summaryrefslogtreecommitdiffstats
path: root/drivers/mtd/devices/st_spi_fsm.c
blob: 0a5b70290b1bef9549b960d91ead770f5bb3d01b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
/*
 * st_spi_fsm.c	- ST Fast Sequence Mode (FSM) Serial Flash Controller
 *
 * Author: Angus Clark <angus.clark@st.com>
 *
 * Copyright (C) 2010-2014 STicroelectronics Limited
 *
 * JEDEC probe based on drivers/mtd/devices/m25p80.c
 *
 * This code is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/regmap.h>
#include <linux/platform_device.h>
#include <linux/mfd/syscon.h>
#include <linux/mtd/mtd.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/of.h>

#include "serial_flash_cmds.h"

/*
 * FSM SPI Controller Registers
 */
#define SPI_CLOCKDIV			0x0010
#define SPI_MODESELECT			0x0018
#define SPI_CONFIGDATA			0x0020
#define SPI_STA_MODE_CHANGE		0x0028
#define SPI_FAST_SEQ_TRANSFER_SIZE	0x0100
#define SPI_FAST_SEQ_ADD1		0x0104
#define SPI_FAST_SEQ_ADD2		0x0108
#define SPI_FAST_SEQ_ADD_CFG		0x010c
#define SPI_FAST_SEQ_OPC1		0x0110
#define SPI_FAST_SEQ_OPC2		0x0114
#define SPI_FAST_SEQ_OPC3		0x0118
#define SPI_FAST_SEQ_OPC4		0x011c
#define SPI_FAST_SEQ_OPC5		0x0120
#define SPI_MODE_BITS			0x0124
#define SPI_DUMMY_BITS			0x0128
#define SPI_FAST_SEQ_FLASH_STA_DATA	0x012c
#define SPI_FAST_SEQ_1			0x0130
#define SPI_FAST_SEQ_2			0x0134
#define SPI_FAST_SEQ_3			0x0138
#define SPI_FAST_SEQ_4			0x013c
#define SPI_FAST_SEQ_CFG		0x0140
#define SPI_FAST_SEQ_STA		0x0144
#define SPI_QUAD_BOOT_SEQ_INIT_1	0x0148
#define SPI_QUAD_BOOT_SEQ_INIT_2	0x014c
#define SPI_QUAD_BOOT_READ_SEQ_1	0x0150
#define SPI_QUAD_BOOT_READ_SEQ_2	0x0154
#define SPI_PROGRAM_ERASE_TIME		0x0158
#define SPI_MULT_PAGE_REPEAT_SEQ_1	0x015c
#define SPI_MULT_PAGE_REPEAT_SEQ_2	0x0160
#define SPI_STATUS_WR_TIME_REG		0x0164
#define SPI_FAST_SEQ_DATA_REG		0x0300

/*
 * Register: SPI_MODESELECT
 */
#define SPI_MODESELECT_CONTIG		0x01
#define SPI_MODESELECT_FASTREAD		0x02
#define SPI_MODESELECT_DUALIO		0x04
#define SPI_MODESELECT_FSM		0x08
#define SPI_MODESELECT_QUADBOOT		0x10

/*
 * Register: SPI_CONFIGDATA
 */
#define SPI_CFG_DEVICE_ST		0x1
#define SPI_CFG_DEVICE_ATMEL		0x4
#define SPI_CFG_MIN_CS_HIGH(x)		(((x) & 0xfff) << 4)
#define SPI_CFG_CS_SETUPHOLD(x)		(((x) & 0xff) << 16)
#define SPI_CFG_DATA_HOLD(x)		(((x) & 0xff) << 24)

#define SPI_CFG_DEFAULT_MIN_CS_HIGH    SPI_CFG_MIN_CS_HIGH(0x0AA)
#define SPI_CFG_DEFAULT_CS_SETUPHOLD   SPI_CFG_CS_SETUPHOLD(0xA0)
#define SPI_CFG_DEFAULT_DATA_HOLD      SPI_CFG_DATA_HOLD(0x00)

/*
 * Register: SPI_FAST_SEQ_TRANSFER_SIZE
 */
#define TRANSFER_SIZE(x)		((x) * 8)

/*
 * Register: SPI_FAST_SEQ_ADD_CFG
 */
#define ADR_CFG_CYCLES_ADD1(x)		((x) << 0)
#define ADR_CFG_PADS_1_ADD1		(0x0 << 6)
#define ADR_CFG_PADS_2_ADD1		(0x1 << 6)
#define ADR_CFG_PADS_4_ADD1		(0x3 << 6)
#define ADR_CFG_CSDEASSERT_ADD1		(1   << 8)
#define ADR_CFG_CYCLES_ADD2(x)		((x) << (0+16))
#define ADR_CFG_PADS_1_ADD2		(0x0 << (6+16))
#define ADR_CFG_PADS_2_ADD2		(0x1 << (6+16))
#define ADR_CFG_PADS_4_ADD2		(0x3 << (6+16))
#define ADR_CFG_CSDEASSERT_ADD2		(1   << (8+16))

