summaryrefslogtreecommitdiffstats
path: root/arch/x86/kernel/tlb_32.c
blob: 93fcb05c7d43e7290a089064fd5e3bcf71f83743 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
#include <linux/spinlock.h>
#include <linux/cpu.h>
#include <linux/interrupt.h>

#include <asm/tlbflush.h>

DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate)
			= { &init_mm, 0, };

/* must come after the send_IPI functions above for inlining */
#include <mach_ipi.h>

/*
 *	Smarter SMP flushing macros.
 *		c/o Linus Torvalds.
 *
 *	These mean you can really definitely utterly forget about
 *	writing to user space from interrupts. (Its not allowed anyway).
 *
 *	Optimizations Manfred Spraul <manfred@colorfullife.com>
 */

static cpumask_var_t flush_cpumask;
static struct mm_struct *flush_mm;
static unsigned long flush_va;
static DEFINE_SPINLOCK(tlbstate_lock);

/*
 * We cannot call mmdrop() because we are in interrupt context,
 * instead update mm->cpu_vm_mask.
 *
 * We need to reload %cr3 since the page tables may be going
 * away from under us..
 */
void leave_mm(int cpu)
{
	BUG_ON(percpu_read(cpu_tlbstate.state) == TLBSTATE_OK);
	cpu_clear(cpu, percpu_read(cpu_tlbstate.active_mm)->cpu_vm_mask);
	load_cr3(swapper_pg_dir);
}
EXPORT_SYMBOL_GPL(leave_mm);

/*
 *
 * The flush IPI assumes that a thread switch happens in this order:
 * [cpu0: the cpu that switches]
 * 1) switch_mm() either 1a) or 1b)
 * 1a) thread switch to a different mm
 * 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask);
 * 	Stop ipi delivery for the old mm. This is not synchronized with
 * 	the other cpus, but smp_invalidate_interrupt ignore flush ipis
 * 	for the wrong mm, and in the worst case we perform a superfluous
 * 	tlb flush.
 * 1a2) set cpu_tlbstate to TLBSTATE_OK
 * 	Now the smp_invalidate_interrupt won't call leave_mm if cpu0
 *	was in lazy tlb mode.
 * 1a3) update cpu_tlbstate[].active_mm
 * 	Now cpu0 accepts tlb flushes for the new mm.
 * 1a4) cpu_set(cpu, new_mm->cpu_vm_mask);
 * 	Now the other cpus will send tlb flush ipis.
 * 1a4) change cr3.
 * 1b) thread switch without mm change
 *	cpu_tlbstate[].active_mm is correct, cpu0 already handles
 *	flush ipis.
 * 1b1) set cpu_tlbstate to TLBSTATE_OK
 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
 * 	Atomically set the bit [other cpus will start sending flush ipis],
 * 	and test the bit.
 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
 * 2) switch %%esp, ie current
 *
 * The interrupt must handle 2 special cases:
 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
 *   runs in kernel space, the cpu could load tlb entries for user space
 *   pages.
 *
 * The good news is that cpu_tlbstate is local to each cpu, no
 * write/read ordering problems.
 */

/*
 * TLB flush IPI:
 *
 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
 * 2) Leave the mm if we are in the lazy tlb mode.
 *
 * Interrupts are disabled.
 */

void smp_invalidate_interrupt(struct pt_regs *regs)
{
	unsigned int cpu;

	cpu = smp_processor_id();

	if (!cpumask_test_cpu(cpu, flush_cpumask))
		goto out;
		/*
		 * This was a BUG() but until someone can quote me the
		 * line from the intel manual that guarantees an IPI to
		 * multiple CPUs is retried _only_ on the erroring CPUs
		 * its staying as a return
		 *
		 * BUG();
		 */

	if (flush_mm == percpu_read(cpu_tlbstate.active_mm)) {
		if (percpu_read(cpu_tlbstate.state) == TLBSTATE_OK) {
			if (flush_va == TLB_FLUSH_ALL)
				local_flush_tlb();
			else
				__flush_tlb_one(flush_va);
		} else
			leave_mm(cpu);
	}
out:
	ack_APIC_irq();
	smp_mb__before_clear_bit();
	cpumask_clear_cpu(cpu, flush_cpumask);
	smp_mb__after_clear_bit();
	inc_irq_stat(irq_tlb_count);
}

void native_flush_tlb_others(const struct cpumask *cpumask,
			     struct mm_struct *mm, unsigned long va)
{
	/*
	 * - mask must exist :)
	 */
	BUG_ON(cpumask_empty(cpumask));
	BUG_ON(!mm);

	/*
	 * i'm not happy about this global shared spinlock in the
	 * MM hot path, but we'll see how contended it is.
	 * AK: x86-64 has a faster method that could be ported.
	 */
	spin_lock(&tlbstate_lock);

	cpumask_andnot(flush_cpumask, cpumask, cpumask_of(smp_processor_id()));
#ifdef CONFIG_HOTPLUG_CPU
	/* If a CPU which we ran on has gone down, OK. */
	cpumask_and(flush_cpumask, flush_cpumask, cpu_online_mask);
	if (unlikely(cpumask_empty(flush_cpumask))) {
		spin_unlock(&tlbstate_lock);
		return;
	}
#endif
	flush_mm = mm;
	flush_va = va;

	/*
	 * Make the above memory operations globally visible before
	 * sending the IPI.
	 */
	smp_mb();
	/*
	 * We have to send the IPI only to
	 * CPUs affected.
	 */
	send_IPI_mask(flush_cpumask, INVALIDATE_TLB_VECTOR);

	while (!cpumask_empty(flush_cpumask))
		/* nothing. lockup detection does not belong here */
		cpu_relax();

	flush_mm = NULL;
	flush_va = 0;
	spin_unlock(&tlbstate_lock);
}

void flush_tlb_current_task(void)
{
	struct mm_struct *mm = current->mm;

	preempt_disable();

	local_flush_tlb();
	if (cpumask_any_but(&mm->cpu_vm_mask, smp_processor_id()) < nr_cpu_ids)
		flush_tlb_others(&mm->cpu_vm_mask, mm, TLB_FLUSH_ALL);
	preempt_enable();
}

void flush_tlb_mm(struct mm_struct *mm)
{

	preempt_disable();

	if (current->active_mm == mm) {
		if (current->mm)
			local_flush_tlb();
		else
			leave_mm(smp_processor_id());
	}
	if (cpumask_any_but(&mm->cpu_vm_mask, smp_processor_id()) < nr_cpu_ids)
		flush_tlb_others(&mm->cpu_vm_mask, mm, TLB_FLUSH_ALL);

	preempt_enable();
}

void flush_tlb_page(struct vm_area_struct *vma, unsigned long va)
{
	struct mm_struct *mm = vma->vm_mm;

	preempt_disable();

	if (current->active_mm == mm) {
		if (current->mm)
			__flush_tlb_one(va);
		 else
			leave_mm(smp_processor_id());
	}

	if (cpumask_any_but(&mm->cpu_vm_mask, smp_processor_id()) < nr_cpu_ids)
		flush_tlb_others(&mm->cpu_vm_mask, mm, va);
	preempt_enable();
}

static void do_flush_tlb_all(void *info)
{
	unsigned long cpu = smp_processor_id();

	__flush_tlb_all();
	if (percpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY)
		leave_mm(cpu);
}

void flush_tlb_all(void)
{
	on_each_cpu(do_flush_tlb_all, NULL, 1);
}

static int init_flush_cpumask(void)
{
	alloc_cpumask_var(&flush_cpumask, GFP_KERNEL);
	return 0;
}
early_initcall(init_flush_cpumask);