summaryrefslogtreecommitdiffstats
path: root/drivers/net/ethernet/icplus/ipg.c
blob: 1fde90b96685e878b12ffeee0abc8487845cb4da (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
/*
 * ipg.c: Device Driver for the IP1000 Gigabit Ethernet Adapter
 *
 * Copyright (C) 2003, 2007  IC Plus Corp
 *
 * Original Author:
 *
 *   Craig Rich
 *   Sundance Technology, Inc.
 *   www.sundanceti.com
 *   craig_rich@sundanceti.com
 *
 * Current Maintainer:
 *
 *   Sorbica Shieh.
 *   http://www.icplus.com.tw
 *   sorbica@icplus.com.tw
 *
 *   Jesse Huang
 *   http://www.icplus.com.tw
 *   jesse@icplus.com.tw
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/crc32.h>
#include <linux/ethtool.h>
#include <linux/interrupt.h>
#include <linux/gfp.h>
#include <linux/mii.h>
#include <linux/mutex.h>

#include <asm/div64.h>

#define IPG_RX_RING_BYTES	(sizeof(struct ipg_rx) * IPG_RFDLIST_LENGTH)
#define IPG_TX_RING_BYTES	(sizeof(struct ipg_tx) * IPG_TFDLIST_LENGTH)
#define IPG_RESET_MASK \
	(IPG_AC_GLOBAL_RESET | IPG_AC_RX_RESET | IPG_AC_TX_RESET | \
	 IPG_AC_DMA | IPG_AC_FIFO | IPG_AC_NETWORK | IPG_AC_HOST | \
	 IPG_AC_AUTO_INIT)

#define ipg_w32(val32, reg)	iowrite32((val32), ioaddr + (reg))
#define ipg_w16(val16, reg)	iowrite16((val16), ioaddr + (reg))
#define ipg_w8(val8, reg)	iowrite8((val8), ioaddr + (reg))

#define ipg_r32(reg)		ioread32(ioaddr + (reg))
#define ipg_r16(reg)		ioread16(ioaddr + (reg))
#define ipg_r8(reg)		ioread8(ioaddr + (reg))

enum {
	netdev_io_size = 128
};

#include "ipg.h"
#define DRV_NAME	"ipg"

MODULE_AUTHOR("IC Plus Corp. 2003");
MODULE_DESCRIPTION("IC Plus IP1000 Gigabit Ethernet Adapter Linux Driver");
MODULE_LICENSE("GPL");

/*
 * Defaults
 */
#define IPG_MAX_RXFRAME_SIZE	0x0600
#define IPG_RXFRAG_SIZE		0x0600
#define IPG_RXSUPPORT_SIZE	0x0600
#define IPG_IS_JUMBO		false

/*
 * Variable record -- index by leading revision/length
 * Revision/Length(=N*4), Address1, Data1, Address2, Data2,...,AddressN,DataN
 */
static const unsigned short DefaultPhyParam[] = {
	/* 11/12/03 IP1000A v1-3 rev=0x40 */
	/*--------------------------------------------------------------------------
	(0x4000|(15*4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 22, 0x85bd, 24, 0xfff2,
				 27, 0x0c10, 28, 0x0c10, 29, 0x2c10, 31, 0x0003, 23, 0x92f6,
				 31, 0x0000, 23, 0x003d, 30, 0x00de, 20, 0x20e7,  9, 0x0700,
	  --------------------------------------------------------------------------*/
	/* 12/17/03 IP1000A v1-4 rev=0x40 */
	(0x4000 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
	    0x0000,
	30, 0x005e, 9, 0x0700,
	/* 01/09/04 IP1000A v1-5 rev=0x41 */
	(0x4100 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
	    0x0000,
	30, 0x005e, 9, 0x0700,
	0x0000
};

static const char * const ipg_brand_name[] = {
	"IC PLUS IP1000 1000/100/10 based NIC",
	"Sundance Technology ST2021 based NIC",
	"Tamarack Microelectronics TC9020/9021 based NIC",
	"D-Link NIC IP1000A"
};

static DEFINE_PCI_DEVICE_TABLE(ipg_pci_tbl) = {
	{ PCI_VDEVICE(SUNDANCE,	0x1023), 0 },
	{ PCI_VDEVICE(SUNDANCE,	0x2021), 1 },
	{ PCI_VDEVICE(DLINK,	0x9021), 2 },
	{ PCI_VDEVICE(DLINK,	0x4020), 3 },
	{ 0, }
};

