summaryrefslogtreecommitdiffstats
path: root/drivers/lguest/core.c
blob: 0992523011328028e49983142b5f769fa4e572e0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
/*P:400
 * This contains run_guest() which actually calls into the Host<->Guest
 * Switcher and analyzes the return, such as determining if the Guest wants the
 * Host to do something.  This file also contains useful helper routines.
:*/
#include <linux/module.h>
#include <linux/stringify.h>
#include <linux/stddef.h>
#include <linux/io.h>
#include <linux/mm.h>
#include <linux/vmalloc.h>
#include <linux/cpu.h>
#include <linux/freezer.h>
#include <linux/highmem.h>
#include <linux/slab.h>
#include <asm/paravirt.h>
#include <asm/pgtable.h>
#include <asm/uaccess.h>
#include <asm/poll.h>
#include <asm/asm-offsets.h>
#include "lg.h"

unsigned long switcher_addr;
static struct vm_struct *switcher_vma;
static struct page **switcher_page;

/* This One Big lock protects all inter-guest data structures. */
DEFINE_MUTEX(lguest_lock);

/*H:010
 * We need to set up the Switcher at a high virtual address.  Remember the
 * Switcher is a few hundred bytes of assembler code which actually changes the
 * CPU to run the Guest, and then changes back to the Host when a trap or
 * interrupt happens.
 *
 * The Switcher code must be at the same virtual address in the Guest as the
 * Host since it will be running as the switchover occurs.
 *
 * Trying to map memory at a particular address is an unusual thing to do, so
 * it's not a simple one-liner.
 */
static __init int map_switcher(void)
{
	int i, err;
	struct page **pagep;

	/*
	 * Map the Switcher in to high memory.
	 *
	 * It turns out that if we choose the address 0xFFC00000 (4MB under the
	 * top virtual address), it makes setting up the page tables really
	 * easy.
	 */

	/*
	 * We allocate an array of struct page pointers.  map_vm_area() wants
	 * this, rather than just an array of pages.
	 */
	switcher_page = kmalloc(sizeof(switcher_page[0])*TOTAL_SWITCHER_PAGES,
				GFP_KERNEL);
	if (!switcher_page) {
		err = -ENOMEM;
		goto out;
	}

	/*
	 * Now we actually allocate the pages.  The Guest will see these pages,
	 * so we make sure they're zeroed.
	 */
	for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) {
		switcher_page[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
		if (!switcher_page[i]) {
			err = -ENOMEM;
			goto free_some_pages;
		}
	}

	switcher_addr = SWITCHER_ADDR;

	/*
	 * First we check that the Switcher won't overlap the fixmap area at
	 * the top of memory.  It's currently nowhere near, but it could have
	 * very strange effects if it ever happened.
	 */
	if (switcher_addr + (TOTAL_SWITCHER_PAGES+1)*PAGE_SIZE > FIXADDR_START){
		err = -ENOMEM;
		printk("lguest: mapping switcher would thwack fixmap\n");
		goto free_pages;
	}

	/*
	 * Now we reserve the "virtual memory area" we want.  We might
	 * not get it in theory, but in practice it's worked so far.
	 * The end address needs +1 because __get_vm_area allocates an
	 * extra guard page, so we need space for that.
	 */
	switcher_vma = __get_vm_area(TOTAL_SWITCHER_PAGES * PAGE_SIZE,
				     VM_ALLOC, switcher_addr, switcher_addr
				     + (TOTAL_SWITCHER_PAGES+1) * PAGE_SIZE);
	if (!switcher_vma) {
		err = -ENOMEM;
		printk("lguest: could not map switcher pages high\n");
		goto free_pages;
	}

	/*
	 * This code actually sets up the pages we've allocated to appear at
	 * switcher_addr.  map_vm_area() takes the vma we allocated above, the
	 * kind of pages we're mapping (kernel pages), and a pointer to our
	 * array of struct pages.  It increments that pointer, but we don't
	 * care.
	 */
	pagep = switcher_page;
	err = map_vm_area(switcher_vma, PAGE_KERNEL_EXEC, &pagep);
	if (err) {
		printk("lguest: map_vm_area failed: %i\n", err);
		goto free_vma;
	}