/*
 * Register: SPI_FAST_SEQ_n
 */
#define SEQ_OPC_OPCODE(x)		((x) << 0)
#define SEQ_OPC_CYCLES(x)		((x) << 8)
#define SEQ_OPC_PADS_1			(0x0 << 14)
#define SEQ_OPC_PADS_2			(0x1 << 14)
#define SEQ_OPC_PADS_4			(0x3 << 14)
#define SEQ_OPC_CSDEASSERT		(1   << 16)

/*
 * Register: SPI_FAST_SEQ_CFG
 */
#define SEQ_CFG_STARTSEQ		(1 << 0)
#define SEQ_CFG_SWRESET			(1 << 5)
#define SEQ_CFG_CSDEASSERT		(1 << 6)
#define SEQ_CFG_READNOTWRITE		(1 << 7)
#define SEQ_CFG_ERASE			(1 << 8)
#define SEQ_CFG_PADS_1			(0x0 << 16)
#define SEQ_CFG_PADS_2			(0x1 << 16)
#define SEQ_CFG_PADS_4			(0x3 << 16)

/*
 * Register: SPI_MODE_BITS
 */
#define MODE_DATA(x)			(x & 0xff)
#define MODE_CYCLES(x)			((x & 0x3f) << 16)
#define MODE_PADS_1			(0x0 << 22)
#define MODE_PADS_2			(0x1 << 22)
#define MODE_PADS_4			(0x3 << 22)
#define DUMMY_CSDEASSERT		(1   << 24)

/*
 * Register: SPI_DUMMY_BITS
 */
#define DUMMY_CYCLES(x)			((x & 0x3f) << 16)
#define DUMMY_PADS_1			(0x0 << 22)
#define DUMMY_PADS_2			(0x1 << 22)
#define DUMMY_PADS_4			(0x3 << 22)
#define DUMMY_CSDEASSERT		(1   << 24)

/*
 * Register: SPI_FAST_SEQ_FLASH_STA_DATA
 */
#define STA_DATA_BYTE1(x)		((x & 0xff) << 0)
#define STA_DATA_BYTE2(x)		((x & 0xff) << 8)
#define STA_PADS_1			(0x0 << 16)
#define STA_PADS_2			(0x1 << 16)
#define STA_PADS_4			(0x3 << 16)
#define STA_CSDEASSERT			(0x1 << 20)
#define STA_RDNOTWR			(0x1 << 21)

/*
 * FSM SPI Instruction Opcodes
 */
#define STFSM_OPC_CMD			0x1
#define STFSM_OPC_ADD			0x2
#define STFSM_OPC_STA			0x3
#define STFSM_OPC_MODE			0x4
#define STFSM_OPC_DUMMY		0x5
#define STFSM_OPC_DATA			0x6
#define STFSM_OPC_WAIT			0x7
#define STFSM_OPC_JUMP			0x8
#define STFSM_OPC_GOTO			0x9
#define STFSM_OPC_STOP			0xF

/*
 * FSM SPI Instructions (== opcode + operand).
 */
#define STFSM_INSTR(cmd, op)		((cmd) | ((op) << 4))

#define STFSM_INST_CMD1			STFSM_INSTR(STFSM_OPC_CMD,	1)
#define STFSM_INST_CMD2			STFSM_INSTR(STFSM_OPC_CMD,	2)
#define STFSM_INST_CMD3			STFSM_INSTR(STFSM_OPC_CMD,	3)
#define STFSM_INST_CMD4			STFSM_INSTR(STFSM_OPC_CMD,	4)
#define STFSM_INST_CMD5			STFSM_INSTR(STFSM_OPC_CMD,	5)
#define STFSM_INST_ADD1			STFSM_INSTR(STFSM_OPC_ADD,	1)
#define STFSM_INST_ADD2			STFSM_INSTR(STFSM_OPC_ADD,	2)

#define STFSM_INST_DATA_WRITE		STFSM_INSTR(STFSM_OPC_DATA,	1)
#define STFSM_INST_DATA_READ		STFSM_INSTR(STFSM_OPC_DATA,	2)

#define STFSM_INST_STA_RD1		STFSM_INSTR(STFSM_OPC_STA,	0x1)
#define STFSM_INST_STA_WR1		STFSM_INSTR(STFSM_OPC_STA,	0x1)
#define STFSM_INST_STA_RD2		STFSM_INSTR(STFSM_OPC_STA,	0x2)
#define STFSM_INST_STA_WR1_2		STFSM_INSTR(STFSM_OPC_STA,	0x3)

#define STFSM_INST_MODE			STFSM_INSTR(STFSM_OPC_MODE,	0)
#define STFSM_INST_DUMMY		STFSM_INSTR(STFSM_OPC_DUMMY,	0)
#define STFSM_INST_WAIT			STFSM_INSTR(STFSM_OPC_WAIT,	0)
#define STFSM_INST_STOP			STFSM_INSTR(STFSM_OPC_STOP,	0)

#define STFSM_DEFAULT_EMI_FREQ 100000000UL                        /* 100 MHz */
#define STFSM_DEFAULT_WR_TIME  (STFSM_DEFAULT_EMI_FREQ * (15/1000)) /* 15ms */