MODULE_DEVICE_TABLE(pci, ipg_pci_tbl);

static inline void __iomem *ipg_ioaddr(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	return sp->ioaddr;
}

#ifdef IPG_DEBUG
static void ipg_dump_rfdlist(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	unsigned int i;
	u32 offset;

	IPG_DEBUG_MSG("_dump_rfdlist\n");

	netdev_info(dev, "rx_current = %02x\n", sp->rx_current);
	netdev_info(dev, "rx_dirty   = %02x\n", sp->rx_dirty);
	netdev_info(dev, "RFDList start address = %016lx\n",
		    (unsigned long)sp->rxd_map);
	netdev_info(dev, "RFDListPtr register   = %08x%08x\n",
		    ipg_r32(IPG_RFDLISTPTR1), ipg_r32(IPG_RFDLISTPTR0));

	for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
		offset = (u32) &sp->rxd[i].next_desc - (u32) sp->rxd;
		netdev_info(dev, "%02x %04x RFDNextPtr = %016lx\n",
			    i, offset, (unsigned long)sp->rxd[i].next_desc);
		offset = (u32) &sp->rxd[i].rfs - (u32) sp->rxd;
		netdev_info(dev, "%02x %04x RFS        = %016lx\n",
			    i, offset, (unsigned long)sp->rxd[i].rfs);
		offset = (u32) &sp->rxd[i].frag_info - (u32) sp->rxd;
		netdev_info(dev, "%02x %04x frag_info   = %016lx\n",
			    i, offset, (unsigned long)sp->rxd[i].frag_info);
	}
}

static void ipg_dump_tfdlist(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	unsigned int i;
	u32 offset;

	IPG_DEBUG_MSG("_dump_tfdlist\n");

	netdev_info(dev, "tx_current         = %02x\n", sp->tx_current);
	netdev_info(dev, "tx_dirty = %02x\n", sp->tx_dirty);
	netdev_info(dev, "TFDList start address = %016lx\n",
		    (unsigned long) sp->txd_map);
	netdev_info(dev, "TFDListPtr register   = %08x%08x\n",
		    ipg_r32(IPG_TFDLISTPTR1), ipg_r32(IPG_TFDLISTPTR0));

	for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
		offset = (u32) &sp->txd[i].next_desc - (u32) sp->txd;
		netdev_info(dev, "%02x %04x TFDNextPtr = %016lx\n",
			    i, offset, (unsigned long)sp->txd[i].next_desc);

		offset = (u32) &sp->txd[i].tfc - (u32) sp->txd;
		netdev_info(dev, "%02x %04x TFC        = %016lx\n",
			    i, offset, (unsigned long) sp->txd[i].tfc);
		offset = (u32) &sp->txd[i].frag_info - (u32) sp->txd;
		netdev_info(dev, "%02x %04x frag_info   = %016lx\n",
			    i, offset, (unsigned long) sp->txd[i].frag_info);
	}
}
#endif

static void ipg_write_phy_ctl(void __iomem *ioaddr, u8 data)
{
	ipg_w8(IPG_PC_RSVD_MASK & data, PHY_CTRL);
	ndelay(IPG_PC_PHYCTRLWAIT_NS);
}

static void ipg_drive_phy_ctl_low_high(void __iomem *ioaddr, u8 data)
{
	ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | data);
	ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | data);
}

