1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
|
# drivers/mtd/nand/Kconfig
# $Id: Kconfig,v 1.35 2005/11/07 11:14:30 gleixner Exp $
menuconfig MTD_NAND
tristate "NAND Device Support"
depends on MTD
select MTD_NAND_IDS
help
This enables support for accessing all type of NAND flash
devices. For further information see
<http://www.linux-mtd.infradead.org/doc/nand.html>.
if MTD_NAND
config MTD_NAND_VERIFY_WRITE
bool "Verify NAND page writes"
help
This adds an extra check when data is written to the flash. The
NAND flash device internally checks only bits transitioning
from 1 to 0. There is a rare possibility that even though the
device thinks the write was successful, a bit could have been
flipped accidentally due to device wear or something else.
config MTD_NAND_ECC_SMC
bool "NAND ECC Smart Media byte order"
default n
help
Software ECC according to the Smart Media Specification.
The original Linux implementation had byte 0 and 1 swapped.
config MTD_NAND_MUSEUM_IDS
bool "Enable chip ids for obsolete ancient NAND devices"
depends on MTD_NAND
default n
help
Enable this option only when your board has first generation
NAND chips (page size 256 byte, erase size 4-8KiB). The IDs
of these chips were reused by later, larger chips.
config MTD_NAND_AUTCPU12
tristate "SmartMediaCard on autronix autcpu12 board"
depends on ARCH_AUTCPU12
help
This enables the driver for the autronix autcpu12 board to
access the SmartMediaCard.
config MTD_NAND_EDB7312
tristate "Support for Cirrus Logic EBD7312 evaluation board"
depends on ARCH_EDB7312
help
This enables the driver for the Cirrus Logic EBD7312 evaluation
board to access the onboard NAND Flash.
config MTD_NAND_H1900
tristate "iPAQ H1900 flash"
depends on ARCH_PXA && MTD_PARTITIONS
help
This enables the driver for the iPAQ h1900 flash.
config MTD_NAND_SPIA
tristate "NAND Flash device on SPIA board"
depends on ARCH_P720T
help
If you had to ask, you don't have one. Say 'N'.
config MTD_NAND_AMS_DELTA
tristate "NAND Flash device on Amstrad E3"
depends on MACH_AMS_DELTA
help
Support for NAND flash on Amstrad E3 (Delta).
config MTD_NAND_TOTO
tristate "NAND Flash device on TOTO board"
depends on ARCH_OMAP && BROKEN
help
Support for NAND flash on Texas Instruments Toto platform.
config MTD_NAND_TS7250
tristate "NAND Flash device on TS-7250 board"
depends on MACH_TS72XX
help
Support for NAND flash on Technologic Systems TS-7250 platform.
config MTD_NAND_IDS
tristate
config MTD_NAND_AU1550
tristate "Au1550/1200 NAND support"
depends on SOC_AU1200 || SOC_AU1550
help
This enables the driver for the NAND flash controller on the
AMD/Alchemy 1550 SOC.
config MTD_NAND_RTC_FROM4
tristate "Renesas Flash ROM 4-slot interface board (FROM_BOARD4)"
depends on SH_SOLUTION_ENGINE
select REED_SOLOMON
select REED_SOLOMON_DEC8
select BITREVERSE
help
This enables the driver for the Renesas Technology AG-AND
flash interface board (FROM_BOARD4)
config MTD_NAND_PPCHAMELEONEVB
tristate "NAND Flash device on PPChameleonEVB board"
depends on PPCHAMELEONEVB && BROKEN
help
This enables the NAND flash driver on the PPChameleon EVB Board.
config MTD_NAND_S3C2410
tristate "NAND Flash support for S3C2410/S3C2440 SoC"
depends on ARCH_S3C2410
help
This enables the NAND flash controller on the S3C2410 and S3C2440
SoCs
No board specific support is done by this driver, each board
must advertise a platform_device for the driver to attach.
config MTD_NAND_S3C2410_DEBUG
bool "S3C2410 NAND driver debug"
depends on MTD_NAND_S3C2410
help
Enable debugging of the S3C2410 NAND driver
config MTD_NAND_S3C2410_HWECC
bool "S3C2410 NAND Hardware ECC"
depends on MTD_NAND_S3C2410
help
Enable the use of the S3C2410's internal ECC generator when
using NAND. Early versions of the chip have had problems with
incorrect ECC generation, and if using these, the default of
software ECC is preferable.
config MTD_NAND_NDFC
tristate "NDFC NanD Flash Controller"
depends on 44x && !PPC_MERGE
select MTD_NAND_ECC_SMC
help
NDFC Nand Flash Controllers are integrated in EP44x SoCs
config MTD_NAND_S3C2410_CLKSTOP
bool "S3C2410 NAND IDLE clock stop"
depends on MTD_NAND_S3C2410
default n
help
Stop the clock to the NAND controller when there is no chip
selected to save power. This will mean there is a small delay
when the is NAND chip selected or released, but will save
approximately 5mA of power when there is nothing happening.
config MTD_NAND_DISKONCHIP
tristate "DiskOnChip 2000, Millennium and Millennium Plus (NAND reimplementation) (EXPERIMENTAL)"
depends on EXPERIMENTAL
select REED_SOLOMON
select REED_SOLOMON_DEC16
help
This is a reimplementation of M-Systems DiskOnChip 2000,
Millennium and Millennium Plus as a standard NAND device driver,
as opposed to the earlier self-contained MTD device drivers.