#define STFSM_FLASH_SAFE_FREQ  10000000UL                         /* 10 MHz */

#define STFSM_MAX_WAIT_SEQ_MS  1000     /* FSM execution time */

struct stfsm {
	struct device		*dev;
	void __iomem		*base;
	struct resource		*region;
	struct mtd_info		mtd;
	struct mutex		lock;
	struct flash_info       *info;

	uint32_t                fifo_dir_delay;
	bool                    booted_from_spi;
	bool                    reset_signal;
	bool                    reset_por;
};

struct stfsm_seq {
	uint32_t data_size;
	uint32_t addr1;
	uint32_t addr2;
	uint32_t addr_cfg;
	uint32_t seq_opc[5];
	uint32_t mode;
	uint32_t dummy;
	uint32_t status;
	uint8_t  seq[16];
	uint32_t seq_cfg;
} __packed __aligned(4);

/* Parameters to configure a READ or WRITE FSM sequence */
struct seq_rw_config {
	uint32_t        flags;          /* flags to support config */
	uint8_t         cmd;            /* FLASH command */
	int             write;          /* Write Sequence */
	uint8_t         addr_pads;      /* No. of addr pads (MODE & DUMMY) */
	uint8_t         data_pads;      /* No. of data pads */
	uint8_t         mode_data;      /* MODE data */
	uint8_t         mode_cycles;    /* No. of MODE cycles */
	uint8_t         dummy_cycles;   /* No. of DUMMY cycles */
};

/* SPI Flash Device Table */
struct flash_info {
	char            *name;
	/*
	 * JEDEC id zero means "no ID" (most older chips); otherwise it has
	 * a high byte of zero plus three data bytes: the manufacturer id,
	 * then a two byte device id.
	 */
	u32             jedec_id;
	u16             ext_id;
	/*
	 * The size listed here is what works with FLASH_CMD_SE, which isn't
	 * necessarily called a "sector" by the vendor.
	 */
	unsigned        sector_size;
	u16             n_sectors;
	u32             flags;
	/*
	 * Note, where FAST_READ is supported, freq_max specifies the
	 * FAST_READ frequency, not the READ frequency.
	 */
	u32             max_freq;
	int             (*config)(struct stfsm *);
};

static struct flash_info flash_types[] = {
	/*
	 * ST Microelectronics/Numonyx --
	 * (newer production versions may have feature updates
	 * (eg faster operating frequency)
	 */
#define M25P_FLAG (FLASH_FLAG_READ_WRITE | FLASH_FLAG_READ_FAST)
	{ "m25p40",  0x202013, 0,  64 * 1024,   8, M25P_FLAG, 25, NULL },
	{ "m25p80",  0x202014, 0,  64 * 1024,  16, M25P_FLAG, 25, NULL },
	{ "m25p16",  0x202015, 0,  64 * 1024,  32, M25P_FLAG, 25, NULL },
	{ "m25p32",  0x202016, 0,  64 * 1024,  64, M25P_FLAG, 50, NULL },
	{ "m25p64",  0x202017, 0,  64 * 1024, 128, M25P_FLAG, 50, NULL },
	{ "m25p128", 0x202018, 0, 256 * 1024,  64, M25P_FLAG, 50, NULL },

#define M25PX_FLAG (FLASH_FLAG_READ_WRITE      |	\
		    FLASH_FLAG_READ_FAST        |	\
		    FLASH_FLAG_READ_1_1_2       |	\
		    FLASH_FLAG_WRITE_1_1_2)
	{ "m25px32", 0x207116, 0,  64 * 1024,  64, M25PX_FLAG, 75, NULL },
	{ "m25px64", 0x207117, 0,  64 * 1024, 128, M25PX_FLAG, 75, NULL },

#define MX25_FLAG (FLASH_FLAG_READ_WRITE       |	\
		   FLASH_FLAG_READ_FAST         |	\
		   FLASH_FLAG_READ_1_1_2        |	\
		   FLASH_FLAG_READ_1_2_2        |	\
		   FLASH_FLAG_READ_1_1_4        |	\
		   FLASH_FLAG_READ_1_4_4        |	\
		   FLASH_FLAG_SE_4K             |	\
		   FLASH_FLAG_SE_32K)
	{ "mx25l25635e", 0xc22019, 0, 64*1024, 512,
	  (MX25_FLAG | FLASH_FLAG_32BIT_ADDR | FLASH_FLAG_RESET), 70, NULL }

#define N25Q_FLAG (FLASH_FLAG_READ_WRITE       |	\
		   FLASH_FLAG_READ_FAST         |	\
		   FLASH_FLAG_READ_1_1_2        |	\
		   FLASH_FLAG_READ_1_2_2        |	\
		   FLASH_FLAG_READ_1_1_4        |	\
		   FLASH_FLAG_READ_1_4_4        |	\
		   FLASH_FLAG_WRITE_1_1_2       |	\
		   FLASH_FLAG_WRITE_1_2_2       |	\
		   FLASH_FLAG_WRITE_1_1_4       |	\
		   FLASH_FLAG_WRITE_1_4_4)
	{ "n25q128", 0x20ba18, 0, 64 * 1024,  256, N25Q_FLAG, 108, NULL },
	{ "n25q256", 0x20ba19, 0, 64 * 1024,  512,
	  N25Q_FLAG | FLASH_FLAG_32BIT_ADDR, 108, NULL },