static void send_three_state(void __iomem *ioaddr, u8 phyctrlpolarity)
{
	phyctrlpolarity |= (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR;

	ipg_drive_phy_ctl_low_high(ioaddr, phyctrlpolarity);
}

static void send_end(void __iomem *ioaddr, u8 phyctrlpolarity)
{
	ipg_w8((IPG_PC_MGMTCLK_LO | (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR |
		phyctrlpolarity) & IPG_PC_RSVD_MASK, PHY_CTRL);
}

static u16 read_phy_bit(void __iomem *ioaddr, u8 phyctrlpolarity)
{
	u16 bit_data;

	ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | phyctrlpolarity);

	bit_data = ((ipg_r8(PHY_CTRL) & IPG_PC_MGMTDATA) >> 1) & 1;

	ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | phyctrlpolarity);

	return bit_data;
}

/*
 * Read a register from the Physical Layer device located
 * on the IPG NIC, using the IPG PHYCTRL register.
 */
static int mdio_read(struct net_device *dev, int phy_id, int phy_reg)
{
	void __iomem *ioaddr = ipg_ioaddr(dev);
	/*
	 * The GMII mangement frame structure for a read is as follows:
	 *
	 * |Preamble|st|op|phyad|regad|ta|      data      |idle|
	 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z   |
	 *
	 * <32 1s> = 32 consecutive logic 1 values
	 * A = bit of Physical Layer device address (MSB first)
	 * R = bit of register address (MSB first)
	 * z = High impedance state
	 * D = bit of read data (MSB first)
	 *
	 * Transmission order is 'Preamble' field first, bits transmitted
	 * left to right (first to last).
	 */
	struct {
		u32 field;
		unsigned int len;
	} p[] = {
		{ GMII_PREAMBLE,	32 },	/* Preamble */
		{ GMII_ST,		2  },	/* ST */
		{ GMII_READ,		2  },	/* OP */
		{ phy_id,		5  },	/* PHYAD */
		{ phy_reg,		5  },	/* REGAD */
		{ 0x0000,		2  },	/* TA */
		{ 0x0000,		16 },	/* DATA */
		{ 0x0000,		1  }	/* IDLE */
	};
	unsigned int i, j;
	u8 polarity, data;

	polarity  = ipg_r8(PHY_CTRL);
	polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);

	/* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
	for (j = 0; j < 5; j++) {
		for (i = 0; i < p[j].len; i++) {
			/* For each variable length field, the MSB must be
			 * transmitted first. Rotate through the field bits,
			 * starting with the MSB, and move each bit into the
			 * the 1st (2^1) bit position (this is the bit position
			 * corresponding to the MgmtData bit of the PhyCtrl
			 * register for the IPG).
			 *
			 * Example: ST = 01;
			 *
			 *          First write a '0' to bit 1 of the PhyCtrl
			 *          register, then write a '1' to bit 1 of the
			 *          PhyCtrl register.
			 *
			 * To do this, right shift the MSB of ST by the value:
			 * [field length - 1 - #ST bits already written]
			 * then left shift this result by 1.
			 */
			data  = (p[j].field >> (p[j].len - 1 - i)) << 1;
			data &= IPG_PC_MGMTDATA;
			data |= polarity | IPG_PC_MGMTDIR;

			ipg_drive_phy_ctl_low_high(ioaddr, data);
		}
	}

	send_three_state(ioaddr, polarity);

	read_phy_bit(ioaddr, polarity);

	/*
	 * For a read cycle, the bits for the next two fields (TA and
	 * DATA) are driven by the PHY (the IPG reads these bits).
	 */
	for (i = 0; i < p[6].len; i++) {
		p[6].field |=
		    (read_phy_bit(ioaddr, polarity) << (p[6].len - 1 - i));
	}

	send_three_state(ioaddr, polarity);
	send_three_state(ioaddr, polarity);
	send_three_state(ioaddr, polarity);
	send_end(ioaddr, polarity);

