summaryrefslogtreecommitdiffstats
path: root/drivers/mtd/nand/omap2.c
blob: 513e0a76a4a73866d52bba8151e43556a3b30a54 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
/*
 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
 * Copyright © 2004 Micron Technology Inc.
 * Copyright © 2004 David Brownell
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#define CONFIG_MTD_NAND_OMAP_HWECC

#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/jiffies.h>
#include <linux/sched.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
#include <linux/io.h>
#include <linux/slab.h>

#include <plat/dma.h>
#include <plat/gpmc.h>
#include <plat/nand.h>

#define	DRIVER_NAME	"omap2-nand"

#define NAND_Ecc_P1e		(1 << 0)
#define NAND_Ecc_P2e		(1 << 1)
#define NAND_Ecc_P4e		(1 << 2)
#define NAND_Ecc_P8e		(1 << 3)
#define NAND_Ecc_P16e		(1 << 4)
#define NAND_Ecc_P32e		(1 << 5)
#define NAND_Ecc_P64e		(1 << 6)
#define NAND_Ecc_P128e		(1 << 7)
#define NAND_Ecc_P256e		(1 << 8)
#define NAND_Ecc_P512e		(1 << 9)
#define NAND_Ecc_P1024e		(1 << 10)
#define NAND_Ecc_P2048e		(1 << 11)

#define NAND_Ecc_P1o		(1 << 16)
#define NAND_Ecc_P2o		(1 << 17)
#define NAND_Ecc_P4o		(1 << 18)
#define NAND_Ecc_P8o		(1 << 19)
#define NAND_Ecc_P16o		(1 << 20)
#define NAND_Ecc_P32o		(1 << 21)
#define NAND_Ecc_P64o		(1 << 22)
#define NAND_Ecc_P128o		(1 << 23)
#define NAND_Ecc_P256o		(1 << 24)
#define NAND_Ecc_P512o		(1 << 25)
#define NAND_Ecc_P1024o		(1 << 26)
#define NAND_Ecc_P2048o		(1 << 27)

#define TF(value)	(value ? 1 : 0)

#define P2048e(a)	(TF(a & NAND_Ecc_P2048e)	<< 0)
#define P2048o(a)	(TF(a & NAND_Ecc_P2048o)	<< 1)
#define P1e(a)		(TF(a & NAND_Ecc_P1e)		<< 2)
#define P1o(a)		(TF(a & NAND_Ecc_P1o)		<< 3)
#define P2e(a)		(TF(a & NAND_Ecc_P2e)		<< 4)
#define P2o(a)		(TF(a & NAND_Ecc_P2o)		<< 5)
#define P4e(a)		(TF(a & NAND_Ecc_P4e)		<< 6)
#define P4o(a)		(TF(a & NAND_Ecc_P4o)		<< 7)

#define P8e(a)		(TF(a & NAND_Ecc_P8e)		<< 0)
#define P8o(a)		(TF(a & NAND_Ecc_P8o)		<< 1)
#define P16e(a)		(TF(a & NAND_Ecc_P16e)		<< 2)
#define P16o(a)		(TF(a & NAND_Ecc_P16o)		<< 3)
#define P32e(a)		(TF(a & NAND_Ecc_P32e)		<< 4)
#define P32o(a)		(TF(a & NAND_Ecc_P32o)		<< 5)
#define P64e(a)		(TF(a & NAND_Ecc_P64e)		<< 6)
#define P64o(a)		(TF(a & NAND_Ecc_P64o)		<< 7)

#define P128e(a)	(TF(a & NAND_Ecc_P128e)		<< 0)
#define P128o(a)	(TF(a & NAND_Ecc_P128o)		<< 1)
#define P256e(a)	(TF(a & NAND_Ecc_P256e)		<< 2)
#define P256o(a)	(TF(a & NAND_Ecc_P256o)		<< 3)
#define P512e(a)	(TF(a & NAND_Ecc_P512e)		<< 4)
#define P512o(a)	(TF(a & NAND_Ecc_P512o)		<< 5)
#define P1024e(a)	(TF(a & NAND_Ecc_P1024e)	<< 6)
#define P1024o(a)	(TF(a & NAND_Ecc_P1024o)	<< 7)

