1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
|
/* bnx2x_init.h: Broadcom Everest network driver.
*
* Copyright (c) 2007-2008 Broadcom Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation.
*
* Maintained by: Eilon Greenstein <eilong@broadcom.com>
* Written by: Eliezer Tamir
*/
#ifndef BNX2X_INIT_H
#define BNX2X_INIT_H
#define COMMON 0x1
#define PORT0 0x2
#define PORT1 0x4
#define INIT_EMULATION 0x1
#define INIT_FPGA 0x2
#define INIT_ASIC 0x4
#define INIT_HARDWARE 0x7
#define STORM_INTMEM_SIZE_E1 (0x5800 / 4)
#define STORM_INTMEM_SIZE_E1H (0x10000 / 4)
#define TSTORM_INTMEM_ADDR 0x1a0000
#define CSTORM_INTMEM_ADDR 0x220000
#define XSTORM_INTMEM_ADDR 0x2a0000
#define USTORM_INTMEM_ADDR 0x320000
/* Init operation types and structures */
/* Common for both E1 and E1H */
#define OP_RD 0x1 /* read single register */
#define OP_WR 0x2 /* write single register */
#define OP_IW 0x3 /* write single register using mailbox */
#define OP_SW 0x4 /* copy a string to the device */
#define OP_SI 0x5 /* copy a string using mailbox */
#define OP_ZR 0x6 /* clear memory */
#define OP_ZP 0x7 /* unzip then copy with DMAE */
#define OP_WR_64 0x8 /* write 64 bit pattern */
#define OP_WB 0x9 /* copy a string using DMAE */
/* Operation specific for E1 */
#define OP_RD_E1 0xa /* read single register */
#define OP_WR_E1 0xb /* write single register */
#define OP_IW_E1 0xc /* write single register using mailbox */
#define OP_SW_E1 0xd /* copy a string to the device */
#define OP_SI_E1 0xe /* copy a string using mailbox */
#define OP_ZR_E1 0xf /* clear memory */
#define OP_ZP_E1 0x10 /* unzip then copy with DMAE */
#define OP_WR_64_E1 0x11 /* write 64 bit pattern on E1 */
#define OP_WB_E1 0x12 /* copy a string using DMAE */
/* Operation specific for E1H */
#define OP_RD_E1H 0x13 /* read single register */
#define OP_WR_E1H 0x14 /* write single register */
#define OP_IW_E1H 0x15 /* write single register using mailbox */
#define OP_SW_E1H 0x16 /* copy a string to the device */
#define OP_SI_E1H 0x17 /* copy a string using mailbox */
#define OP_ZR_E1H 0x18 /* clear memory */
#define OP_ZP_E1H 0x19 /* unzip then copy with DMAE */
#define OP_WR_64_E1H 0x1a /* write 64 bit pattern on E1H */
#define OP_WB_E1H 0x1b /* copy a string using DMAE */
/* FPGA and EMUL specific operations */
#define OP_WR_EMUL_E1H 0x1c /* write single register on E1H Emul */
#define OP_WR_EMUL 0x1d /* write single register on Emulation */
#define OP_WR_FPGA 0x1e /* write single register on FPGA */
#define OP_WR_ASIC 0x1f /* write single register on ASIC */
struct raw_op {
u32 op:8;
u32 offset:24;
u32 raw_data;
};
struct op_read {
u32 op:8;
u32 offset:24;
u32 pad;
};
struct op_write {
u32 op:8;
u32 offset:24;
u32 val;
};
struct op_string_write {
u32 op:8;
u32 offset:24;
#ifdef __LITTLE_ENDIAN
u16 data_off;
u16 data_len;
#else /* __BIG_ENDIAN */
u16 data_len;
u16 data_off;
#endif
};
struct op_zero {
u32 op:8;
u32 offset:24;
u32 len;
};
union init_op {
struct op_read read;
struct op_write write;
struct op_string_write str_wr;
struct op_zero zero;
struct raw_op raw;
};
#include "bnx2x_init_values.h"
static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val);
static int bnx2x_gunzip(struct bnx2x *bp, u8 *zbuf, int len);
static void bnx2x_init_str_wr(struct bnx2x *bp, u32 addr, const u32 *data,
u32 len)
{
int i;