	/* Return the value of the DATA field. */
	return p[6].field;
}

/*
 * Write to a register from the Physical Layer device located
 * on the IPG NIC, using the IPG PHYCTRL register.
 */
static void mdio_write(struct net_device *dev, int phy_id, int phy_reg, int val)
{
	void __iomem *ioaddr = ipg_ioaddr(dev);
	/*
	 * The GMII mangement frame structure for a read is as follows:
	 *
	 * |Preamble|st|op|phyad|regad|ta|      data      |idle|
	 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z   |
	 *
	 * <32 1s> = 32 consecutive logic 1 values
	 * A = bit of Physical Layer device address (MSB first)
	 * R = bit of register address (MSB first)
	 * z = High impedance state
	 * D = bit of write data (MSB first)
	 *
	 * Transmission order is 'Preamble' field first, bits transmitted
	 * left to right (first to last).
	 */
	struct {
		u32 field;
		unsigned int len;
	} p[] = {
		{ GMII_PREAMBLE,	32 },	/* Preamble */
		{ GMII_ST,		2  },	/* ST */
		{ GMII_WRITE,		2  },	/* OP */
		{ phy_id,		5  },	/* PHYAD */
		{ phy_reg,		5  },	/* REGAD */
		{ 0x0002,		2  },	/* TA */
		{ val & 0xffff,		16 },	/* DATA */
		{ 0x0000,		1  }	/* IDLE */
	};
	unsigned int i, j;
	u8 polarity, data;

	polarity  = ipg_r8(PHY_CTRL);
	polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);

	/* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
	for (j = 0; j < 7; j++) {
		for (i = 0; i < p[j].len; i++) {
			/* For each variable length field, the MSB must be
			 * transmitted first. Rotate through the field bits,
			 * starting with the MSB, and move each bit into the
			 * the 1st (2^1) bit position (this is the bit position
			 * corresponding to the MgmtData bit of the PhyCtrl
			 * register for the IPG).
			 *
			 * Example: ST = 01;
			 *
			 *          First write a '0' to bit 1 of the PhyCtrl
			 *          register, then write a '1' to bit 1 of the
			 *          PhyCtrl register.
			 *
			 * To do this, right shift the MSB of ST by the value:
			 * [field length - 1 - #ST bits already written]
			 * then left shift this result by 1.
			 */
			data  = (p[j].field >> (p[j].len - 1 - i)) << 1;
			data &= IPG_PC_MGMTDATA;
			data |= polarity | IPG_PC_MGMTDIR;

			ipg_drive_phy_ctl_low_high(ioaddr, data);
		}
	}

	/* The last cycle is a tri-state, so read from the PHY. */
	ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | polarity);
	ipg_r8(PHY_CTRL);
	ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | polarity);
}

static void ipg_set_led_mode(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	u32 mode;

	mode = ipg_r32(ASIC_CTRL);
	mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);

	if ((sp->led_mode & 0x03) > 1)
		mode |= IPG_AC_LED_MODE_BIT_1;	/* Write Asic Control Bit 29 */

	if ((sp->led_mode & 0x01) == 1)
		mode |= IPG_AC_LED_MODE;	/* Write Asic Control Bit 14 */

	if ((sp->led_mode & 0x08) == 8)
		mode |= IPG_AC_LED_SPEED;	/* Write Asic Control Bit 27 */

	ipg_w32(mode, ASIC_CTRL);
}

static void ipg_set_phy_set(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	int physet;

	physet = ipg_r8(PHY_SET);
	physet &= ~(IPG_PS_MEM_LENB9B | IPG_PS_MEM_LEN9 | IPG_PS_NON_COMPDET);
	physet |= ((sp->led_mode & 0x70) >> 4);
	ipg_w8(physet, PHY_SET);
}

static int ipg_reset(struct net_device *dev, u32 resetflags)
{
	/* Assert functional resets via the IPG AsicCtrl
	 * register as specified by the 'resetflags' input
	 * parameter.
	 */
	void __iomem *ioaddr = ipg_ioaddr(dev);
	unsigned int timeout_count = 0;