#define P8e_s(a)	(TF(a & NAND_Ecc_P8e)		<< 0)
#define P8o_s(a)	(TF(a & NAND_Ecc_P8o)		<< 1)
#define P16e_s(a)	(TF(a & NAND_Ecc_P16e)		<< 2)
#define P16o_s(a)	(TF(a & NAND_Ecc_P16o)		<< 3)
#define P1e_s(a)	(TF(a & NAND_Ecc_P1e)		<< 4)
#define P1o_s(a)	(TF(a & NAND_Ecc_P1o)		<< 5)
#define P2e_s(a)	(TF(a & NAND_Ecc_P2e)		<< 6)
#define P2o_s(a)	(TF(a & NAND_Ecc_P2o)		<< 7)

#define P4e_s(a)	(TF(a & NAND_Ecc_P4e)		<< 0)
#define P4o_s(a)	(TF(a & NAND_Ecc_P4o)		<< 1)

#ifdef CONFIG_MTD_PARTITIONS
static const char *part_probes[] = { "cmdlinepart", NULL };
#endif

#ifdef CONFIG_MTD_NAND_OMAP_PREFETCH
static int use_prefetch = 1;

/* "modprobe ... use_prefetch=0" etc */
module_param(use_prefetch, bool, 0);
MODULE_PARM_DESC(use_prefetch, "enable/disable use of PREFETCH");

#ifdef CONFIG_MTD_NAND_OMAP_PREFETCH_DMA
static int use_dma = 1;

/* "modprobe ... use_dma=0" etc */
module_param(use_dma, bool, 0);
MODULE_PARM_DESC(use_dma, "enable/disable use of DMA");
#else
const int use_dma;
#endif
#else
const int use_prefetch;
const int use_dma;
#endif

struct omap_nand_info {
	struct nand_hw_control		controller;
	struct omap_nand_platform_data	*pdata;
	struct mtd_info			mtd;
	struct mtd_partition		*parts;
	struct nand_chip		nand;
	struct platform_device		*pdev;

	int				gpmc_cs;
	unsigned long			phys_base;
	struct completion		comp;
	int				dma_ch;
};

/**
 * omap_hwcontrol - hardware specific access to control-lines
 * @mtd: MTD device structure
 * @cmd: command to device
 * @ctrl:
 * NAND_NCE: bit 0 -> don't care
 * NAND_CLE: bit 1 -> Command Latch
 * NAND_ALE: bit 2 -> Address Latch
 *
 * NOTE: boards may use different bits for these!!
 */
static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
{
	struct omap_nand_info *info = container_of(mtd,
					struct omap_nand_info, mtd);

	if (cmd != NAND_CMD_NONE) {
		if (ctrl & NAND_CLE)
			gpmc_nand_write(info->gpmc_cs, GPMC_NAND_COMMAND, cmd);

		else if (ctrl & NAND_ALE)
			gpmc_nand_write(info->gpmc_cs, GPMC_NAND_ADDRESS, cmd);

		else /* NAND_NCE */
			gpmc_nand_write(info->gpmc_cs, GPMC_NAND_DATA, cmd);
	}
}

/**
 * omap_read_buf8 - read data from NAND controller into buffer
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
{
	struct nand_chip *nand = mtd->priv;

	ioread8_rep(nand->IO_ADDR_R, buf, len);
}

/**
 * omap_write_buf8 - write buffer to NAND controller
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
{
	struct omap_nand_info *info = container_of(mtd,
						struct omap_nand_info, mtd);
	u_char *p = (u_char *)buf;
	u32	status = 0;

	while (len--) {
		iowrite8(*p++, info->nand.IO_ADDR_W);
		/* wait until buffer is available for write */
		do {
			status = gpmc_read_status(GPMC_STATUS_BUFFER);
		} while (!status);
	}
}

/**
 * omap_read_buf16 - read data from NAND controller into buffer
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
{
	struct nand_chip *nand = mtd->priv;

	ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
}

/**
 * omap_write_buf16 - write buffer to NAND controller
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
{
	struct omap_nand_info *info = container_of(mtd,
						struct omap_nand_info, mtd);
	u16 *p = (u16 *) buf;
	u32	status = 0;
	/* FIXME try bursts of writesw() or DMA ... */
	len >>= 1;

	while (len--) {
		iowrite16(*p++, info->nand.IO_ADDR_W);
		/* wait until buffer is available for write */
		do {
			status = gpmc_read_status(GPMC_STATUS_BUFFER);
		} while (!status);
	}
}