for (i = 0; i < len; i++) {
REG_WR(bp, addr + i*4, data[i]);
if (!(i % 10000)) {
touch_softlockup_watchdog();
cpu_relax();
}
}
}
static void bnx2x_init_ind_wr(struct bnx2x *bp, u32 addr, const u32 *data,
u16 len)
{
int i;
for (i = 0; i < len; i++) {
REG_WR_IND(bp, addr + i*4, data[i]);
if (!(i % 10000)) {
touch_softlockup_watchdog();
cpu_relax();
}
}
}
static void bnx2x_write_big_buf(struct bnx2x *bp, u32 addr, u32 len)
{
#ifdef USE_DMAE
int offset = 0;
if (bp->dmae_ready) {
while (len > DMAE_LEN32_WR_MAX) {
bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
addr + offset, DMAE_LEN32_WR_MAX);
offset += DMAE_LEN32_WR_MAX * 4;
len -= DMAE_LEN32_WR_MAX;
}
bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
addr + offset, len);
} else
bnx2x_init_str_wr(bp, addr, bp->gunzip_buf, len);
#else
bnx2x_init_str_wr(bp, addr, bp->gunzip_buf, len);
#endif
}
static void bnx2x_init_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
{
if ((len * 4) > FW_BUF_SIZE) {
BNX2X_ERR("LARGE DMAE OPERATION ! addr 0x%x len 0x%x\n",
addr, len*4);
return;
}
memset(bp->gunzip_buf, fill, len * 4);
bnx2x_write_big_buf(bp, addr, len);
}
static void bnx2x_init_wr_64(struct bnx2x *bp, u32 addr, const u32 *data,
u32 len64)
{
u32 buf_len32 = FW_BUF_SIZE/4;
u32 len = len64*2;
u64 data64 = 0;
int i;
/* 64 bit value is in a blob: first low DWORD, then high DWORD */
data64 = HILO_U64((*(data + 1)), (*data));
len64 = min((u32)(FW_BUF_SIZE/8), len64);
for (i = 0; i < len64; i++) {
u64 *pdata = ((u64 *)(bp->gunzip_buf)) + i;
*pdata = data64;
}
for (i = 0; i < len; i += buf_len32) {
u32 cur_len = min(buf_len32, len - i);
bnx2x_write_big_buf(bp, addr + i * 4, cur_len);
}
}
/*********************************************************
There are different blobs for each PRAM section.
In addition, each blob write operation is divided into a few operations
in order to decrease the amount of phys. contiguous buffer needed.
Thus, when we select a blob the address may be with some offset
from the beginning of PRAM section.
The same holds for the INT_TABLE sections.
**********************************************************/
#define IF_IS_INT_TABLE_ADDR(base, addr) \
if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
#define IF_IS_PRAM_ADDR(base, addr) \
if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
static const u32 *bnx2x_sel_blob(u32 addr, const u32 *data, int is_e1)
{
IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr)
data = is_e1 ? tsem_int_table_data_e1 :
tsem_int_table_data_e1h;
else
IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr)
data = is_e1 ? csem_int_table_data_e1 :
csem_int_table_data_e1h;
else
IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr)
data = is_e1 ? usem_int_table_data_e1 :
usem_int_table_data_e1h;
else
IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr)
data = is_e1 ? xsem_int_table_data_e1 :
xsem_int_table_data_e1h;
else
IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr)
data = is_e1 ? tsem_pram_data_e1 : tsem_pram_data_e1h;
else
IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr)
data = is_e1 ? csem_pram_data_e1 : csem_pram_data_e1h;
else
IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr)
data = is_e1 ? usem_pram_data_e1 : usem_pram_data_e1h;
else
IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr)
data = is_e1 ? xsem_pram_data_e1 : xsem_pram_data_e1h;