	IPG_DEBUG_MSG("_reset\n");

	ipg_w32(ipg_r32(ASIC_CTRL) | resetflags, ASIC_CTRL);

	/* Delay added to account for problem with 10Mbps reset. */
	mdelay(IPG_AC_RESETWAIT);

	while (IPG_AC_RESET_BUSY & ipg_r32(ASIC_CTRL)) {
		mdelay(IPG_AC_RESETWAIT);
		if (++timeout_count > IPG_AC_RESET_TIMEOUT)
			return -ETIME;
	}
	/* Set LED Mode in Asic Control */
	ipg_set_led_mode(dev);

	/* Set PHYSet Register Value */
	ipg_set_phy_set(dev);
	return 0;
}

/* Find the GMII PHY address. */
static int ipg_find_phyaddr(struct net_device *dev)
{
	unsigned int phyaddr, i;

	for (i = 0; i < 32; i++) {
		u32 status;

		/* Search for the correct PHY address among 32 possible. */
		phyaddr = (IPG_NIC_PHY_ADDRESS + i) % 32;

		/* 10/22/03 Grace change verify from GMII_PHY_STATUS to
		   GMII_PHY_ID1
		 */

		status = mdio_read(dev, phyaddr, MII_BMSR);

		if ((status != 0xFFFF) && (status != 0))
			return phyaddr;
	}

	return 0x1f;
}

/*
 * Configure IPG based on result of IEEE 802.3 PHY
 * auto-negotiation.
 */
static int ipg_config_autoneg(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	unsigned int txflowcontrol;
	unsigned int rxflowcontrol;
	unsigned int fullduplex;
	u32 mac_ctrl_val;
	u32 asicctrl;
	u8 phyctrl;
	const char *speed;
	const char *duplex;
	const char *tx_desc;
	const char *rx_desc;

	IPG_DEBUG_MSG("_config_autoneg\n");

	asicctrl = ipg_r32(ASIC_CTRL);
	phyctrl = ipg_r8(PHY_CTRL);
	mac_ctrl_val = ipg_r32(MAC_CTRL);

	/* Set flags for use in resolving auto-negotiation, assuming
	 * non-1000Mbps, half duplex, no flow control.
	 */
	fullduplex = 0;
	txflowcontrol = 0;
	rxflowcontrol = 0;

	/* To accommodate a problem in 10Mbps operation,
	 * set a global flag if PHY running in 10Mbps mode.
	 */
	sp->tenmbpsmode = 0;

	/* Determine actual speed of operation. */
	switch (phyctrl & IPG_PC_LINK_SPEED) {
	case IPG_PC_LINK_SPEED_10MBPS:
		speed = "10Mbps";
		sp->tenmbpsmode = 1;
		break;
	case IPG_PC_LINK_SPEED_100MBPS:
		speed = "100Mbps";
		break;
	case IPG_PC_LINK_SPEED_1000MBPS:
		speed = "1000Mbps";
		break;
	default:
		speed = "undefined!";
		return 0;
	}

	netdev_info(dev, "Link speed = %s\n", speed);
	if (sp->tenmbpsmode == 1)
		netdev_info(dev, "10Mbps operational mode enabled\n");

	if (phyctrl & IPG_PC_DUPLEX_STATUS) {
		fullduplex = 1;
		txflowcontrol = 1;
		rxflowcontrol = 1;
	}