	/*
	 * Now the Switcher is mapped at the right address, we can't fail!
	 * Copy in the compiled-in Switcher code (from x86/switcher_32.S).
	 */
	memcpy(switcher_vma->addr, start_switcher_text,
	       end_switcher_text - start_switcher_text);

	printk(KERN_INFO "lguest: mapped switcher at %p\n",
	       switcher_vma->addr);
	/* And we succeeded... */
	return 0;

free_vma:
	vunmap(switcher_vma->addr);
free_pages:
	i = TOTAL_SWITCHER_PAGES;
free_some_pages:
	for (--i; i >= 0; i--)
		__free_pages(switcher_page[i], 0);
	kfree(switcher_page);
out:
	return err;
}
/*:*/

/* Cleaning up the mapping when the module is unloaded is almost... too easy. */
static void unmap_switcher(void)
{
	unsigned int i;

	/* vunmap() undoes *both* map_vm_area() and __get_vm_area(). */
	vunmap(switcher_vma->addr);
	/* Now we just need to free the pages we copied the switcher into */
	for (i = 0; i < TOTAL_SWITCHER_PAGES; i++)
		__free_pages(switcher_page[i], 0);
	kfree(switcher_page);
}

/*H:032
 * Dealing With Guest Memory.
 *
 * Before we go too much further into the Host, we need to grok the routines
 * we use to deal with Guest memory.
 *
 * When the Guest gives us (what it thinks is) a physical address, we can use
 * the normal copy_from_user() & copy_to_user() on the corresponding place in
 * the memory region allocated by the Launcher.
 *
 * But we can't trust the Guest: it might be trying to access the Launcher
 * code.  We have to check that the range is below the pfn_limit the Launcher
 * gave us.  We have to make sure that addr + len doesn't give us a false
 * positive by overflowing, too.
 */
bool lguest_address_ok(const struct lguest *lg,
		       unsigned long addr, unsigned long len)
{
	return (addr+len) / PAGE_SIZE < lg->pfn_limit && (addr+len >= addr);
}

/*
 * This routine copies memory from the Guest.  Here we can see how useful the
 * kill_lguest() routine we met in the Launcher can be: we return a random
 * value (all zeroes) instead of needing to return an error.
 */
void __lgread(struct lg_cpu *cpu, void *b, unsigned long addr, unsigned bytes)
{
	if (!lguest_address_ok(cpu->lg, addr, bytes)
	    || copy_from_user(b, cpu->lg->mem_base + addr, bytes) != 0) {
		/* copy_from_user should do this, but as we rely on it... */
		memset(b, 0, bytes);
		kill_guest(cpu, "bad read address %#lx len %u", addr, bytes);
	}
}

/* This is the write (copy into Guest) version. */
void __lgwrite(struct lg_cpu *cpu, unsigned long addr, const void *b,
	       unsigned bytes)
{
	if (!lguest_address_ok(cpu->lg, addr, bytes)
	    || copy_to_user(cpu->lg->mem_base + addr, b, bytes) != 0)
		kill_guest(cpu, "bad write address %#lx len %u", addr, bytes);
}
/*:*/

/*H:030
 * Let's jump straight to the the main loop which runs the Guest.
 * Remember, this is called by the Launcher reading /dev/lguest, and we keep
 * going around and around until something interesting happens.
 */
int run_guest(struct lg_cpu *cpu, unsigned long __user *user)
{
	/* We stop running once the Guest is dead. */
	while (!cpu->lg->dead) {
		unsigned int irq;
		bool more;

		/* First we run any hypercalls the Guest wants done. */
		if (cpu->hcall)
			do_hypercalls(cpu);

