remember that Windows 2000 uses the same legacy
	 * mechanism that the old Linux PSB driver uses. Tell them it
	 * is broken with Windows 2000.
	 *
	 * The reference to the AMD documentation is chapter 9 in the
	 * BIOS and Kernel Developer's Guide, which is available on
	 * www.amd.com
	 */
	printk(KERN_ERR FW_BUG PFX "No PSB or ACPI _PSS objects\n");
	return -ENODEV;
}

static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data,
		unsigned int index)
{
	u64 control;

	if (!data->acpi_data.state_count || (cpu_family == CPU_HW_PSTATE))
		return;

	control = data->acpi_data.states[index].control;
	data->irt = (control >> IRT_SHIFT) & IRT_MASK;
	data->rvo = (control >> RVO_SHIFT) & RVO_MASK;
	data->exttype = (control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
	data->plllock = (control >> PLL_L_SHIFT) & PLL_L_MASK;
	data->vidmvs = 1 << ((control >> MVS_SHIFT) & MVS_MASK);
	data->vstable = (control >> VST_SHIFT) & VST_MASK;
}

static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
{
	struct cpufreq_frequency_table *powernow_table;
	int ret_val = -ENODEV;
	u64 control, status;

	if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
		dprintk("register performance failed: bad ACPI data\n");
		return -EIO;
	}

	/* verify the data contained in the ACPI structures */
	if (data->acpi_data.state_count <= 1) {
		dprintk("No ACPI P-States\n");
		goto err_out;
	}

	control = data->acpi_data.control_register.space_id;
	status = data->acpi_data.status_register.space_id;

	if ((control != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
	    (status != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
		dprintk("Invalid control/status registers (%x - %x)\n",
			control, status);
		goto err_out;
	}

	/* fill in data->powernow_table */
	powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
		* (data->acpi_data.state_count + 1)), GFP_KERNEL);
	if (!powernow_table) {
		dprintk("powernow_table memory alloc failure\n");
		goto err_out;
	}

	/* fill in data */
	data->numps = data->acpi_data.state_count;
	powernow_k8_acpi_pst_values(data, 0);

	if (cpu_family == CPU_HW_PSTATE)
		ret_val = fill_powernow_table_pstate(data, powernow_table);
	else
		ret_val = fill_powernow_table_fidvid(data, powernow_table);
	if (ret_val)
		goto err_out_mem;

	powernow_table[data->acpi_data.state_count].frequency =
		CPUFREQ_TABLE_END;
	powernow_table[data->acpi_data.state_count].index = 0;
	data->powernow_table = powernow_table;

	if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
		print_basics(data);

	/* notify BIOS that we exist */
	acpi_processor_notify_smm(THIS_MODULE);

	if (!zalloc_cpumask_var(&data->acpi_data.shared_cpu_map, GFP_KERNEL)) {
		printk(KERN_ERR PFX
				"unable to alloc powernow_k8_data cpumask\n");
		ret_val = -ENOMEM;
		goto err_out_mem;
	}

	return 0;

err_out_mem:
	kfree(powernow_table);

err_out:
	acpi_processor_unregister_performance(&data->acpi_data, data->cpu);

	/* data->acpi_data.state_count informs us at ->exit()
	 * whether ACPI was used */
	data->acpi_data.state_count = 0;

	return ret_val;
}

static int fill_powernow_table_pstate(struct powernow_k8_data *data,
		struct cpufreq_frequency_table *powernow_table)
{
	int i;
	u32 hi = 0, lo = 0;
	rdmsr(MSR_PSTATE_CUR_LIMIT, hi, lo);
	data->max_hw_pstate = (hi & HW_PSTATE_MAX_MASK) >> HW_PSTATE_MAX_SHIFT;

	for (i = 0; i < data->acpi_data.state_count; i++) {
		u32 index;

		index = data->acpi_data.states[i].control & HW_PSTATE_MASK;
		if (index > data->max_hw_pstate) {
			printk(KERN_ERR PFX "invalid pstate %d - "
					"bad value %d.\n", i, index);
			printk(KERN_ERR PFX "Please report to BIOS "
					"manufacturer\n");
			invalidate_entry(powernow_table, i);
			continue;
		}
		rdmsr(MSR_PSTATE_DEF_BASE + index, lo, hi);
		if (!(hi & HW_PSTATE_VALID_MASK)) {
			dprintk("invalid pstate %d, ignoring\n", index);
			invalidate_entry(powernow_table, i);
			continue;
		}

		powernow_table[i].index = index;