	/* Configure full duplex, and flow control. */
	if (fullduplex == 1) {

		/* Configure IPG for full duplex operation. */

		duplex = "full";

		mac_ctrl_val |= IPG_MC_DUPLEX_SELECT_FD;

		if (txflowcontrol == 1) {
			tx_desc  = "";
			mac_ctrl_val |= IPG_MC_TX_FLOW_CONTROL_ENABLE;
		} else {
			tx_desc = "no ";
			mac_ctrl_val &= ~IPG_MC_TX_FLOW_CONTROL_ENABLE;
		}

		if (rxflowcontrol == 1) {
			rx_desc = "";
			mac_ctrl_val |= IPG_MC_RX_FLOW_CONTROL_ENABLE;
		} else {
			rx_desc = "no ";
			mac_ctrl_val &= ~IPG_MC_RX_FLOW_CONTROL_ENABLE;
		}
	} else {
		duplex = "half";
		tx_desc = "no ";
		rx_desc = "no ";
		mac_ctrl_val &= (~IPG_MC_DUPLEX_SELECT_FD &
				 ~IPG_MC_TX_FLOW_CONTROL_ENABLE &
				 ~IPG_MC_RX_FLOW_CONTROL_ENABLE);
	}

	netdev_info(dev, "setting %s duplex, %sTX, %sRX flow control\n",
		    duplex, tx_desc, rx_desc);
	ipg_w32(mac_ctrl_val, MAC_CTRL);

	return 0;
}

/* Determine and configure multicast operation and set
 * receive mode for IPG.
 */
static void ipg_nic_set_multicast_list(struct net_device *dev)
{
	void __iomem *ioaddr = ipg_ioaddr(dev);
	struct netdev_hw_addr *ha;
	unsigned int hashindex;
	u32 hashtable[2];
	u8 receivemode;

	IPG_DEBUG_MSG("_nic_set_multicast_list\n");

	receivemode = IPG_RM_RECEIVEUNICAST | IPG_RM_RECEIVEBROADCAST;

	if (dev->flags & IFF_PROMISC) {
		/* NIC to be configured in promiscuous mode. */
		receivemode = IPG_RM_RECEIVEALLFRAMES;
	} else if ((dev->flags & IFF_ALLMULTI) ||
		   ((dev->flags & IFF_MULTICAST) &&
		    (netdev_mc_count(dev) > IPG_MULTICAST_HASHTABLE_SIZE))) {
		/* NIC to be configured to receive all multicast
		 * frames. */
		receivemode |= IPG_RM_RECEIVEMULTICAST;
	} else if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
		/* NIC to be configured to receive selected
		 * multicast addresses. */
		receivemode |= IPG_RM_RECEIVEMULTICASTHASH;
	}

	/* Calculate the bits to set for the 64 bit, IPG HASHTABLE.
	 * The IPG applies a cyclic-redundancy-check (the same CRC
	 * used to calculate the frame data FCS) to the destination
	 * address all incoming multicast frames whose destination
	 * address has the multicast bit set. The least significant
	 * 6 bits of the CRC result are used as an addressing index
	 * into the hash table. If the value of the bit addressed by
	 * this index is a 1, the frame is passed to the host system.
	 */

	/* Clear hashtable. */
	hashtable[0] = 0x00000000;
	hashtable[1] = 0x00000000;

	/* Cycle through all multicast addresses to filter. */
	netdev_for_each_mc_addr(ha, dev) {
		/* Calculate CRC result for each multicast address. */
		hashindex = crc32_le(0xffffffff, ha->addr,
				     ETH_ALEN);

		/* Use only the least significant 6 bits. */
		hashindex = hashindex & 0x3F;

		/* Within "hashtable", set bit number "hashindex"
		 * to a logic 1.
		 */
		set_bit(hashindex, (void *)hashtable);
	}

	/* Write the value of the hashtable, to the 4, 16 bit
	 * HASHTABLE IPG registers.
	 */
	ipg_w32(hashtable[0], HASHTABLE_0);
	ipg_w32(hashtable[1], HASHTABLE_1);

	ipg_w8(IPG_RM_RSVD_MASK & receivemode, RECEIVE_MODE);