/**
 * omap_read_buf_pref - read data from NAND controller into buffer
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
{
	struct omap_nand_info *info = container_of(mtd,
						struct omap_nand_info, mtd);
	uint32_t r_count = 0;
	int ret = 0;
	u32 *p = (u32 *)buf;

	/* take care of subpage reads */
	if (len % 4) {
		if (info->nand.options & NAND_BUSWIDTH_16)
			omap_read_buf16(mtd, buf, len % 4);
		else
			omap_read_buf8(mtd, buf, len % 4);
		p = (u32 *) (buf + len % 4);
		len -= len % 4;
	}

	/* configure and start prefetch transfer */
	ret = gpmc_prefetch_enable(info->gpmc_cs, 0x0, len, 0x0);
	if (ret) {
		/* PFPW engine is busy, use cpu copy method */
		if (info->nand.options & NAND_BUSWIDTH_16)
			omap_read_buf16(mtd, buf, len);
		else
			omap_read_buf8(mtd, buf, len);
	} else {
		p = (u32 *) buf;
		do {
			r_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
			r_count = r_count >> 2;
			ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
			p += r_count;
			len -= r_count << 2;
		} while (len);
		/* disable and stop the PFPW engine */
		gpmc_prefetch_reset(info->gpmc_cs);
	}
}

/**
 * omap_write_buf_pref - write buffer to NAND controller
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf_pref(struct mtd_info *mtd,
					const u_char *buf, int len)
{
	struct omap_nand_info *info = container_of(mtd,
						struct omap_nand_info, mtd);
	uint32_t pref_count = 0, w_count = 0;
	int i = 0, ret = 0;
	u16 *p;

	/* take care of subpage writes */
	if (len % 2 != 0) {
		writeb(*buf, info->nand.IO_ADDR_W);
		p = (u16 *)(buf + 1);
		len--;
	}

	/*  configure and start prefetch transfer */
	ret = gpmc_prefetch_enable(info->gpmc_cs, 0x0, len, 0x1);
	if (ret) {
		/* PFPW engine is busy, use cpu copy method */
		if (info->nand.options & NAND_BUSWIDTH_16)
			omap_write_buf16(mtd, buf, len);
		else
			omap_write_buf8(mtd, buf, len);
	} else {
		p = (u16 *) buf;
		while (len) {
			w_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
			w_count = w_count >> 1;
			for (i = 0; (i < w_count) && len; i++, len -= 2)
				iowrite16(*p++, info->nand.IO_ADDR_W);
		}
		/* wait for data to flushed-out before reset the prefetch */
		do {
			pref_count = gpmc_read_status(GPMC_PREFETCH_COUNT);
		} while (pref_count);
		/* disable and stop the PFPW engine */
		gpmc_prefetch_reset(info->gpmc_cs);
	}
}

#ifdef CONFIG_MTD_NAND_OMAP_PREFETCH_DMA
/*
 * omap_nand_dma_cb: callback on the completion of dma transfer
 * @lch: logical channel
 * @ch_satuts: channel status
 * @data: pointer to completion data structure
 */
static void omap_nand_dma_cb(int lch, u16 ch_status, void *data)
{
	complete((struct completion *) data);
}

/*
 * omap_nand_dma_transfer: configer and start dma transfer
 * @mtd: MTD device structure
 * @addr: virtual address in RAM of source/destination
 * @len: number of data bytes to be transferred
 * @is_write: flag for read/write operation
 */
static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
					unsigned int len, int is_write)
{
	struct omap_nand_info *info = container_of(mtd,
					struct omap_nand_info, mtd);
	uint32_t prefetch_status = 0;
	enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
							DMA_FROM_DEVICE;
	dma_addr_t dma_addr;
	int ret;