		/* Frequency may be rounded for these */
		if ((boot_cpu_data.x86 == 0x10 && boot_cpu_data.x86_model < 10)
				 || boot_cpu_data.x86 == 0x11) {
			powernow_table[i].frequency =
				freq_from_fid_did(lo & 0x3f, (lo >> 6) & 7);
		} else
			powernow_table[i].frequency =
				data->acpi_data.states[i].core_frequency * 1000;
	}
	return 0;
}

static int fill_powernow_table_fidvid(struct powernow_k8_data *data,
		struct cpufreq_frequency_table *powernow_table)
{
	int i;

	for (i = 0; i < data->acpi_data.state_count; i++) {
		u32 fid;
		u32 vid;
		u32 freq, index;
		u64 status, control;

		if (data->exttype) {
			status =  data->acpi_data.states[i].status;
			fid = status & EXT_FID_MASK;
			vid = (status >> VID_SHIFT) & EXT_VID_MASK;
		} else {
			control =  data->acpi_data.states[i].control;
			fid = control & FID_MASK;
			vid = (control >> VID_SHIFT) & VID_MASK;
		}

		dprintk("   %d : fid 0x%x, vid 0x%x\n", i, fid, vid);

		index = fid | (vid<<8);
		powernow_table[i].index = index;

		freq = find_khz_freq_from_fid(fid);
		powernow_table[i].frequency = freq;

		/* verify frequency is OK */
		if ((freq > (MAX_FREQ * 1000)) || (freq < (MIN_FREQ * 1000))) {
			dprintk("invalid freq %u kHz, ignoring\n", freq);
			invalidate_entry(powernow_table, i);
			continue;
		}

		/* verify voltage is OK -
		 * BIOSs are using "off" to indicate invalid */
		if (vid == VID_OFF) {
			dprintk("invalid vid %u, ignoring\n", vid);
			invalidate_entry(powernow_table, i);
			continue;
		}

		if (freq != (data->acpi_data.states[i].core_frequency * 1000)) {
			printk(KERN_INFO PFX "invalid freq entries "
				"%u kHz vs. %u kHz\n", freq,
				(unsigned int)
				(data->acpi_data.states[i].core_frequency
				 * 1000));
			invalidate_entry(powernow_table, i);
			continue;
		}
	}
	return 0;
}

static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
{
	if (data->acpi_data.state_count)
		acpi_processor_unregister_performance(&data->acpi_data,
				data->cpu);
	free_cpumask_var(data->acpi_data.shared_cpu_map);
}

static int get_transition_latency(struct powernow_k8_data *data)
{
	int max_latency = 0;
	int i;
	for (i = 0; i < data->acpi_data.state_count; i++) {
		int cur_latency = data->acpi_data.states[i].transition_latency
			+ data->acpi_data.states[i].bus_master_latency;
		if (cur_latency > max_latency)
			max_latency = cur_latency;
	}
	if (max_latency == 0) {
		/*
		 * Fam 11h and later may return 0 as transition latency. This
		 * is intended and means "very fast". While cpufreq core and
		 * governors currently can handle that gracefully, better set it
		 * to 1 to avoid problems in the future.
		 */
		if (boot_cpu_data.x86 < 0x11)
			printk(KERN_ERR FW_WARN PFX "Invalid zero transition "
				"latency\n");
		max_latency = 1;
	}
	/* value in usecs, needs to be in nanoseconds */
	return 1000 * max_latency;
}