return data;
}
static void bnx2x_init_wr_wb(struct bnx2x *bp, u32 addr, const u32 *data,
u32 len, int gunzip, int is_e1, u32 blob_off)
{
int offset = 0;
data = bnx2x_sel_blob(addr, data, is_e1) + blob_off;
if (gunzip) {
int rc;
#ifdef __BIG_ENDIAN
int i, size;
u32 *temp;
temp = kmalloc(len, GFP_KERNEL);
size = (len / 4) + ((len % 4) ? 1 : 0);
for (i = 0; i < size; i++)
temp[i] = swab32(data[i]);
data = temp;
#endif
rc = bnx2x_gunzip(bp, (u8 *)data, len);
if (rc) {
BNX2X_ERR("gunzip failed ! rc %d\n", rc);
return;
}
len = bp->gunzip_outlen;
#ifdef __BIG_ENDIAN
kfree(temp);
for (i = 0; i < len; i++)
((u32 *)bp->gunzip_buf)[i] =
swab32(((u32 *)bp->gunzip_buf)[i]);
#endif
} else {
if ((len * 4) > FW_BUF_SIZE) {
BNX2X_ERR("LARGE DMAE OPERATION ! "
"addr 0x%x len 0x%x\n", addr, len*4);
return;
}
memcpy(bp->gunzip_buf, data, len * 4);
}
if (bp->dmae_ready) {
while (len > DMAE_LEN32_WR_MAX) {
bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
addr + offset, DMAE_LEN32_WR_MAX);
offset += DMAE_LEN32_WR_MAX * 4;
len -= DMAE_LEN32_WR_MAX;
}
bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
addr + offset, len);
} else
bnx2x_init_ind_wr(bp, addr, bp->gunzip_buf, len);
}
static void bnx2x_init_block(struct bnx2x *bp, u32 op_start, u32 op_end)
{
int is_e1 = CHIP_IS_E1(bp);
int is_e1h = CHIP_IS_E1H(bp);
int is_emul_e1h = (CHIP_REV_IS_EMUL(bp) && is_e1h);
int hw_wr, i;
union init_op *op;
u32 op_type, addr, len;
const u32 *data, *data_base;
if (CHIP_REV_IS_FPGA(bp))
hw_wr = OP_WR_FPGA;
else if (CHIP_REV_IS_EMUL(bp))
hw_wr = OP_WR_EMUL;
else
hw_wr = OP_WR_ASIC;
if (is_e1)
data_base = init_data_e1;
else /* CHIP_IS_E1H(bp) */
data_base = init_data_e1h;
for (i = op_start; i < op_end; i++) {
op = (union init_op *)&(init_ops[i]);
op_type = op->str_wr.op;
addr = op->str_wr.offset;
len = op->str_wr.data_len;
data = data_base + op->str_wr.data_off;
/* careful! it must be in order */
if (unlikely(op_type > OP_WB)) {
/* If E1 only */
if (op_type <= OP_WB_E1) {
if (is_e1)
op_type -= (OP_RD_E1 - OP_RD);
/* If E1H only */
} else if (op_type <= OP_WB_E1H) {
if (is_e1h)
op_type -= (OP_RD_E1H - OP_RD);
}
/* HW/EMUL specific */
if (op_type == hw_wr)
op_type = OP_WR;
/* EMUL on E1H is special */
if ((op_type == OP_WR_EMUL_E1H) && is_emul_e1h)
op_type = OP_WR;
}
switch (op_type) {
case OP_RD:
REG_RD(bp, addr);
break;
case OP_WR:
REG_WR(bp, addr, op->write.val);
break;
case OP_SW:
bnx2x_init_str_wr(bp, addr, data, len);
break;
case OP_WB:
bnx2x_init_wr_wb(bp, addr, data, len, 0, is_e1, 0);
break;
case OP_SI:
bnx2x_init_ind_wr(bp, addr, data, len);
break;
case OP_ZR:
bnx2x_init_fill(bp, addr, 0, op->zero.len);
break;
case OP_ZP:
bnx2x_init_wr_wb(bp, addr, data, len, 1, is_e1,
op->str_wr.data_off);
break;
case OP_WR_64:
bnx2x_init_wr_64(bp, addr, data, len);
break;
default:
/* happens whenever an op is of a diff HW */
#if 0
DP(NETIF_MSG_HW, "skipping init operation "
"index %d[%d:%d]: type %d addr 0x%x "
"len %d(0x%x)\n",
i, op_start, op_end, op_type, addr, len, len);
#endif
break;
}
}
}
/****************************************************************************
* PXP
****************************************************************************/
/*
* This code configures the PCI read/write arbiter
* which implements a weighted round robin
* between the virtual queues in the chip.