	IPG_DEBUG_MSG("ReceiveMode = %x\n", ipg_r8(RECEIVE_MODE));
}

static int ipg_io_config(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = ipg_ioaddr(dev);
	u32 origmacctrl;
	u32 restoremacctrl;

	IPG_DEBUG_MSG("_io_config\n");

	origmacctrl = ipg_r32(MAC_CTRL);

	restoremacctrl = origmacctrl | IPG_MC_STATISTICS_ENABLE;

	/* Based on compilation option, determine if FCS is to be
	 * stripped on receive frames by IPG.
	 */
	if (!IPG_STRIP_FCS_ON_RX)
		restoremacctrl |= IPG_MC_RCV_FCS;

	/* Determine if transmitter and/or receiver are
	 * enabled so we may restore MACCTRL correctly.
	 */
	if (origmacctrl & IPG_MC_TX_ENABLED)
		restoremacctrl |= IPG_MC_TX_ENABLE;

	if (origmacctrl & IPG_MC_RX_ENABLED)
		restoremacctrl |= IPG_MC_RX_ENABLE;

	/* Transmitter and receiver must be disabled before setting
	 * IFSSelect.
	 */
	ipg_w32((origmacctrl & (IPG_MC_RX_DISABLE | IPG_MC_TX_DISABLE)) &
		IPG_MC_RSVD_MASK, MAC_CTRL);

	/* Now that transmitter and receiver are disabled, write
	 * to IFSSelect.
	 */
	ipg_w32((origmacctrl & IPG_MC_IFS_96BIT) & IPG_MC_RSVD_MASK, MAC_CTRL);

	/* Set RECEIVEMODE register. */
	ipg_nic_set_multicast_list(dev);

	ipg_w16(sp->max_rxframe_size, MAX_FRAME_SIZE);

	ipg_w8(IPG_RXDMAPOLLPERIOD_VALUE,   RX_DMA_POLL_PERIOD);
	ipg_w8(IPG_RXDMAURGENTTHRESH_VALUE, RX_DMA_URGENT_THRESH);
	ipg_w8(IPG_RXDMABURSTTHRESH_VALUE,  RX_DMA_BURST_THRESH);
	ipg_w8(IPG_TXDMAPOLLPERIOD_VALUE,   TX_DMA_POLL_PERIOD);
	ipg_w8(IPG_TXDMAURGENTTHRESH_VALUE, TX_DMA_URGENT_THRESH);
	ipg_w8(IPG_TXDMABURSTTHRESH_VALUE,  TX_DMA_BURST_THRESH);
	ipg_w16((IPG_IE_HOST_ERROR | IPG_IE_TX_DMA_COMPLETE |
		 IPG_IE_TX_COMPLETE | IPG_IE_INT_REQUESTED |
		 IPG_IE_UPDATE_STATS | IPG_IE_LINK_EVENT |
		 IPG_IE_RX_DMA_COMPLETE | IPG_IE_RX_DMA_PRIORITY), INT_ENABLE);
	ipg_w16(IPG_FLOWONTHRESH_VALUE,  FLOW_ON_THRESH);
	ipg_w16(IPG_FLOWOFFTHRESH_VALUE, FLOW_OFF_THRESH);

	/* IPG multi-frag frame bug workaround.
	 * Per silicon revision B3 eratta.
	 */
	ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0200, DEBUG_CTRL);

	/* IPG TX poll now bug workaround.
	 * Per silicon revision B3 eratta.
	 */
	ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0010, DEBUG_CTRL);

	/* IPG RX poll now bug workaround.
	 * Per silicon revision B3 eratta.
	 */
	ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0020, DEBUG_CTRL);

	/* Now restore MACCTRL to original setting. */
	ipg_w32(IPG_MC_RSVD_MASK & restoremacctrl, MAC_CTRL);

	/* Disable unused RMON statistics. */
	ipg_w32(IPG_RZ_ALL, RMON_STATISTICS_MASK);