	/*
	 * Spansion S25FLxxxP
	 *     - 256KiB and 64KiB sector variants (identified by ext. JEDEC)
	 */
#define S25FLXXXP_FLAG (FLASH_FLAG_READ_WRITE  |	\
			FLASH_FLAG_READ_1_1_2   |	\
			FLASH_FLAG_READ_1_2_2   |	\
			FLASH_FLAG_READ_1_1_4   |	\
			FLASH_FLAG_READ_1_4_4   |	\
			FLASH_FLAG_WRITE_1_1_4  |	\
			FLASH_FLAG_READ_FAST)
	{ "s25fl129p0", 0x012018, 0x4d00, 256 * 1024,  64, S25FLXXXP_FLAG, 80,
	  NULL },
	{ "s25fl129p1", 0x012018, 0x4d01,  64 * 1024, 256, S25FLXXXP_FLAG, 80,
	  NULL },

	/*
	 * Spansion S25FLxxxS
	 *     - 256KiB and 64KiB sector variants (identified by ext. JEDEC)
	 *     - RESET# signal supported by die but not bristled out on all
	 *       package types.  The package type is a function of board design,
	 *       so this information is captured in the board's flags.
	 *     - Supports 'DYB' sector protection. Depending on variant, sectors
	 *       may default to locked state on power-on.
	 */
#define S25FLXXXS_FLAG (S25FLXXXP_FLAG         |	\
			FLASH_FLAG_RESET        |	\
			FLASH_FLAG_DYB_LOCKING)
	{ "s25fl128s0", 0x012018, 0x0300,  256 * 1024, 64, S25FLXXXS_FLAG, 80,
	  NULL },
	{ "s25fl128s1", 0x012018, 0x0301,  64 * 1024, 256, S25FLXXXS_FLAG, 80,
	  NULL },
	{ "s25fl256s0", 0x010219, 0x4d00, 256 * 1024, 128,
	  S25FLXXXS_FLAG | FLASH_FLAG_32BIT_ADDR, 80, NULL },
	{ "s25fl256s1", 0x010219, 0x4d01,  64 * 1024, 512,
	  S25FLXXXS_FLAG | FLASH_FLAG_32BIT_ADDR, 80, NULL },

	/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
#define W25X_FLAG (FLASH_FLAG_READ_WRITE       |	\
		   FLASH_FLAG_READ_FAST         |	\
		   FLASH_FLAG_READ_1_1_2        |	\
		   FLASH_FLAG_WRITE_1_1_2)
	{ "w25x40",  0xef3013, 0,  64 * 1024,   8, W25X_FLAG, 75, NULL },
	{ "w25x80",  0xef3014, 0,  64 * 1024,  16, W25X_FLAG, 75, NULL },
	{ "w25x16",  0xef3015, 0,  64 * 1024,  32, W25X_FLAG, 75, NULL },
	{ "w25x32",  0xef3016, 0,  64 * 1024,  64, W25X_FLAG, 75, NULL },
	{ "w25x64",  0xef3017, 0,  64 * 1024, 128, W25X_FLAG, 75, NULL },

	/* Winbond -- w25q "blocks" are 64K, "sectors" are 4KiB */
#define W25Q_FLAG (FLASH_FLAG_READ_WRITE       |	\
		   FLASH_FLAG_READ_FAST         |	\
		   FLASH_FLAG_READ_1_1_2        |	\
		   FLASH_FLAG_READ_1_2_2        |	\
		   FLASH_FLAG_READ_1_1_4        |	\
		   FLASH_FLAG_READ_1_4_4        |	\
		   FLASH_FLAG_WRITE_1_1_4)
	{ "w25q80",  0xef4014, 0,  64 * 1024,  16, W25Q_FLAG, 80, NULL },
	{ "w25q16",  0xef4015, 0,  64 * 1024,  32, W25Q_FLAG, 80, NULL },
	{ "w25q32",  0xef4016, 0,  64 * 1024,  64, W25Q_FLAG, 80, NULL },
	{ "w25q64",  0xef4017, 0,  64 * 1024, 128, W25Q_FLAG, 80, NULL },