/* Take a frequency, and issue the fid/vid transition command */
static int transition_frequency_fidvid(struct powernow_k8_data *data,
		unsigned int index)
{
	u32 fid = 0;
	u32 vid = 0;
	int res, i;
	struct cpufreq_freqs freqs;

	dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);

	/* fid/vid correctness check for k8 */
	/* fid are the lower 8 bits of the index we stored into
	 * the cpufreq frequency table in find_psb_table, vid
	 * are the upper 8 bits.
	 */
	fid = data->powernow_table[index].index & 0xFF;
	vid = (data->powernow_table[index].index & 0xFF00) >> 8;

	dprintk("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);

	if (query_current_values_with_pending_wait(data))
		return 1;

	if ((data->currvid == vid) && (data->currfid == fid)) {
		dprintk("target matches current values (fid 0x%x, vid 0x%x)\n",
			fid, vid);
		return 0;
	}

	dprintk("cpu %d, changing to fid 0x%x, vid 0x%x\n",
		smp_processor_id(), fid, vid);
	freqs.old = find_khz_freq_from_fid(data->currfid);
	freqs.new = find_khz_freq_from_fid(fid);

	for_each_cpu(i, data->available_cores) {
		freqs.cpu = i;
		cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
	}

	res = transition_fid_vid(data, fid, vid);
	freqs.new = find_khz_freq_from_fid(data->currfid);

	for_each_cpu(i, data->available_cores) {
		freqs.cpu = i;
		cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
	}
	return res;
}

/* Take a frequency, and issue the hardware pstate transition command */
static int transition_frequency_pstate(struct powernow_k8_data *data,
		unsigned int index)
{
	u32 pstate = 0;
	int res, i;
	struct cpufreq_freqs freqs;

	dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);

	/* get MSR index for hardware pstate transition */
	pstate = index & HW_PSTATE_MASK;
	if (pstate > data->max_hw_pstate)
		return 0;
	freqs.old = find_khz_freq_from_pstate(data->powernow_table,
			data->currpstate);
	freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);

	for_each_cpu(i, data->available_cores) {
		freqs.cpu = i;
		cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
	}

	res = transition_pstate(data, pstate);
	freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);

	for_each_cpu(i, data->available_cores) {
		freqs.cpu = i;
		cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
	}
	return res;
}

/* Driver entry point to switch to the target frequency */
static int powernowk8_target(struct cpufreq_policy *pol,
		unsigned targfreq, unsigned relation)
{
	cpumask_var_t oldmask;
	struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
	u32 checkfid;
	u32 checkvid;
	unsigned int newstate;
	int ret = -EIO;

	if (!data)
		return -EINVAL;

	checkfid = data->currfid;
	checkvid = data->currvid;

	/* only run on specific CPU from here on. */
	/* This is poor form: use a workqueue or smp_call_function_single */
	if (!alloc_cpumask_var(&oldmask, GFP_KERNEL))
		return -ENOMEM;

	cpumask_copy(oldmask, tsk_cpus_allowed(current));
	set_cpus_allowed_ptr(current, cpumask_of(pol->cpu));

	if (smp_processor_id() != pol->cpu) {
		printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
		goto err_out;
	}

	if (pending_bit_stuck()) {
		printk(KERN_ERR PFX "failing targ, change pending bit set\n");
		goto err_out;
	}

	dprintk("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
		pol->cpu, targfreq, pol->min, pol->max, relation);

	if (query_current_values_with_pending_wait(data))
		goto err_out;

	if (cpu_family != CPU_HW_PSTATE) {
		dprintk("targ: curr fid 0x%x, vid 0x%x\n",
		data->currfid, data->currvid);

		if ((checkvid != data->currvid) ||
		    (checkfid != data->currfid)) {
			printk(KERN_INFO PFX
				"error - out of sync, fix 0x%x 0x%x, "
				"vid 0x%x 0x%x\n",
				checkfid, data->currfid,
				checkvid, data->currvid);
		}
	}