	/* The fifo depth is 64 bytes. We have a sync at each frame and frame
	 * length is 64 bytes.
	 */
	int buf_len = len >> 6;

	if (addr >= high_memory) {
		struct page *p1;

		if (((size_t)addr & PAGE_MASK) !=
			((size_t)(addr + len - 1) & PAGE_MASK))
			goto out_copy;
		p1 = vmalloc_to_page(addr);
		if (!p1)
			goto out_copy;
		addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
	}

	dma_addr = dma_map_single(&info->pdev->dev, addr, len, dir);
	if (dma_mapping_error(&info->pdev->dev, dma_addr)) {
		dev_err(&info->pdev->dev,
			"Couldn't DMA map a %d byte buffer\n", len);
		goto out_copy;
	}

	if (is_write) {
	    omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
						info->phys_base, 0, 0);
	    omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
							dma_addr, 0, 0);
	    omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
					0x10, buf_len, OMAP_DMA_SYNC_FRAME,
					OMAP24XX_DMA_GPMC, OMAP_DMA_DST_SYNC);
	} else {
	    omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
						info->phys_base, 0, 0);
	    omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
							dma_addr, 0, 0);
	    omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
					0x10, buf_len, OMAP_DMA_SYNC_FRAME,
					OMAP24XX_DMA_GPMC, OMAP_DMA_SRC_SYNC);
	}
	/*  configure and start prefetch transfer */
	ret = gpmc_prefetch_enable(info->gpmc_cs, 0x1, len, is_write);
	if (ret)
		/* PFPW engine is busy, use cpu copy methode */
		goto out_copy;

	init_completion(&info->comp);

	omap_start_dma(info->dma_ch);

	/* setup and start DMA using dma_addr */
	wait_for_completion(&info->comp);

	do {
		prefetch_status = gpmc_read_status(GPMC_PREFETCH_COUNT);
	} while (prefetch_status);
	/* disable and stop the PFPW engine */
	gpmc_prefetch_reset(info->gpmc_cs);

	dma_unmap_single(&info->pdev->dev, dma_addr, len, dir);
	return 0;

out_copy:
	if (info->nand.options & NAND_BUSWIDTH_16)
		is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
			: omap_write_buf16(mtd, (u_char *) addr, len);
	else
		is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
			: omap_write_buf8(mtd, (u_char *) addr, len);
	return 0;
}
#else
static void omap_nand_dma_cb(int lch, u16 ch_status, void *data) {}
static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
					unsigned int len, int is_write)
{
	return 0;
}
#endif

/**
 * omap_read_buf_dma_pref - read data from NAND controller into buffer
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
{
	if (len <= mtd->oobsize)
		omap_read_buf_pref(mtd, buf, len);
	else
		/* start transfer in DMA mode */
		omap_nand_dma_transfer(mtd, buf, len, 0x0);
}

/**
 * omap_write_buf_dma_pref - write buffer to NAND controller
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf_dma_pref(struct mtd_info *mtd,
					const u_char *buf, int len)
{
	if (len <= mtd->oobsize)
		omap_write_buf_pref(mtd, buf, len);
	else
		/* start transfer in DMA mode */
		omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
}

/**
 * omap_verify_buf - Verify chip data against buffer
 * @mtd: MTD device structure
 * @buf: buffer containing the data to compare
 * @len: number of bytes to compare
 */
static int omap_verify_buf(struct mtd_info *mtd, const u_char * buf, int len)
{
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);
	u16 *p = (u16 *) buf;

	len >>= 1;
	while (len--) {
		if (*p++ != cpu_to_le16(readw(info->nand.IO_ADDR_R)))
			return -EFAULT;
	}

	return 0;
}

#ifdef CONFIG_MTD_NAND_OMAP_HWECC

/**
 * gen_true_ecc - This function will generate true ECC value
 * @ecc_buf: buffer to store ecc code
 *
 * This generated true ECC value can be used when correcting
 * data read from NAND flash memory core
 */
static void gen_true_ecc(u8 *ecc_buf)
{
	u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
		((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);

	ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
			P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
	ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
			P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
	ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
			P1e(tmp) | P2048o(tmp) | P2048e(tmp));
}

/**
 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
 * @ecc_data1:  ecc code from nand spare area
 * @ecc_data2:  ecc code from hardware register obtained from hardware ecc
 * @page_data:  page data
 *
 * This function compares two ECC's and indicates if there is an error.
 * If the error can be corrected it will be corrected to the buffer.
 */
static int omap_compare_ecc(u8 *ecc_data1,	/* read from NAND memory */
			    u8 *ecc_data2,	/* read from register */
			    u8 *page_data)
{
	uint	i;
	u8	tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
	u8	comp0_bit[8], comp1_bit[8], comp2_bit[8];
	u8	ecc_bit[24];
	u8	ecc_sum = 0;
	u8	find_bit = 0;
	uint	find_byte = 0;
	int	isEccFF;

	isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);

	gen_true_ecc(ecc_data1);
	gen_true_ecc(ecc_data2);