	/* Sentinel */
	{ NULL, 0x000000, 0, 0, 0, 0, 0, NULL },
};

static struct stfsm_seq stfsm_seq_en_32bit_addr;/* Dynamically populated */

static struct stfsm_seq stfsm_seq_read_jedec = {
	.data_size = TRANSFER_SIZE(8),
	.seq_opc[0] = (SEQ_OPC_PADS_1 |
		       SEQ_OPC_CYCLES(8) |
		       SEQ_OPC_OPCODE(FLASH_CMD_RDID)),
	.seq = {
		STFSM_INST_CMD1,
		STFSM_INST_DATA_READ,
		STFSM_INST_STOP,
	},
	.seq_cfg = (SEQ_CFG_PADS_1 |
		    SEQ_CFG_READNOTWRITE |
		    SEQ_CFG_CSDEASSERT |
		    SEQ_CFG_STARTSEQ),
};

static struct stfsm_seq stfsm_seq_erase_sector = {
	/* 'addr_cfg' configured during initialisation */
	.seq_opc = {
		(SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
		 SEQ_OPC_OPCODE(FLASH_CMD_WREN) | SEQ_OPC_CSDEASSERT),

		(SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
		 SEQ_OPC_OPCODE(FLASH_CMD_SE)),
	},
	.seq = {
		STFSM_INST_CMD1,
		STFSM_INST_CMD2,
		STFSM_INST_ADD1,
		STFSM_INST_ADD2,
		STFSM_INST_STOP,
	},
	.seq_cfg = (SEQ_CFG_PADS_1 |
		    SEQ_CFG_READNOTWRITE |
		    SEQ_CFG_CSDEASSERT |
		    SEQ_CFG_STARTSEQ),
};

static int stfsm_n25q_en_32bit_addr_seq(struct stfsm_seq *seq)
{
	seq->seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
			   SEQ_OPC_OPCODE(FLASH_CMD_EN4B_ADDR));
	seq->seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
			   SEQ_OPC_OPCODE(FLASH_CMD_WREN) |
			   SEQ_OPC_CSDEASSERT);

	seq->seq[0] = STFSM_INST_CMD2;
	seq->seq[1] = STFSM_INST_CMD1;
	seq->seq[2] = STFSM_INST_WAIT;
	seq->seq[3] = STFSM_INST_STOP;

	seq->seq_cfg = (SEQ_CFG_PADS_1 |
			SEQ_CFG_ERASE |
			SEQ_CFG_READNOTWRITE |
			SEQ_CFG_CSDEASSERT |
			SEQ_CFG_STARTSEQ);

	return 0;
}

static inline int stfsm_is_idle(struct stfsm *fsm)
{
	return readl(fsm->base + SPI_FAST_SEQ_STA) & 0x10;
}

static inline uint32_t stfsm_fifo_available(struct stfsm *fsm)
{
	return (readl(fsm->base + SPI_FAST_SEQ_STA) >> 5) & 0x7f;
}

static void stfsm_clear_fifo(struct stfsm *fsm)
{
	uint32_t avail;

	for (;;) {
		avail = stfsm_fifo_available(fsm);
		if (!avail)
			break;

		while (avail) {
			readl(fsm->base + SPI_FAST_SEQ_DATA_REG);
			avail--;
		}
	}
}

static inline void stfsm_load_seq(struct stfsm *fsm,
				  const struct stfsm_seq *seq)
{
	void __iomem *dst = fsm->base + SPI_FAST_SEQ_TRANSFER_SIZE;
	const uint32_t *src = (const uint32_t *)seq;
	int words = sizeof(*seq) / sizeof(*src);

	BUG_ON(!stfsm_is_idle(fsm));

	while (words--) {
		writel(*src, dst);
		src++;
		dst += 4;
	}
}

static void stfsm_wait_seq(struct stfsm *fsm)
{
	unsigned long deadline;
	int timeout = 0;

	deadline = jiffies + msecs_to_jiffies(STFSM_MAX_WAIT_SEQ_MS);

	while (!timeout) {
		if (time_after_eq(jiffies, deadline))
			timeout = 1;

		if (stfsm_is_idle(fsm))
			return;

		cond_resched();
	}

	dev_err(fsm->dev, "timeout on sequence completion\n");
}

static void stfsm_read_fifo(struct stfsm *fsm, uint32_t *buf,
			    const uint32_t size)
{
	uint32_t remaining = size >> 2;
	uint32_t avail;
	uint32_t words;

	dev_dbg(fsm->dev, "Reading %d bytes from FIFO\n", size);

	BUG_ON((((uint32_t)buf) & 0x3) || (size & 0x3));

	while (remaining) {
		for (;;) {
			avail = stfsm_fifo_available(fsm);
			if (avail)
				break;
			udelay(1);
		}
		words = min(avail, remaining);
		remaining -= words;

		readsl(fsm->base + SPI_FAST_SEQ_DATA_REG, buf, words);
		buf += words;
	}
}

static int stfsm_enter_32bit_addr(struct stfsm *fsm, int enter)
{
	struct stfsm_seq *seq = &stfsm_seq_en_32bit_addr;
	uint32_t cmd = enter ? FLASH_CMD_EN4B_ADDR : FLASH_CMD_EX4B_ADDR;

	seq->seq_opc[0] = (SEQ_OPC_PADS_1 |
			   SEQ_OPC_CYCLES(8) |
			   SEQ_OPC_OPCODE(cmd) |
			   SEQ_OPC_CSDEASSERT);

	stfsm_load_seq(fsm, seq);

	stfsm_wait_seq(fsm);