	if (cpufreq_frequency_table_target(pol, data->powernow_table,
				targfreq, relation, &newstate))
		goto err_out;

	mutex_lock(&fidvid_mutex);

	powernow_k8_acpi_pst_values(data, newstate);

	if (cpu_family == CPU_HW_PSTATE)
		ret = transition_frequency_pstate(data, newstate);
	else
		ret = transition_frequency_fidvid(data, newstate);
	if (ret) {
		printk(KERN_ERR PFX "transition frequency failed\n");
		ret = 1;
		mutex_unlock(&fidvid_mutex);
		goto err_out;
	}
	mutex_unlock(&fidvid_mutex);

	if (cpu_family == CPU_HW_PSTATE)
		pol->cur = find_khz_freq_from_pstate(data->powernow_table,
				newstate);
	else
		pol->cur = find_khz_freq_from_fid(data->currfid);
	ret = 0;

err_out:
	set_cpus_allowed_ptr(current, oldmask);
	free_cpumask_var(oldmask);
	return ret;
}

/* Driver entry point to verify the policy and range of frequencies */
static int powernowk8_verify(struct cpufreq_policy *pol)
{
	struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);

	if (!data)
		return -EINVAL;

	return cpufreq_frequency_table_verify(pol, data->powernow_table);
}

struct init_on_cpu {
	struct powernow_k8_data *data;
	int rc;
};

static void __cpuinit powernowk8_cpu_init_on_cpu(void *_init_on_cpu)
{
	struct init_on_cpu *init_on_cpu = _init_on_cpu;

	if (pending_bit_stuck()) {
		printk(KERN_ERR PFX "failing init, change pending bit set\n");
		init_on_cpu->rc = -ENODEV;
		return;
	}

	if (query_current_values_with_pending_wait(init_on_cpu->data)) {
		init_on_cpu->rc = -ENODEV;
		return;
	}

	if (cpu_family == CPU_OPTERON)
		fidvid_msr_init();

	init_on_cpu->rc = 0;
}

/* per CPU init entry point to the driver */
static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
{
	static const char ACPI_PSS_BIOS_BUG_MSG[] =
		KERN_ERR FW_BUG PFX "No compatible ACPI _PSS objects found.\n"
		FW_BUG PFX "Try again with latest BIOS.\n";
	struct powernow_k8_data *data;
	struct init_on_cpu init_on_cpu;
	int rc;
	struct cpuinfo_x86 *c = &cpu_data(pol->cpu);

	if (!cpu_online(pol->cpu))
		return -ENODEV;

	smp_call_function_single(pol->cpu, check_supported_cpu, &rc, 1);
	if (rc)
		return -ENODEV;

	data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL);
	if (!data) {
		printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
		return -ENOMEM;
	}

	data->cpu = pol->cpu;
	data->currpstate = HW_PSTATE_INVALID;

	if (powernow_k8_cpu_init_acpi(data)) {
		/*
		 * Use the PSB BIOS structure. This is only availabe on
		 * an UP version, and is deprecated by AMD.
		 */
		if (num_online_cpus() != 1) {
			printk_once(ACPI_PSS_BIOS_BUG_MSG);
			goto err_out;
		}
		if (pol->cpu != 0) {
			printk(KERN_ERR FW_BUG PFX "No ACPI _PSS objects for "
			       "CPU other than CPU0. Complain to your BIOS "
			       "vendor.\n");
			goto err_out;
		}
		rc = find_psb_table(data);
		if (rc)
			goto err_out;

		/* Take a crude guess here.
		 * That guess was in microseconds, so multiply with 1000 */
		pol->cpuinfo.transition_latency = (
			 ((data->rvo + 8) * data->vstable * VST_UNITS_20US) +
			 ((1 << data->irt) * 30)) * 1000;
	} else /* ACPI _PSS objects available */
		pol->cpuinfo.transition_latency = get_transition_latency(data);