This should enable, among other things, proper JFFS2 operation on
these devices.
config MTD_NAND_DISKONCHIP_PROBE_ADVANCED
bool "Advanced detection options for DiskOnChip"
depends on MTD_NAND_DISKONCHIP
help
This option allows you to specify nonstandard address at which to
probe for a DiskOnChip, or to change the detection options. You
are unlikely to need any of this unless you are using LinuxBIOS.
Say 'N'.
config MTD_NAND_DISKONCHIP_PROBE_ADDRESS
hex "Physical address of DiskOnChip" if MTD_NAND_DISKONCHIP_PROBE_ADVANCED
depends on MTD_NAND_DISKONCHIP
default "0"
---help---
By default, the probe for DiskOnChip devices will look for a
DiskOnChip at every multiple of 0x2000 between 0xC8000 and 0xEE000.
This option allows you to specify a single address at which to probe
for the device, which is useful if you have other devices in that
range which get upset when they are probed.
(Note that on PowerPC, the normal probe will only check at
0xE4000000.)
Normally, you should leave this set to zero, to allow the probe at
the normal addresses.
config MTD_NAND_DISKONCHIP_PROBE_HIGH
bool "Probe high addresses"
depends on MTD_NAND_DISKONCHIP_PROBE_ADVANCED
help
By default, the probe for DiskOnChip devices will look for a
DiskOnChip at every multiple of 0x2000 between 0xC8000 and 0xEE000.
This option changes to make it probe between 0xFFFC8000 and
0xFFFEE000. Unless you are using LinuxBIOS, this is unlikely to be
useful to you. Say 'N'.
config MTD_NAND_DISKONCHIP_BBTWRITE
bool "Allow BBT writes on DiskOnChip Millennium and 2000TSOP"
depends on MTD_NAND_DISKONCHIP
help
On DiskOnChip devices shipped with the INFTL filesystem (Millennium
and 2000 TSOP/Alon), Linux reserves some space at the end of the
device for the Bad Block Table (BBT). If you have existing INFTL
data on your device (created by non-Linux tools such as M-Systems'
DOS drivers), your data might overlap the area Linux wants to use for
the BBT. If this is a concern for you, leave this option disabled and
Linux will not write BBT data into this area.
The downside of leaving this option disabled is that if bad blocks
are detected by Linux, they will not be recorded in the BBT, which
could cause future problems.
Once you enable this option, new filesystems (INFTL or others, created
in Linux or other operating systems) will not use the reserved area.
The only reason not to enable this option is to prevent damage to
preexisting filesystems.
Even if you leave this disabled, you can enable BBT writes at module
load time (assuming you build diskonchip as a module) with the module
parameter "inftl_bbt_write=1".
config MTD_NAND_SHARPSL
tristate "Support for NAND Flash on Sharp SL Series (C7xx + others)"
depends on ARCH_PXA
config MTD_NAND_BASLER_EXCITE
tristate "Support for NAND Flash on Basler eXcite"
depends on BASLER_EXCITE
help
This enables the driver for the NAND flash device found on the
Basler eXcite Smart Camera. If built as a module, the driver
will be named "excite_nandflash.ko".
config MTD_NAND_CAFE
tristate "NAND support for OLPC CAFÉ chip"
depends on PCI
select REED_SOLOMON
select REED_SOLOMON_DEC16
help
Use NAND flash attached to the CAFÉ chip designed for the $100
laptop.
config MTD_NAND_CS553X
tristate "NAND support for CS5535/CS5536 (AMD Geode companion chip)"
depends on X86_32 && (X86_PC || X86_GENERICARCH)
help
The CS553x companion chips for the AMD Geode processor
include NAND flash controllers with built-in hardware ECC
capabilities; enabling this option will allow you to use
these. The driver will check the MSRs to verify that the
controller is enabled for NAND, and currently requires that
the controller be in MMIO mode.
If you say "m", the module will be called "cs553x_nand.ko".
config MTD_NAND_AT91
bool "Support for NAND Flash / SmartMedia on AT91"
depends on ARCH_AT91
help
Enables support for NAND Flash / Smart Media Card interface
on Atmel AT91 processors.
config MTD_NAND_CM_X270
tristate "Support for NAND Flash on CM-X270 modules"
depends on MTD_NAND && MACH_ARMCORE
config MTD_NAND_NANDSIM
tristate "Support for NAND Flash Simulator"
depends on MTD_PARTITIONS
help
The simulator may simulate various NAND flash chips for the
MTD nand layer.
config MTD_NAND_PLATFORM
tristate "Support for generic platform NAND driver"
depends on MTD_NAND
help
This implements a generic NAND driver for on-SOC platform
devices. You will need to provide platform-specific functions
via platform_data.
endif # MTD_NAND
|