	return 0;
}

/*
 * SoC reset on 'boot-from-spi' systems
 *
 * Certain modes of operation cause the Flash device to enter a particular state
 * for a period of time (e.g. 'Erase Sector', 'Quad Enable', and 'Enter 32-bit
 * Addr' commands).  On boot-from-spi systems, it is important to consider what
 * happens if a warm reset occurs during this period.  The SPIBoot controller
 * assumes that Flash device is in its default reset state, 24-bit address mode,
 * and ready to accept commands.  This can be achieved using some form of
 * on-board logic/controller to force a device POR in response to a SoC-level
 * reset or by making use of the device reset signal if available (limited
 * number of devices only).
 *
 * Failure to take such precautions can cause problems following a warm reset.
 * For some operations (e.g. ERASE), there is little that can be done.  For
 * other modes of operation (e.g. 32-bit addressing), options are often
 * available that can help minimise the window in which a reset could cause a
 * problem.
 *
 */
static bool stfsm_can_handle_soc_reset(struct stfsm *fsm)
{
	/* Reset signal is available on the board and supported by the device */
	if (fsm->reset_signal && fsm->info->flags & FLASH_FLAG_RESET)
		return true;

	/* Board-level logic forces a power-on-reset */
	if (fsm->reset_por)
		return true;

	/* Reset is not properly handled and may result in failure to reboot */
	return false;
}

/* Configure 'addr_cfg' according to addressing mode */
static void stfsm_prepare_erasesec_seq(struct stfsm *fsm,
				       struct stfsm_seq *seq)
{
	int addr1_cycles = fsm->info->flags & FLASH_FLAG_32BIT_ADDR ? 16 : 8;

	seq->addr_cfg = (ADR_CFG_CYCLES_ADD1(addr1_cycles) |
			 ADR_CFG_PADS_1_ADD1 |
			 ADR_CFG_CYCLES_ADD2(16) |
			 ADR_CFG_PADS_1_ADD2 |
			 ADR_CFG_CSDEASSERT_ADD2);
}

/* Search for preferred configuration based on available flags */
static struct seq_rw_config *
stfsm_search_seq_rw_configs(struct stfsm *fsm,
			    struct seq_rw_config cfgs[])
{
	struct seq_rw_config *config;
	int flags = fsm->info->flags;

	for (config = cfgs; config->cmd != 0; config++)
		if ((config->flags & flags) == config->flags)
			return config;

	return NULL;
}

/* Prepare a READ/WRITE sequence according to configuration parameters */
static void stfsm_prepare_rw_seq(struct stfsm *fsm,
				 struct stfsm_seq *seq,
				 struct seq_rw_config *cfg)
{
	int addr1_cycles, addr2_cycles;
	int i = 0;

	memset(seq, 0, sizeof(*seq));

	/* Add READ/WRITE OPC  */
	seq->seq_opc[i++] = (SEQ_OPC_PADS_1 |
			     SEQ_OPC_CYCLES(8) |
			     SEQ_OPC_OPCODE(cfg->cmd));

	/* Add WREN OPC for a WRITE sequence */
	if (cfg->write)
		seq->seq_opc[i++] = (SEQ_OPC_PADS_1 |
				     SEQ_OPC_CYCLES(8) |
				     SEQ_OPC_OPCODE(FLASH_CMD_WREN) |
				     SEQ_OPC_CSDEASSERT);

	/* Address configuration (24 or 32-bit addresses) */
	addr1_cycles  = (fsm->info->flags & FLASH_FLAG_32BIT_ADDR) ? 16 : 8;
	addr1_cycles /= cfg->addr_pads;
	addr2_cycles  = 16 / cfg->addr_pads;
	seq->addr_cfg = ((addr1_cycles & 0x3f) << 0 |	/* ADD1 cycles */
			 (cfg->addr_pads - 1) << 6 |	/* ADD1 pads */
			 (addr2_cycles & 0x3f) << 16 |	/* ADD2 cycles */
			 ((cfg->addr_pads - 1) << 22));	/* ADD2 pads */

	/* Data/Sequence configuration */
	seq->seq_cfg = ((cfg->data_pads - 1) << 16 |
			SEQ_CFG_STARTSEQ |
			SEQ_CFG_CSDEASSERT);
	if (!cfg->write)
		seq->seq_cfg |= SEQ_CFG_READNOTWRITE;

	/* Mode configuration (no. of pads taken from addr cfg) */
	seq->mode = ((cfg->mode_data & 0xff) << 0 |	/* data */
		     (cfg->mode_cycles & 0x3f) << 16 |	/* cycles */
		     (cfg->addr_pads - 1) << 22);	/* pads */

	/* Dummy configuration (no. of pads taken from addr cfg) */
	seq->dummy = ((cfg->dummy_cycles & 0x3f) << 16 |	/* cycles */
		      (cfg->addr_pads - 1) << 22);		/* pads */