*
* The values were derived for each PCI max payload and max request size.
* since max payload and max request size are only known at run time,
* this is done as a separate init stage.
*/
#define NUM_WR_Q 13
#define NUM_RD_Q 29
#define MAX_RD_ORD 3
#define MAX_WR_ORD 2
/* configuration for one arbiter queue */
struct arb_line {
int l;
int add;
int ubound;
};
/* derived configuration for each read queue for each max request size */
static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = {
{{8 , 64 , 25}, {16 , 64 , 25}, {32 , 64 , 25}, {64 , 64 , 41} },
{{4 , 8 , 4}, {4 , 8 , 4}, {4 , 8 , 4}, {4 , 8 , 4} },
{{4 , 3 , 3}, {4 , 3 , 3}, {4 , 3 , 3}, {4 , 3 , 3} },
{{8 , 3 , 6}, {16 , 3 , 11}, {16 , 3 , 11}, {16 , 3 , 11} },
{{8 , 64 , 25}, {16 , 64 , 25}, {32 , 64 , 25}, {64 , 64 , 41} },
{{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {64 , 3 , 41} },
{{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {64 , 3 , 41} },
{{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {64 , 3 , 41} },
{{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {64 , 3 , 41} },
{{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
{{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
{{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
{{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
{{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
{{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
{{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
{{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
{{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
{{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
{{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
{{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
{{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
{{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
{{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
{{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
{{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
{{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
{{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
{{8 , 64 , 25}, {16 , 64 , 41}, {32 , 64 , 81}, {64 , 64 , 120} }
};
/* derived configuration for each write queue for each max request size */
static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = {
{{4 , 6 , 3}, {4 , 6 , 3}, {4 , 6 , 3} },
{{4 , 2 , 3}, {4 , 2 , 3}, {4 , 2 , 3} },
{{8 , 2 , 6}, {16 , 2 , 11}, {16 , 2 , 11} },
{{8 , 2 , 6}, {16 , 2 , 11}, {32 , 2 , 21} },
{{8 , 2 , 6}, {16 , 2 , 11}, {32 , 2 , 21} },
{{8 , 2 , 6}, {16 , 2 , 11}, {32 , 2 , 21} },
{{8 , 64 , 25}, {16 , 64 , 25}, {32 , 64 , 25} },
{{8 , 2 , 6}, {16 , 2 , 11}, {16 , 2 , 11} },
{{8 , 2 , 6}, {16 , 2 , 11}, {16 , 2 , 11} },
{{8 , 9 , 6}, {16 , 9 , 11}, {32 , 9 , 21} },
{{8 , 47 , 19}, {16 , 47 , 19}, {32 , 47 , 21} },
{{8 , 9 , 6}, {16 , 9 , 11}, {16 , 9 , 11} },
{{8 , 64 , 25}, {16 , 64 , 41}, {32 , 64 , 81} }
};
/* register addresses for read queues */
static const struct arb_line read_arb_addr[NUM_RD_Q-1] = {
{PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0,
PXP2_REG_RQ_BW_RD_UBOUND0},
{PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
PXP2_REG_PSWRQ_BW_UB1},
{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
PXP2_REG_PSWRQ_BW_UB2},
{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
PXP2_REG_PSWRQ_BW_UB3},
{PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4,
PXP2_REG_RQ_BW_RD_UBOUND4},
{PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5,