	for (i = 0; i <= 2; i++) {
		*(ecc_data1 + i) = ~(*(ecc_data1 + i));
		*(ecc_data2 + i) = ~(*(ecc_data2 + i));
	}

	for (i = 0; i < 8; i++) {
		tmp0_bit[i]     = *ecc_data1 % 2;
		*ecc_data1	= *ecc_data1 / 2;
	}

	for (i = 0; i < 8; i++) {
		tmp1_bit[i]	 = *(ecc_data1 + 1) % 2;
		*(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
	}

	for (i = 0; i < 8; i++) {
		tmp2_bit[i]	 = *(ecc_data1 + 2) % 2;
		*(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
	}

	for (i = 0; i < 8; i++) {
		comp0_bit[i]     = *ecc_data2 % 2;
		*ecc_data2       = *ecc_data2 / 2;
	}

	for (i = 0; i < 8; i++) {
		comp1_bit[i]     = *(ecc_data2 + 1) % 2;
		*(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
	}

	for (i = 0; i < 8; i++) {
		comp2_bit[i]     = *(ecc_data2 + 2) % 2;
		*(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
	}

	for (i = 0; i < 6; i++)
		ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];

	for (i = 0; i < 8; i++)
		ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];

	for (i = 0; i < 8; i++)
		ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];

	ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
	ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];

	for (i = 0; i < 24; i++)
		ecc_sum += ecc_bit[i];

	switch (ecc_sum) {
	case 0:
		/* Not reached because this function is not called if
		 *  ECC values are equal
		 */
		return 0;

	case 1:
		/* Uncorrectable error */
		DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n");
		return -1;

	case 11:
		/* UN-Correctable error */
		DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR B\n");
		return -1;

	case 12:
		/* Correctable error */
		find_byte = (ecc_bit[23] << 8) +
			    (ecc_bit[21] << 7) +
			    (ecc_bit[19] << 6) +
			    (ecc_bit[17] << 5) +
			    (ecc_bit[15] << 4) +
			    (ecc_bit[13] << 3) +
			    (ecc_bit[11] << 2) +
			    (ecc_bit[9]  << 1) +
			    ecc_bit[7];

		find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];

		DEBUG(MTD_DEBUG_LEVEL0, "Correcting single bit ECC error at "
				"offset: %d, bit: %d\n", find_byte, find_bit);

		page_data[find_byte] ^= (1 << find_bit);

		return 0;
	default:
		if (isEccFF) {
			if (ecc_data2[0] == 0 &&
			    ecc_data2[1] == 0 &&
			    ecc_data2[2] == 0)
				return 0;
		}
		DEBUG(MTD_DEBUG_LEVEL0, "UNCORRECTED_ERROR default\n");
		return -1;
	}
}

/**
 * omap_correct_data - Compares the ECC read with HW generated ECC
 * @mtd: MTD device structure
 * @dat: page data
 * @read_ecc: ecc read from nand flash
 * @calc_ecc: ecc read from HW ECC registers
 *
 * Compares the ecc read from nand spare area with ECC registers values
 * and if ECC's mismached, it will call 'omap_compare_ecc' for error detection
 * and correction.
 */
static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
				u_char *read_ecc, u_char *calc_ecc)
{
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);
	int blockCnt = 0, i = 0, ret = 0;

	/* Ex NAND_ECC_HW12_2048 */
	if ((info->nand.ecc.mode == NAND_ECC_HW) &&
			(info->nand.ecc.size  == 2048))
		blockCnt = 4;
	else
		blockCnt = 1;

	for (i = 0; i < blockCnt; i++) {
		if (memcmp(read_ecc, calc_ecc, 3) != 0) {
			ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
			if (ret < 0)
				return ret;
		}
		read_ecc += 3;
		calc_ecc += 3;
		dat      += 512;
	}
	return 0;
}

/**
 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
 * @mtd: MTD device structure
 * @dat: The pointer to data on which ecc is computed
 * @ecc_code: The ecc_code buffer
 *
 * Using noninverted ECC can be considered ugly since writing a blank
 * page ie. padding will clear the ECC bytes. This is no problem as long
 * nobody is trying to write data on the seemingly unused page. Reading
 * an erased page will produce an ECC mismatch between generated and read
 * ECC bytes that has to be dealt with separately.
 */
static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
				u_char *ecc_code)
{
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);
	return gpmc_calculate_ecc(info->gpmc_cs, dat, ecc_code);
}