	/* Instruction sequence */
	i = 0;
	if (cfg->write)
		seq->seq[i++] = STFSM_INST_CMD2;

	seq->seq[i++] = STFSM_INST_CMD1;

	seq->seq[i++] = STFSM_INST_ADD1;
	seq->seq[i++] = STFSM_INST_ADD2;

	if (cfg->mode_cycles)
		seq->seq[i++] = STFSM_INST_MODE;

	if (cfg->dummy_cycles)
		seq->seq[i++] = STFSM_INST_DUMMY;

	seq->seq[i++] =
		cfg->write ? STFSM_INST_DATA_WRITE : STFSM_INST_DATA_READ;
	seq->seq[i++] = STFSM_INST_STOP;
}

static int stfsm_search_prepare_rw_seq(struct stfsm *fsm,
				       struct stfsm_seq *seq,
				       struct seq_rw_config *cfgs)
{
	struct seq_rw_config *config;

	config = stfsm_search_seq_rw_configs(fsm, cfgs);
	if (!config) {
		dev_err(fsm->dev, "failed to find suitable config\n");
		return -EINVAL;
	}

	stfsm_prepare_rw_seq(fsm, seq, config);

	return 0;
}

static void stfsm_read_jedec(struct stfsm *fsm, uint8_t *const jedec)
{
	const struct stfsm_seq *seq = &stfsm_seq_read_jedec;
	uint32_t tmp[2];

	stfsm_load_seq(fsm, seq);

	stfsm_read_fifo(fsm, tmp, 8);

	memcpy(jedec, tmp, 5);

	stfsm_wait_seq(fsm);
}

static struct flash_info *stfsm_jedec_probe(struct stfsm *fsm)
{
	struct flash_info	*info;
	u16                     ext_jedec;
	u32			jedec;
	u8			id[5];

	stfsm_read_jedec(fsm, id);

	jedec     = id[0] << 16 | id[1] << 8 | id[2];
	/*
	 * JEDEC also defines an optional "extended device information"
	 * string for after vendor-specific data, after the three bytes
	 * we use here. Supporting some chips might require using it.
	 */
	ext_jedec = id[3] << 8  | id[4];

	dev_dbg(fsm->dev, "JEDEC =  0x%08x [%02x %02x %02x %02x %02x]\n",
		jedec, id[0], id[1], id[2], id[3], id[4]);

	for (info = flash_types; info->name; info++) {
		if (info->jedec_id == jedec) {
			if (info->ext_id && info->ext_id != ext_jedec)
				continue;
			return info;
		}
	}
	dev_err(fsm->dev, "Unrecognized JEDEC id %06x\n", jedec);

	return NULL;
}

static int stfsm_set_mode(struct stfsm *fsm, uint32_t mode)
{
	int ret, timeout = 10;

	/* Wait for controller to accept mode change */
	while (--timeout) {
		ret = readl(fsm->base + SPI_STA_MODE_CHANGE);
		if (ret & 0x1)
			break;
		udelay(1);
	}

	if (!timeout)
		return -EBUSY;

	writel(mode, fsm->base + SPI_MODESELECT);

	return 0;
}

static void stfsm_set_freq(struct stfsm *fsm, uint32_t spi_freq)
{
	uint32_t emi_freq;
	uint32_t clk_div;

	/* TODO: Make this dynamic */
	emi_freq = STFSM_DEFAULT_EMI_FREQ;

	/*
	 * Calculate clk_div - values between 2 and 128
	 * Multiple of 2, rounded up
	 */
	clk_div = 2 * DIV_ROUND_UP(emi_freq, 2 * spi_freq);
	if (clk_div < 2)
		clk_div = 2;
	else if (clk_div > 128)
		clk_div = 128;

	/*
	 * Determine a suitable delay for the IP to complete a change of
	 * direction of the FIFO. The required delay is related to the clock
	 * divider used. The following heuristics are based on empirical tests,
	 * using a 100MHz EMI clock.
	 */
	if (clk_div <= 4)
		fsm->fifo_dir_delay = 0;
	else if (clk_div <= 10)
		fsm->fifo_dir_delay = 1;
	else
		fsm->fifo_dir_delay = DIV_ROUND_UP(clk_div, 10);

	dev_dbg(fsm->dev, "emi_clk = %uHZ, spi_freq = %uHZ, clk_div = %u\n",
		emi_freq, spi_freq, clk_div);

	writel(clk_div, fsm->base + SPI_CLOCKDIV);
}

static int stfsm_init(struct stfsm *fsm)
{
	int ret;

	/* Perform a soft reset of the FSM controller */
	writel(SEQ_CFG_SWRESET, fsm->base + SPI_FAST_SEQ_CFG);
	udelay(1);
	writel(0, fsm->base + SPI_FAST_SEQ_CFG);

	/* Set clock to 'safe' frequency initially */
	stfsm_set_freq(fsm, STFSM_FLASH_SAFE_FREQ);

	/* Switch to FSM */
	ret = stfsm_set_mode(fsm, SPI_MODESELECT_FSM);
	if (ret)
		return ret;

	/* Set timing parameters */
	writel(SPI_CFG_DEVICE_ST            |
	       SPI_CFG_DEFAULT_MIN_CS_HIGH  |
	       SPI_CFG_DEFAULT_CS_SETUPHOLD |
	       SPI_CFG_DEFAULT_DATA_HOLD,
	       fsm->base + SPI_CONFIGDATA);
	writel(STFSM_DEFAULT_WR_TIME, fsm->base + SPI_STATUS_WR_TIME_REG);