PXP2_REG_RQ_BW_RD_UBOUND5},
{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
PXP2_REG_PSWRQ_BW_UB6},
{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
PXP2_REG_PSWRQ_BW_UB7},
{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
PXP2_REG_PSWRQ_BW_UB8},
{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
PXP2_REG_PSWRQ_BW_UB9},
{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
PXP2_REG_PSWRQ_BW_UB10},
{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
PXP2_REG_PSWRQ_BW_UB11},
{PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12,
PXP2_REG_RQ_BW_RD_UBOUND12},
{PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13,
PXP2_REG_RQ_BW_RD_UBOUND13},
{PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14,
PXP2_REG_RQ_BW_RD_UBOUND14},
{PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15,
PXP2_REG_RQ_BW_RD_UBOUND15},
{PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16,
PXP2_REG_RQ_BW_RD_UBOUND16},
{PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17,
PXP2_REG_RQ_BW_RD_UBOUND17},
{PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18,
PXP2_REG_RQ_BW_RD_UBOUND18},
{PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19,
PXP2_REG_RQ_BW_RD_UBOUND19},
{PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20,
PXP2_REG_RQ_BW_RD_UBOUND20},
{PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22,
PXP2_REG_RQ_BW_RD_UBOUND22},
{PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23,
PXP2_REG_RQ_BW_RD_UBOUND23},
{PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24,
PXP2_REG_RQ_BW_RD_UBOUND24},
{PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25,
PXP2_REG_RQ_BW_RD_UBOUND25},
{PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26,
PXP2_REG_RQ_BW_RD_UBOUND26},
{PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27,
PXP2_REG_RQ_BW_RD_UBOUND27},
{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
PXP2_REG_PSWRQ_BW_UB28}
};
/* register addresses for write queues */
static const struct arb_line write_arb_addr[NUM_WR_Q-1] = {
{PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
PXP2_REG_PSWRQ_BW_UB1},
{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
PXP2_REG_PSWRQ_BW_UB2},
{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
PXP2_REG_PSWRQ_BW_UB3},
{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
PXP2_REG_PSWRQ_BW_UB6},
{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
PXP2_REG_PSWRQ_BW_UB7},
{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
PXP2_REG_PSWRQ_BW_UB8},
{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
PXP2_REG_PSWRQ_BW_UB9},
{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
PXP2_REG_PSWRQ_BW_UB10},
{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
PXP2_REG_PSWRQ_BW_UB11},
{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
PXP2_REG_PSWRQ_BW_UB28},
{PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29,
PXP2_REG_RQ_BW_WR_UBOUND29},
{PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30,
PXP2_REG_RQ_BW_WR_UBOUND30}
};
static void bnx2x_init_pxp(struct bnx2x *bp)
{
u16 devctl;
int r_order, w_order;
u32 val, i;
pci_read_config_word(bp->pdev,
bp->pcie_cap + PCI_EXP_DEVCTL, &devctl);
DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
if (bp->mrrs == -1)
r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
else {
DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
r_order = bp->mrrs;
}
if (r_order > MAX_RD_ORD) {
DP(NETIF_MSG_HW, "read order of %d order adjusted to %d\n",
r_order, MAX_RD_ORD);
r_order = MAX_RD_ORD;
}
if (w_order > MAX_WR_ORD) {
