1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
|
/*
* KVM paravirt_ops implementation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Copyright (C) 2007, Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
* Copyright IBM Corporation, 2007
* Authors: Anthony Liguori <aliguori@us.ibm.com>
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/kvm_para.h>
#include <linux/cpu.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/hardirq.h>
#include <linux/notifier.h>
#include <linux/reboot.h>
#include <asm/timer.h>
#include <asm/cpu.h>
#define MMU_QUEUE_SIZE 1024
static int kvmapf = 1;
static int parse_no_kvmapf(char *arg)
{
kvmapf = 0;
return 0;
}
early_param("no-kvmapf", parse_no_kvmapf);
struct kvm_para_state {
u8 mmu_queue[MMU_QUEUE_SIZE];
int mmu_queue_len;
};
static DEFINE_PER_CPU(struct kvm_para_state, para_state);
static DEFINE_PER_CPU(struct kvm_vcpu_pv_apf_data, apf_reason) __aligned(64);
static struct kvm_para_state *kvm_para_state(void)
{
return &per_cpu(para_state, raw_smp_processor_id());
}
/*
* No need for any "IO delay" on KVM
*/
static void kvm_io_delay(void)
{
}
static void kvm_mmu_op(void *buffer, unsigned len)
{
int r;
unsigned long a1, a2;
do {
a1 = __pa(buffer);
a2 = 0; /* on i386 __pa() always returns <4G */
r = kvm_hypercall3(KVM_HC_MMU_OP, len, a1, a2);
buffer += r;
len -= r;
} while (len);
}
static void mmu_queue_flush(struct kvm_para_state *state)
{
if (state->mmu_queue_len) {
kvm_mmu_op(state->mmu_queue, state->mmu_queue_len);
state->mmu_queue_len = 0;
}
}
static void kvm_deferred_mmu_op(void *buffer, int len)
{
struct kvm_para_state *state = kvm_para_state();
if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU) {
kvm_mmu_op(buffer, len);
return;
}
if (state->mmu_queue_len + len > sizeof state->mmu_queue)
mmu_queue_flush(state);
memcpy(state->mmu_queue + state->mmu_queue_len, buffer, len);
state->mmu_queue_len += len;
}
static void kvm_mmu_write(void *dest, u64 val)
{
__u64 pte_phys;
struct kvm_mmu_op_write_pte wpte;
#ifdef CONFIG_HIGHPTE
struct page *page;
unsigned long dst = (unsigned long) dest;
page = kmap_atomic_to_page(dest);
pte_phys = page_to_pfn(page);
pte_phys <<= PAGE_SHIFT;
pte_phys += (dst & ~(PAGE_MASK));
#else
pte_phys = (unsigned long)__pa(dest);
#endif
wpte.header.op = KVM_MMU_OP_WRITE_PTE;
wpte.pte_val = val;
wpte.pte_phys = pte_phys;
kvm_deferred_mmu_op(&wpte, sizeof wpte);
}
/*
* We only need to hook operations that are MMU writes. We hook these so that
* we can use lazy MMU mode to batch these operations. We could probably
* improve the performance of the host code if we used some of the information
* here to simplify processing of batched writes.
*/
static void kvm_set_pte(pte_t *ptep, pte_t pte)
{
kvm_mmu_write(ptep, pte_val(pte));
}
static void kvm_set_pte_at(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t pte)
{
kvm_mmu_write(ptep, pte_val(pte));
}
static void kvm_set_pmd(pmd_t *pmdp, pmd_t pmd)
{
kvm_mmu_write(pmdp, pmd_val(pmd));
}
#if PAGETABLE_LEVELS >= 3
#ifdef CONFIG_X86_PAE
static void kvm_set_pte_atomic(pte_t *ptep, pte_t pte)
{
kvm_mmu_write(ptep, pte_val(pte));
}
static void kvm_pte_clear(struct mm_struct *mm,
unsigned long addr, pte_t *ptep)
{
kvm_mmu_write(ptep, 0);
}
static void kvm_pmd_clear(pmd_t *pmdp)
{
kvm_mmu_write(pmdp, 0);
}
#endif
static void kvm_set_pud(pud_t *pudp, pud_t pud)
{
kvm_mmu_write(pudp, pud_val(pud));
}
#if PAGETABLE_LEVELS == 4
static void kvm_set_pgd(pgd_t *pgdp, pgd_t pgd)
{
kvm_mmu_write(pgdp, pgd_val(pgd));
}
#endif
#endif /* PAGETABLE_LEVELS >= 3 */