	/* Clear FIFO, just in case */
	stfsm_clear_fifo(fsm);

	return 0;
}

static void stfsm_fetch_platform_configs(struct platform_device *pdev)
{
	struct stfsm *fsm = platform_get_drvdata(pdev);
	struct device_node *np = pdev->dev.of_node;
	struct regmap *regmap;
	uint32_t boot_device_reg;
	uint32_t boot_device_spi;
	uint32_t boot_device;     /* Value we read from *boot_device_reg */
	int ret;

	/* Booting from SPI NOR Flash is the default */
	fsm->booted_from_spi = true;

	regmap = syscon_regmap_lookup_by_phandle(np, "st,syscfg");
	if (IS_ERR(regmap))
		goto boot_device_fail;

	fsm->reset_signal = of_property_read_bool(np, "st,reset-signal");

	fsm->reset_por = of_property_read_bool(np, "st,reset-por");

	/* Where in the syscon the boot device information lives */
	ret = of_property_read_u32(np, "st,boot-device-reg", &boot_device_reg);
	if (ret)
		goto boot_device_fail;

	/* Boot device value when booted from SPI NOR */
	ret = of_property_read_u32(np, "st,boot-device-spi", &boot_device_spi);
	if (ret)
		goto boot_device_fail;

	ret = regmap_read(regmap, boot_device_reg, &boot_device);
	if (ret)
		goto boot_device_fail;

	if (boot_device != boot_device_spi)
		fsm->booted_from_spi = false;

	return;

boot_device_fail:
	dev_warn(&pdev->dev,
		 "failed to fetch boot device, assuming boot from SPI\n");
}

static int stfsm_probe(struct platform_device *pdev)
{
	struct device_node *np = pdev->dev.of_node;
	struct flash_info *info;
	struct resource *res;
	struct stfsm *fsm;
	int ret;

	if (!np) {
		dev_err(&pdev->dev, "No DT found\n");
		return -EINVAL;
	}

	fsm = devm_kzalloc(&pdev->dev, sizeof(*fsm), GFP_KERNEL);
	if (!fsm)
		return -ENOMEM;

	fsm->dev = &pdev->dev;

	platform_set_drvdata(pdev, fsm);

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!res) {
		dev_err(&pdev->dev, "Resource not found\n");
		return -ENODEV;
	}

	fsm->base = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(fsm->base)) {
		dev_err(&pdev->dev,
			"Failed to reserve memory region %pR\n", res);
		return PTR_ERR(fsm->base);
	}

	mutex_init(&fsm->lock);

	ret = stfsm_init(fsm);
	if (ret) {
		dev_err(&pdev->dev, "Failed to initialise FSM Controller\n");
		return ret;
	}

	stfsm_fetch_platform_configs(pdev);

	/* Detect SPI FLASH device */
	info = stfsm_jedec_probe(fsm);
	if (!info)
		return -ENODEV;
	fsm->info = info;

	/* Use device size to determine address width */
	if (info->sector_size * info->n_sectors > 0x1000000)
		info->flags |= FLASH_FLAG_32BIT_ADDR;

	fsm->mtd.dev.parent	= &pdev->dev;
	fsm->mtd.type		= MTD_NORFLASH;
	fsm->mtd.writesize	= 4;
	fsm->mtd.writebufsize	= fsm->mtd.writesize;
	fsm->mtd.flags		= MTD_CAP_NORFLASH;
	fsm->mtd.size		= info->sector_size * info->n_sectors;
	fsm->mtd.erasesize	= info->sector_size;

	dev_err(&pdev->dev,
		"Found serial flash device: %s\n"
		" size = %llx (%lldMiB) erasesize = 0x%08x (%uKiB)\n",
		info->name,
		(long long)fsm->mtd.size, (long long)(fsm->mtd.size >> 20),
		fsm->mtd.erasesize, (fsm->mtd.erasesize >> 10));

	return mtd_device_parse_register(&fsm->mtd, NULL, NULL, NULL, 0);
}

static int stfsm_remove(struct platform_device *pdev)
{
	struct stfsm *fsm = platform_get_drvdata(pdev);
	int err;

	err = mtd_device_unregister(&fsm->mtd);
	if (err)
		return err;

	return 0;
}

static struct of_device_id stfsm_match[] = {
	{ .compatible = "st,spi-fsm", },
	{},
};
MODULE_DEVICE_TABLE(of, stfsm_match);

static struct platform_driver stfsm_driver = {
	.probe		= stfsm_probe,
	.remove		= stfsm_remove,
	.driver		= {
		.name	= "st-spi-fsm",
		.owner	= THIS_MODULE,
		.of_match_table = stfsm_match,
	},
};
module_platform_driver(stfsm_driver);

MODULE_AUTHOR("Angus Clark <angus.clark@st.com>");
MODULE_DESCRIPTION("ST SPI FSM driver");
MODULE_LICENSE("GPL");