DP(NETIF_MSG_HW, "write order of %d order adjusted to %d\n",
w_order, MAX_WR_ORD);
w_order = MAX_WR_ORD;
}
if (CHIP_REV_IS_FPGA(bp)) {
DP(NETIF_MSG_HW, "write order adjusted to 1 for FPGA\n");
w_order = 0;
}
DP(NETIF_MSG_HW, "read order %d write order %d\n", r_order, w_order);
for (i = 0; i < NUM_RD_Q-1; i++) {
REG_WR(bp, read_arb_addr[i].l, read_arb_data[i][r_order].l);
REG_WR(bp, read_arb_addr[i].add,
read_arb_data[i][r_order].add);
REG_WR(bp, read_arb_addr[i].ubound,
read_arb_data[i][r_order].ubound);
}
for (i = 0; i < NUM_WR_Q-1; i++) {
if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) ||
(write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) {
REG_WR(bp, write_arb_addr[i].l,
write_arb_data[i][w_order].l);
REG_WR(bp, write_arb_addr[i].add,
write_arb_data[i][w_order].add);
REG_WR(bp, write_arb_addr[i].ubound,
write_arb_data[i][w_order].ubound);
} else {
val = REG_RD(bp, write_arb_addr[i].l);
REG_WR(bp, write_arb_addr[i].l,
val | (write_arb_data[i][w_order].l << 10));
val = REG_RD(bp, write_arb_addr[i].add);
REG_WR(bp, write_arb_addr[i].add,
val | (write_arb_data[i][w_order].add << 10));
val = REG_RD(bp, write_arb_addr[i].ubound);
REG_WR(bp, write_arb_addr[i].ubound,
val | (write_arb_data[i][w_order].ubound << 7));
}
}
val = write_arb_data[NUM_WR_Q-1][w_order].add;
val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10;
val += write_arb_data[NUM_WR_Q-1][w_order].l << 17;
REG_WR(bp, PXP2_REG_PSWRQ_BW_RD, val);
val = read_arb_data[NUM_RD_Q-1][r_order].add;
val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10;
val += read_arb_data[NUM_RD_Q-1][r_order].l << 17;
REG_WR(bp, PXP2_REG_PSWRQ_BW_WR, val);
REG_WR(bp, PXP2_REG_RQ_WR_MBS0, w_order);
REG_WR(bp, PXP2_REG_RQ_WR_MBS1, w_order);
REG_WR(bp, PXP2_REG_RQ_RD_MBS0, r_order);
REG_WR(bp, PXP2_REG_RQ_RD_MBS1, r_order);
if (r_order == MAX_RD_ORD)
REG_WR(bp, PXP2_REG_RQ_PDR_LIMIT, 0xe00);
REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order));
if (CHIP_IS_E1H(bp)) {
REG_WR(bp, PXP2_REG_WR_HC_MPS, w_order+1);
REG_WR(bp, PXP2_REG_WR_USDM_MPS, w_order+1);
REG_WR(bp, PXP2_REG_WR_CSDM_MPS, w_order+1);
REG_WR(bp, PXP2_REG_WR_TSDM_MPS, w_order+1);
REG_WR(bp, PXP2_REG_WR_XSDM_MPS, w_order+1);
REG_WR(bp, PXP2_REG_WR_QM_MPS, w_order+1);
REG_WR(bp, PXP2_REG_WR_TM_MPS, w_order+1);
REG_WR(bp, PXP2_REG_WR_SRC_MPS, w_order+1);
REG_WR(bp, PXP2_REG_WR_DBG_MPS, w_order+1);
REG_WR(bp, PXP2_REG_WR_DMAE_MPS, 2); /* DMAE is special */
REG_WR(bp, PXP2_REG_WR_CDU_MPS, w_order+1);
}
}
/****************************************************************************
* CDU
****************************************************************************/
#define CDU_REGION_NUMBER_XCM_AG 2
#define CDU_REGION_NUMBER_UCM_AG 4
/**
* String-to-compress [31:8] = CID (all 24 bits)
* String-to-compress [7:4] = Region
* String-to-compress [3:0] = Type
*/
#define CDU_VALID_DATA(_cid, _region, _type) \
(((_cid) << 8) | (((_region) & 0xf) << 4) | (((_type) & 0xf)))
#define CDU_CRC8(_cid, _region, _type) \
calc_crc8(CDU_VALID_DATA(_cid, _region, _type), 0xff)
#define CDU_RSRVD_VALUE_TYPE_A(_cid, _region, _type) \
(0x80 | (CDU_CRC8(_cid, _region, _type) & 0x7f))
#define CDU_RSRVD_VALUE_TYPE_B(_crc, _type) \
(0x80 | ((_type) & 0xf << 3) | (CDU_CRC8(_cid, _region, _type) & 0x7))
#define CDU_RSRVD_INVALIDATE_CONTEXT_VALUE(_val) ((_val) & ~0x80)
/*****************************************************************************
* Description:
* Calculates crc 8 on a word value: polynomial 0-1-2-8
* Code was translated from Verilog.