		/*
		 * It's possible the Guest did a NOTIFY hypercall to the
		 * Launcher.
		 */
		if (cpu->pending_notify) {
			/*
			 * Does it just needs to write to a registered
			 * eventfd (ie. the appropriate virtqueue thread)?
			 */
			if (!send_notify_to_eventfd(cpu)) {
				/* OK, we tell the main Launcher. */
				if (put_user(cpu->pending_notify, user))
					return -EFAULT;
				return sizeof(cpu->pending_notify);
			}
		}

		/*
		 * All long-lived kernel loops need to check with this horrible
		 * thing called the freezer.  If the Host is trying to suspend,
		 * it stops us.
		 */
		try_to_freeze();

		/* Check for signals */
		if (signal_pending(current))
			return -ERESTARTSYS;

		/*
		 * Check if there are any interrupts which can be delivered now:
		 * if so, this sets up the hander to be executed when we next
		 * run the Guest.
		 */
		irq = interrupt_pending(cpu, &more);
		if (irq < LGUEST_IRQS)
			try_deliver_interrupt(cpu, irq, more);

		/*
		 * Just make absolutely sure the Guest is still alive.  One of
		 * those hypercalls could have been fatal, for example.
		 */
		if (cpu->lg->dead)
			break;

		/*
		 * If the Guest asked to be stopped, we sleep.  The Guest's
		 * clock timer will wake us.
		 */
		if (cpu->halted) {
			set_current_state(TASK_INTERRUPTIBLE);
			/*
			 * Just before we sleep, make sure no interrupt snuck in
			 * which we should be doing.
			 */
			if (interrupt_pending(cpu, &more) < LGUEST_IRQS)
				set_current_state(TASK_RUNNING);
			else
				schedule();
			continue;
		}

		/*
		 * OK, now we're ready to jump into the Guest.  First we put up
		 * the "Do Not Disturb" sign:
		 */
		local_irq_disable();

		/* Actually run the Guest until something happens. */
		lguest_arch_run_guest(cpu);

		/* Now we're ready to be interrupted or moved to other CPUs */
		local_irq_enable();

		/* Now we deal with whatever happened to the Guest. */
		lguest_arch_handle_trap(cpu);
	}

	/* Special case: Guest is 'dead' but wants a reboot. */
	if (cpu->lg->dead == ERR_PTR(-ERESTART))
		return -ERESTART;

	/* The Guest is dead => "No such file or directory" */
	return -ENOENT;
}

/*H:000
 * Welcome to the Host!
 *
 * By this point your brain has been tickled by the Guest code and numbed by
 * the Launcher code; prepare for it to be stretched by the Host code.  This is
 * the heart.  Let's begin at the initialization routine for the Host's lg
 * module.
 */
static int __init init(void)
{
	int err;

	/* Lguest can't run under Xen, VMI or itself.  It does Tricky Stuff. */
	if (get_kernel_rpl() != 0) {
		printk("lguest is afraid of being a guest\n");
		return -EPERM;
	}

	/* First we put the Switcher up in very high virtual memory. */
	err = map_switcher();
	if (err)
		goto out;

	/* Now we set up the pagetable implementation for the Guests. */
	err = init_pagetables(switcher_page, SHARED_SWITCHER_PAGES);
	if (err)
		goto unmap;

	/* We might need to reserve an interrupt vector. */
	err = init_interrupts();
	if (err)
		goto free_pgtables;

	/* /dev/lguest needs to be registered. */
	err = lguest_device_init();
	if (err)
		goto free_interrupts;

	/* Finally we do some architecture-specific setup. */
	lguest_arch_host_init();

	/* All good! */
	return 0;

free_interrupts:
	free_interrupts();
free_pgtables:
	free_pagetables();
unmap:
	unmap_switcher();
out:
	return err;
}

/* Cleaning up is just the same code, backwards.  With a little French. */
static void __exit fini(void)
{
	lguest_device_remove();
	free_interrupts();
	free_pagetables();
	unmap_switcher();

	lguest_arch_host_fini();
}
/*:*/

/*
 * The Host side of lguest can be a module.  This is a nice way for people to
 * play with it.
 */
module_init(init);
module_exit(fini);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Rusty Russell <rusty@rustcorp.com.au>");