/**
 * omap_enable_hwecc - This function enables the hardware ecc functionality
 * @mtd: MTD device structure
 * @mode: Read/Write mode
 */
static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
{
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);
	struct nand_chip *chip = mtd->priv;
	unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;

	gpmc_enable_hwecc(info->gpmc_cs, mode, dev_width, info->nand.ecc.size);
}

#endif

/**
 * omap_wait - wait until the command is done
 * @mtd: MTD device structure
 * @chip: NAND Chip structure
 *
 * Wait function is called during Program and erase operations and
 * the way it is called from MTD layer, we should wait till the NAND
 * chip is ready after the programming/erase operation has completed.
 *
 * Erase can take up to 400ms and program up to 20ms according to
 * general NAND and SmartMedia specs
 */
static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
{
	struct nand_chip *this = mtd->priv;
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);
	unsigned long timeo = jiffies;
	int status = NAND_STATUS_FAIL, state = this->state;

	if (state == FL_ERASING)
		timeo += (HZ * 400) / 1000;
	else
		timeo += (HZ * 20) / 1000;

	gpmc_nand_write(info->gpmc_cs,
			GPMC_NAND_COMMAND, (NAND_CMD_STATUS & 0xFF));
	while (time_before(jiffies, timeo)) {
		status = gpmc_nand_read(info->gpmc_cs, GPMC_NAND_DATA);
		if (status & NAND_STATUS_READY)
			break;
		cond_resched();
	}
	return status;
}

/**
 * omap_dev_ready - calls the platform specific dev_ready function
 * @mtd: MTD device structure
 */
static int omap_dev_ready(struct mtd_info *mtd)
{
	unsigned int val = 0;
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);

	val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
	if ((val & 0x100) == 0x100) {
		/* Clear IRQ Interrupt */
		val |= 0x100;
		val &= ~(0x0);
		gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, val);
	} else {
		unsigned int cnt = 0;
		while (cnt++ < 0x1FF) {
			if  ((val & 0x100) == 0x100)
				return 0;
			val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
		}
	}

	return 1;
}

static int __devinit omap_nand_probe(struct platform_device *pdev)
{
	struct omap_nand_info		*info;
	struct omap_nand_platform_data	*pdata;
	int				err;

	pdata = pdev->dev.platform_data;
	if (pdata == NULL) {
		dev_err(&pdev->dev, "platform data missing\n");
		return -ENODEV;
	}

	info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL);
	if (!info)
		return -ENOMEM;

	platform_set_drvdata(pdev, info);

	spin_lock_init(&info->controller.lock);
	init_waitqueue_head(&info->controller.wq);

	info->pdev = pdev;

	info->gpmc_cs		= pdata->cs;
	info->phys_base		= pdata->phys_base;

	info->mtd.priv		= &info->nand;
	info->mtd.name		= dev_name(&pdev->dev);
	info->mtd.owner		= THIS_MODULE;

	info->nand.options	|= pdata->devsize ? NAND_BUSWIDTH_16 : 0;
	info->nand.options	|= NAND_SKIP_BBTSCAN;

	/* NAND write protect off */
	gpmc_cs_configure(info->gpmc_cs, GPMC_CONFIG_WP, 0);

	if (!request_mem_region(info->phys_base, NAND_IO_SIZE,
				pdev->dev.driver->name)) {
		err = -EBUSY;
		goto out_free_info;
	}

	info->nand.IO_ADDR_R = ioremap(info->phys_base, NAND_IO_SIZE);
	if (!info->nand.IO_ADDR_R) {
		err = -ENOMEM;
		goto out_release_mem_region;
	}

	info->nand.controller = &info->controller;

	info->nand.IO_ADDR_W = info->nand.IO_ADDR_R;
	info->nand.cmd_ctrl  = omap_hwcontrol;