****************************************************************************/
static u8 calc_crc8(u32 data, u8 crc)
{
u8 D[32];
u8 NewCRC[8];
u8 C[8];
u8 crc_res;
u8 i;
/* split the data into 31 bits */
for (i = 0; i < 32; i++) {
D[i] = data & 1;
data = data >> 1;
}
/* split the crc into 8 bits */
for (i = 0; i < 8; i++) {
C[i] = crc & 1;
crc = crc >> 1;
}
NewCRC[0] = D[31] ^ D[30] ^ D[28] ^ D[23] ^ D[21] ^ D[19] ^ D[18] ^
D[16] ^ D[14] ^ D[12] ^ D[8] ^ D[7] ^ D[6] ^ D[0] ^ C[4] ^
C[6] ^ C[7];
NewCRC[1] = D[30] ^ D[29] ^ D[28] ^ D[24] ^ D[23] ^ D[22] ^ D[21] ^
D[20] ^ D[18] ^ D[17] ^ D[16] ^ D[15] ^ D[14] ^ D[13] ^
D[12] ^ D[9] ^ D[6] ^ D[1] ^ D[0] ^ C[0] ^ C[4] ^ C[5] ^ C[6];
NewCRC[2] = D[29] ^ D[28] ^ D[25] ^ D[24] ^ D[22] ^ D[17] ^ D[15] ^
D[13] ^ D[12] ^ D[10] ^ D[8] ^ D[6] ^ D[2] ^ D[1] ^ D[0] ^
C[0] ^ C[1] ^ C[4] ^ C[5];
NewCRC[3] = D[30] ^ D[29] ^ D[26] ^ D[25] ^ D[23] ^ D[18] ^ D[16] ^
D[14] ^ D[13] ^ D[11] ^ D[9] ^ D[7] ^ D[3] ^ D[2] ^ D[1] ^
C[1] ^ C[2] ^ C[5] ^ C[6];
NewCRC[4] = D[31] ^ D[30] ^ D[27] ^ D[26] ^ D[24] ^ D[19] ^ D[17] ^
D[15] ^ D[14] ^ D[12] ^ D[10] ^ D[8] ^ D[4] ^ D[3] ^ D[2] ^
C[0] ^ C[2] ^ C[3] ^ C[6] ^ C[7];
NewCRC[5] = D[31] ^ D[28] ^ D[27] ^ D[25] ^ D[20] ^ D[18] ^ D[16] ^
D[15] ^ D[13] ^ D[11] ^ D[9] ^ D[5] ^ D[4] ^ D[3] ^ C[1] ^
C[3] ^ C[4] ^ C[7];
NewCRC[6] = D[29] ^ D[28] ^ D[26] ^ D[21] ^ D[19] ^ D[17] ^ D[16] ^
D[14] ^ D[12] ^ D[10] ^ D[6] ^ D[5] ^ D[4] ^ C[2] ^ C[4] ^
C[5];
NewCRC[7] = D[30] ^ D[29] ^ D[27] ^ D[22] ^ D[20] ^ D[18] ^ D[17] ^
D[15] ^ D[13] ^ D[11] ^ D[7] ^ D[6] ^ D[5] ^ C[3] ^ C[5] ^
C[6];
crc_res = 0;
for (i = 0; i < 8; i++)
crc_res |= (NewCRC[i] << i);
return crc_res;
}
/* registers addresses are not in order
so these arrays help simplify the code */
static const int cm_start[E1H_FUNC_MAX][9] = {
{MISC_FUNC0_START, TCM_FUNC0_START, UCM_FUNC0_START, CCM_FUNC0_START,
XCM_FUNC0_START, TSEM_FUNC0_START, USEM_FUNC0_START, CSEM_FUNC0_START,
XSEM_FUNC0_START},
{MISC_FUNC1_START, TCM_FUNC1_START, UCM_FUNC1_START, CCM_FUNC1_START,
XCM_FUNC1_START, TSEM_FUNC1_START, USEM_FUNC1_START, CSEM_FUNC1_START,
XSEM_FUNC1_START},
{MISC_FUNC2_START, TCM_FUNC2_START, UCM_FUNC2_START, CCM_FUNC2_START,
XCM_FUNC2_START, TSEM_FUNC2_START, USEM_FUNC2_START, CSEM_FUNC2_START,
XSEM_FUNC2_START},