	/* only run on specific CPU from here on */
	init_on_cpu.data = data;
	smp_call_function_single(data->cpu, powernowk8_cpu_init_on_cpu,
				 &init_on_cpu, 1);
	rc = init_on_cpu.rc;
	if (rc != 0)
		goto err_out_exit_acpi;

	if (cpu_family == CPU_HW_PSTATE)
		cpumask_copy(pol->cpus, cpumask_of(pol->cpu));
	else
		cpumask_copy(pol->cpus, cpu_core_mask(pol->cpu));
	data->available_cores = pol->cpus;

	if (cpu_family == CPU_HW_PSTATE)
		pol->cur = find_khz_freq_from_pstate(data->powernow_table,
				data->currpstate);
	else
		pol->cur = find_khz_freq_from_fid(data->currfid);
	dprintk("policy current frequency %d kHz\n", pol->cur);

	/* min/max the cpu is capable of */
	if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) {
		printk(KERN_ERR FW_BUG PFX "invalid powernow_table\n");
		powernow_k8_cpu_exit_acpi(data);
		kfree(data->powernow_table);
		kfree(data);
		return -EINVAL;
	}

	/* Check for APERF/MPERF support in hardware */
	if (cpu_has(c, X86_FEATURE_APERFMPERF))
		cpufreq_amd64_driver.getavg = cpufreq_get_measured_perf;

	cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);

	if (cpu_family == CPU_HW_PSTATE)
		dprintk("cpu_init done, current pstate 0x%x\n",
				data->currpstate);
	else
		dprintk("cpu_init done, current fid 0x%x, vid 0x%x\n",
			data->currfid, data->currvid);

	per_cpu(powernow_data, pol->cpu) = data;

	return 0;

err_out_exit_acpi:
	powernow_k8_cpu_exit_acpi(data);

err_out:
	kfree(data);
	return -ENODEV;
}

static int __devexit powernowk8_cpu_exit(struct cpufreq_policy *pol)
{
	struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);

	if (!data)
		return -EINVAL;

	powernow_k8_cpu_exit_acpi(data);

	cpufreq_frequency_table_put_attr(pol->cpu);

	kfree(data->powernow_table);
	kfree(data);
	per_cpu(powernow_data, pol->cpu) = NULL;

	return 0;
}

static void query_values_on_cpu(void *_err)
{
	int *err = _err;
	struct powernow_k8_data *data = __get_cpu_var(powernow_data);

	*err = query_current_values_with_pending_wait(data);
}

static unsigned int powernowk8_get(unsigned int cpu)
{
	struct powernow_k8_data *data = per_cpu(powernow_data, cpu);
	unsigned int khz = 0;
	int err;

	if (!data)
		return 0;

	smp_call_function_single(cpu, query_values_on_cpu, &err, true);
	if (err)
		goto out;

	if (cpu_family == CPU_HW_PSTATE)
		khz = find_khz_freq_from_pstate(data->powernow_table,
						data->currpstate);
	else
		khz = find_khz_freq_from_fid(data->currfid);


out:
	return khz;
}

static void _cpb_toggle_msrs(bool t)
{
	int cpu;

	get_online_cpus();

	rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);

	for_each_cpu(cpu, cpu_online_mask) {
		struct msr *reg = per_cpu_ptr(msrs, cpu);
		if (t)
			reg->l &= ~BIT(25);
		else
			reg->l |= BIT(25);
	}
	wrmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);

	put_online_cpus();
}

/*
 * Switch on/off core performance boosting.
 *
 * 0=disable
 * 1=enable.
 */
static void cpb_toggle(bool t)
{
	if (!cpb_capable)
		return;

	if (t && !cpb_enabled) {
		cpb_enabled = true;
		_cpb_toggle_msrs(t);
		printk(KERN_INFO PFX "Core Boosting enabled.\n");
	} else if (!t && cpb_enabled) {
		cpb_enabled = false;
		_cpb_toggle_msrs(t);
		printk(KERN_INFO PFX "Core Boosting disabled.\n");
	}
}

static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
				 size_t count)
{
	int ret = -EINVAL;
	unsigned long val = 0;

	ret = strict_strtoul(buf, 10, &val);
	if (!ret && (val == 0 || val == 1) && cpb_capable)
		cpb_toggle(val);
	else
		return -EINVAL;

	return count;
}

static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
{
	return sprintf(buf, "%u\n", cpb_enabled);
}