	/*
	 * If RDY/BSY line is connected to OMAP then use the omap ready
	 * funcrtion and the generic nand_wait function which reads the status
	 * register after monitoring the RDY/BSY line.Otherwise use a standard
	 * chip delay which is slightly more than tR (AC Timing) of the NAND
	 * device and read status register until you get a failure or success
	 */
	if (pdata->dev_ready) {
		info->nand.dev_ready = omap_dev_ready;
		info->nand.chip_delay = 0;
	} else {
		info->nand.waitfunc = omap_wait;
		info->nand.chip_delay = 50;
	}

	if (use_prefetch) {

		info->nand.read_buf   = omap_read_buf_pref;
		info->nand.write_buf  = omap_write_buf_pref;
		if (use_dma) {
			err = omap_request_dma(OMAP24XX_DMA_GPMC, "NAND",
				omap_nand_dma_cb, &info->comp, &info->dma_ch);
			if (err < 0) {
				info->dma_ch = -1;
				printk(KERN_WARNING "DMA request failed."
					" Non-dma data transfer mode\n");
			} else {
				omap_set_dma_dest_burst_mode(info->dma_ch,
						OMAP_DMA_DATA_BURST_16);
				omap_set_dma_src_burst_mode(info->dma_ch,
						OMAP_DMA_DATA_BURST_16);

				info->nand.read_buf   = omap_read_buf_dma_pref;
				info->nand.write_buf  = omap_write_buf_dma_pref;
			}
		}
	} else {
		if (info->nand.options & NAND_BUSWIDTH_16) {
			info->nand.read_buf   = omap_read_buf16;
			info->nand.write_buf  = omap_write_buf16;
		} else {
			info->nand.read_buf   = omap_read_buf8;
			info->nand.write_buf  = omap_write_buf8;
		}
	}
	info->nand.verify_buf = omap_verify_buf;

#ifdef CONFIG_MTD_NAND_OMAP_HWECC
	info->nand.ecc.bytes		= 3;
	info->nand.ecc.size		= 512;
	info->nand.ecc.calculate	= omap_calculate_ecc;
	info->nand.ecc.hwctl		= omap_enable_hwecc;
	info->nand.ecc.correct		= omap_correct_data;
	info->nand.ecc.mode		= NAND_ECC_HW;

#else
	info->nand.ecc.mode = NAND_ECC_SOFT;
#endif

	/* DIP switches on some boards change between 8 and 16 bit
	 * bus widths for flash.  Try the other width if the first try fails.
	 */
	if (nand_scan(&info->mtd, 1)) {
		info->nand.options ^= NAND_BUSWIDTH_16;
		if (nand_scan(&info->mtd, 1)) {
			err = -ENXIO;
			goto out_release_mem_region;
		}
	}

#ifdef CONFIG_MTD_PARTITIONS
	err = parse_mtd_partitions(&info->mtd, part_probes, &info->parts, 0);
	if (err > 0)
		add_mtd_partitions(&info->mtd, info->parts, err);
	else if (pdata->parts)
		add_mtd_partitions(&info->mtd, pdata->parts, pdata->nr_parts);
	else
#endif
		add_mtd_device(&info->mtd);

	platform_set_drvdata(pdev, &info->mtd);

	return 0;

out_release_mem_region:
	release_mem_region(info->phys_base, NAND_IO_SIZE);
out_free_info:
	kfree(info);

	return err;
}

static int omap_nand_remove(struct platform_device *pdev)
{
	struct mtd_info *mtd = platform_get_drvdata(pdev);
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);

	platform_set_drvdata(pdev, NULL);
	if (use_dma)
		omap_free_dma(info->dma_ch);

	/* Release NAND device, its internal structures and partitions */
	nand_release(&info->mtd);
	iounmap(info->nand.IO_ADDR_R);
	kfree(&info->mtd);
	return 0;
}

static struct platform_driver omap_nand_driver = {
	.probe		= omap_nand_probe,
	.remove		= omap_nand_remove,
	.driver		= {
		.name	= DRIVER_NAME,
		.owner	= THIS_MODULE,
	},
};

static int __init omap_nand_init(void)
{
	printk(KERN_INFO "%s driver initializing\n", DRIVER_NAME);

	/* This check is required if driver is being
	 * loaded run time as a module
	 */
	if ((1 == use_dma) && (0 == use_prefetch)) {
		printk(KERN_INFO"Wrong parameters: 'use_dma' can not be 1 "
				"without use_prefetch'. Prefetch will not be"
				" used in either mode (mpu or dma)\n");
	}
	return platform_driver_register(&omap_nand_driver);
}

static void __exit omap_nand_exit(void)
{
	platform_driver_unregister(&omap_nand_driver);
}

module_init(omap_nand_init);
module_exit(omap_nand_exit);

MODULE_ALIAS(DRIVER_NAME);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");