{MISC_FUNC3_START, TCM_FUNC3_START, UCM_FUNC3_START, CCM_FUNC3_START,
XCM_FUNC3_START, TSEM_FUNC3_START, USEM_FUNC3_START, CSEM_FUNC3_START,
XSEM_FUNC3_START},
{MISC_FUNC4_START, TCM_FUNC4_START, UCM_FUNC4_START, CCM_FUNC4_START,
XCM_FUNC4_START, TSEM_FUNC4_START, USEM_FUNC4_START, CSEM_FUNC4_START,
XSEM_FUNC4_START},
{MISC_FUNC5_START, TCM_FUNC5_START, UCM_FUNC5_START, CCM_FUNC5_START,
XCM_FUNC5_START, TSEM_FUNC5_START, USEM_FUNC5_START, CSEM_FUNC5_START,
XSEM_FUNC5_START},
{MISC_FUNC6_START, TCM_FUNC6_START, UCM_FUNC6_START, CCM_FUNC6_START,
XCM_FUNC6_START, TSEM_FUNC6_START, USEM_FUNC6_START, CSEM_FUNC6_START,
XSEM_FUNC6_START},
{MISC_FUNC7_START, TCM_FUNC7_START, UCM_FUNC7_START, CCM_FUNC7_START,
XCM_FUNC7_START, TSEM_FUNC7_START, USEM_FUNC7_START, CSEM_FUNC7_START,
XSEM_FUNC7_START}
};
static const int cm_end[E1H_FUNC_MAX][9] = {
{MISC_FUNC0_END, TCM_FUNC0_END, UCM_FUNC0_END, CCM_FUNC0_END,
XCM_FUNC0_END, TSEM_FUNC0_END, USEM_FUNC0_END, CSEM_FUNC0_END,
XSEM_FUNC0_END},
{MISC_FUNC1_END, TCM_FUNC1_END, UCM_FUNC1_END, CCM_FUNC1_END,
XCM_FUNC1_END, TSEM_FUNC1_END, USEM_FUNC1_END, CSEM_FUNC1_END,
XSEM_FUNC1_END},
{MISC_FUNC2_END, TCM_FUNC2_END, UCM_FUNC2_END, CCM_FUNC2_END,
XCM_FUNC2_END, TSEM_FUNC2_END, USEM_FUNC2_END, CSEM_FUNC2_END,
XSEM_FUNC2_END},
{MISC_FUNC3_END, TCM_FUNC3_END, UCM_FUNC3_END, CCM_FUNC3_END,
XCM_FUNC3_END, TSEM_FUNC3_END, USEM_FUNC3_END, CSEM_FUNC3_END,
XSEM_FUNC3_END},
{MISC_FUNC4_END, TCM_FUNC4_END, UCM_FUNC4_END, CCM_FUNC4_END,
XCM_FUNC4_END, TSEM_FUNC4_END, USEM_FUNC4_END, CSEM_FUNC4_END,
XSEM_FUNC4_END},
{MISC_FUNC5_END, TCM_FUNC5_END, UCM_FUNC5_END, CCM_FUNC5_END,
XCM_FUNC5_END, TSEM_FUNC5_END, USEM_FUNC5_END, CSEM_FUNC5_END,
XSEM_FUNC5_END},
{MISC_FUNC6_END, TCM_FUNC6_END, UCM_FUNC6_END, CCM_FUNC6_END,
XCM_FUNC6_END, TSEM_FUNC6_END, USEM_FUNC6_END, CSEM_FUNC6_END,
XSEM_FUNC6_END},
{MISC_FUNC7_END, TCM_FUNC7_END, UCM_FUNC7_END, CCM_FUNC7_END,
XCM_FUNC7_END, TSEM_FUNC7_END, USEM_FUNC7_END, CSEM_FUNC7_END,
XSEM_FUNC7_END},
};
static const int hc_limits[E1H_FUNC_MAX][2] = {
{HC_FUNC0_START, HC_FUNC0_END},
{HC_FUNC1_START, HC_FUNC1_END},
{HC_FUNC2_START, HC_FUNC2_END},
{HC_FUNC3_START, HC_FUNC3_END},
{HC_FUNC4_START, HC_FUNC4_END},
{HC_FUNC5_START, HC_FUNC5_END},
{HC_FUNC6_START, HC_FUNC6_END},
{HC_FUNC7_START, HC_FUNC7_END}
};
#endif /* BNX2X_INIT_H */
|