static void kvm_flush_tlb(void)
{
struct kvm_mmu_op_flush_tlb ftlb = {
.header.op = KVM_MMU_OP_FLUSH_TLB,
};
kvm_deferred_mmu_op(&ftlb, sizeof ftlb);
}
static void kvm_release_pt(unsigned long pfn)
{
struct kvm_mmu_op_release_pt rpt = {
.header.op = KVM_MMU_OP_RELEASE_PT,
.pt_phys = (u64)pfn << PAGE_SHIFT,
};
kvm_mmu_op(&rpt, sizeof rpt);
}
static void kvm_enter_lazy_mmu(void)
{
paravirt_enter_lazy_mmu();
}
static void kvm_leave_lazy_mmu(void)
{
struct kvm_para_state *state = kvm_para_state();
mmu_queue_flush(state);
paravirt_leave_lazy_mmu();
}
static void __init paravirt_ops_setup(void)
{
pv_info.name = "KVM";
pv_info.paravirt_enabled = 1;
if (kvm_para_has_feature(KVM_FEATURE_NOP_IO_DELAY))
pv_cpu_ops.io_delay = kvm_io_delay;
if (kvm_para_has_feature(KVM_FEATURE_MMU_OP)) {
pv_mmu_ops.set_pte = kvm_set_pte;
pv_mmu_ops.set_pte_at = kvm_set_pte_at;
pv_mmu_ops.set_pmd = kvm_set_pmd;
#if PAGETABLE_LEVELS >= 3
#ifdef CONFIG_X86_PAE
pv_mmu_ops.set_pte_atomic = kvm_set_pte_atomic;
pv_mmu_ops.pte_clear = kvm_pte_clear;
pv_mmu_ops.pmd_clear = kvm_pmd_clear;
#endif
pv_mmu_ops.set_pud = kvm_set_pud;
#if PAGETABLE_LEVELS == 4
pv_mmu_ops.set_pgd = kvm_set_pgd;
#endif
#endif
pv_mmu_ops.flush_tlb_user = kvm_flush_tlb;
pv_mmu_ops.release_pte = kvm_release_pt;
pv_mmu_ops.release_pmd = kvm_release_pt;
pv_mmu_ops.release_pud = kvm_release_pt;
pv_mmu_ops.lazy_mode.enter = kvm_enter_lazy_mmu;
pv_mmu_ops.lazy_mode.leave = kvm_leave_lazy_mmu;
}
#ifdef CONFIG_X86_IO_APIC
no_timer_check = 1;
#endif
}
void __cpuinit kvm_guest_cpu_init(void)
{
if (!kvm_para_available())
return;
if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF) && kvmapf) {
u64 pa = __pa(&__get_cpu_var(apf_reason));
wrmsrl(MSR_KVM_ASYNC_PF_EN, pa | KVM_ASYNC_PF_ENABLED);
__get_cpu_var(apf_reason).enabled = 1;
printk(KERN_INFO"KVM setup async PF for cpu %d\n",
smp_processor_id());
}
}
static void kvm_pv_disable_apf(void *unused)
{
if (!__get_cpu_var(apf_reason).enabled)
return;
wrmsrl(MSR_KVM_ASYNC_PF_EN, 0);
__get_cpu_var(apf_reason).enabled = 0;
printk(KERN_INFO"Unregister pv shared memory for cpu %d\n",
smp_processor_id());
}
static int kvm_pv_reboot_notify(struct notifier_block *nb,
unsigned long code, void *unused)
{
if (code == SYS_RESTART)
on_each_cpu(kvm_pv_disable_apf, NULL, 1);
return NOTIFY_DONE;
}
static struct notifier_block kvm_pv_reboot_nb = {
.notifier_call = kvm_pv_reboot_notify,
};
#ifdef CONFIG_SMP
static void __init kvm_smp_prepare_boot_cpu(void)
{
WARN_ON(kvm_register_clock("primary cpu clock"));
kvm_guest_cpu_init();
native_smp_prepare_boot_cpu();
}
static void kvm_guest_cpu_online(void *dummy)
{
kvm_guest_cpu_init();
}
static void kvm_guest_cpu_offline(void *dummy)
{
kvm_pv_disable_apf(NULL);
}
static int __cpuinit kvm_cpu_notify(struct notifier_block *self,
unsigned long action, void *hcpu)
{
int cpu = (unsigned long)hcpu;
switch (action) {
case CPU_ONLINE:
case CPU_DOWN_FAILED:
case CPU_ONLINE_FROZEN:
smp_call_function_single(cpu, kvm_guest_cpu_online, NULL, 0);
break;
case CPU_DOWN_PREPARE:
case CPU_DOWN_PREPARE_FROZEN:
smp_call_function_single(cpu, kvm_guest_cpu_offline, NULL, 1);
break;
default:
break;
}
return NOTIFY_OK;
}
static struct notifier_block __cpuinitdata kvm_cpu_notifier = {
.notifier_call = kvm_cpu_notify,
};
#endif
void __init kvm_guest_init(void)
{
if (!kvm_para_available())
return;
paravirt_ops_setup();
register_reboot_notifier(&kvm_pv_reboot_nb);
#ifdef CONFIG_SMP
smp_ops.smp_prepare_boot_cpu = kvm_smp_prepare_boot_cpu;
register_cpu_notifier(&kvm_cpu_notifier);
#else
kvm_guest_cpu_init();
#endif
}
|