#define define_one_rw(_name) \
static struct freq_attr _name = \
__ATTR(_name, 0644, show_##_name, store_##_name)

define_one_rw(cpb);

static struct freq_attr *powernow_k8_attr[] = {
	&cpufreq_freq_attr_scaling_available_freqs,
	&cpb,
	NULL,
};

static struct cpufreq_driver cpufreq_amd64_driver = {
	.verify		= powernowk8_verify,
	.target		= powernowk8_target,
	.bios_limit	= acpi_processor_get_bios_limit,
	.init		= powernowk8_cpu_init,
	.exit		= __devexit_p(powernowk8_cpu_exit),
	.get		= powernowk8_get,
	.name		= "powernow-k8",
	.owner		= THIS_MODULE,
	.attr		= powernow_k8_attr,
};

/*
 * Clear the boost-disable flag on the CPU_DOWN path so that this cpu
 * cannot block the remaining ones from boosting. On the CPU_UP path we
 * simply keep the boost-disable flag in sync with the current global
 * state.
 */
static int cpb_notify(struct notifier_block *nb, unsigned long action,
		      void *hcpu)
{
	unsigned cpu = (long)hcpu;
	u32 lo, hi;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:

		if (!cpb_enabled) {
			rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
			lo |= BIT(25);
			wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi);
		}
		break;

	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
		rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
		lo &= ~BIT(25);
		wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi);
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block cpb_nb = {
	.notifier_call		= cpb_notify,
};

/* driver entry point for init */
static int __cpuinit powernowk8_init(void)
{
	unsigned int i, supported_cpus = 0, cpu;

	for_each_online_cpu(i) {
		int rc;
		smp_call_function_single(i, check_supported_cpu, &rc, 1);
		if (rc == 0)
			supported_cpus++;
	}

	if (supported_cpus != num_online_cpus())
		return -ENODEV;

	printk(KERN_INFO PFX "Found %d %s (%d cpu cores) (" VERSION ")\n",
		num_online_nodes(), boot_cpu_data.x86_model_id, supported_cpus);

	if (boot_cpu_has(X86_FEATURE_CPB)) {

		cpb_capable = true;

		register_cpu_notifier(&cpb_nb);

		msrs = msrs_alloc();
		if (!msrs) {
			printk(KERN_ERR "%s: Error allocating msrs!\n", __func__);
			return -ENOMEM;
		}

		rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);

		for_each_cpu(cpu, cpu_online_mask) {
			struct msr *reg = per_cpu_ptr(msrs, cpu);
			cpb_enabled |= !(!!(reg->l & BIT(25)));
		}

		printk(KERN_INFO PFX "Core Performance Boosting: %s.\n",
			(cpb_enabled ? "on" : "off"));
	}

	return cpufreq_register_driver(&cpufreq_amd64_driver);
}

/* driver entry point for term */
static void __exit powernowk8_exit(void)
{
	dprintk("exit\n");

	if (boot_cpu_has(X86_FEATURE_CPB)) {
		msrs_free(msrs);
		msrs = NULL;

		unregister_cpu_notifier(&cpb_nb);
	}

	cpufreq_unregister_driver(&cpufreq_amd64_driver);
}

MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and "
		"Mark Langsdorf <mark.langsdorf@amd.com>");
MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
MODULE_LICENSE("GPL");

late_initcall(powernowk8_init);
module_exit(powernowk8_exit);