	/* Disable unused MIB statistics. */
	ipg_w32(IPG_SM_MACCONTROLFRAMESXMTD | IPG_SM_MACCONTROLFRAMESRCVD |
		IPG_SM_BCSTOCTETXMTOK_BCSTFRAMESXMTDOK | IPG_SM_TXJUMBOFRAMES |
		IPG_SM_MCSTOCTETXMTOK_MCSTFRAMESXMTDOK | IPG_SM_RXJUMBOFRAMES |
		IPG_SM_BCSTOCTETRCVDOK_BCSTFRAMESRCVDOK |
		IPG_SM_UDPCHECKSUMERRORS | IPG_SM_TCPCHECKSUMERRORS |
		IPG_SM_IPCHECKSUMERRORS, STATISTICS_MASK);

	return 0;
}

/*
 * Create a receive buffer within system memory and update
 * NIC private structure appropriately.
 */
static int ipg_get_rxbuff(struct net_device *dev, int entry)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	struct ipg_rx *rxfd = sp->rxd + entry;
	struct sk_buff *skb;
	u64 rxfragsize;

	IPG_DEBUG_MSG("_get_rxbuff\n");

	skb = netdev_alloc_skb_ip_align(dev, sp->rxsupport_size);
	if (!skb) {
		sp->rx_buff[entry] = NULL;
		return -ENOMEM;
	}

	/* Save the address of the sk_buff structure. */
	sp->rx_buff[entry] = skb;

	rxfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
		sp->rx_buf_sz, PCI_DMA_FROMDEVICE));

	/* Set the RFD fragment length. */
	rxfragsize = sp->rxfrag_size;
	rxfd->frag_info |= cpu_to_le64((rxfragsize << 48) & IPG_RFI_FRAGLEN);

	return 0;
}

static int init_rfdlist(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	unsigned int i;

	IPG_DEBUG_MSG("_init_rfdlist\n");

	for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
		struct ipg_rx *rxfd = sp->rxd + i;

		if (sp->rx_buff[i]) {
			pci_unmap_single(sp->pdev,
				le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
				sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
			dev_kfree_skb_irq(sp->rx_buff[i]);
			sp->rx_buff[i] = NULL;
		}

		/* Clear out the RFS field. */
		rxfd->rfs = 0x0000000000000000;

		if (ipg_get_rxbuff(dev, i) < 0) {
			/*
			 * A receive buffer was not ready, break the
			 * RFD list here.
			 */
			IPG_DEBUG_MSG("Cannot allocate Rx buffer\n");

			/* Just in case we cannot allocate a single RFD.
			 * Should not occur.
			 */
			if (i == 0) {
				netdev_err(dev, "No memory available for RFD list\n");
				return -ENOMEM;
			}
		}

		rxfd->next_desc = cpu_to_le64(sp->rxd_map +
			sizeof(struct ipg_rx)*(i + 1));
	}
	sp->rxd[i - 1].next_desc = cpu_to_le64(sp->rxd_map);

	sp->rx_current = 0;
	sp->rx_dirty = 0;

	/* Write the location of the RFDList to the IPG. */
	ipg_w32((u32) sp->rxd_map, RFD_LIST_PTR_0);
	ipg_w32(0x00000000, RFD_LIST_PTR_1);

	return 0;
}

static void init_tfdlist(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	unsigned int i;

	IPG_DEBUG_MSG("_init_tfdlist\n");

	for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
		struct ipg_tx *txfd = sp->txd + i;

		txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);

		if (sp->tx_buff[i]) {
			dev_kfree_skb_irq(sp->tx_buff[i]);
			sp->tx_buff[i] = NULL;
		}

		txfd->next_desc = cpu_to_le64(sp->txd_map +
			sizeof(struct ipg_tx)*(i + 1));
	}
	sp->txd[i - 1].next_desc = cpu_to_le64(sp->txd_map);

	sp->tx_current = 0;
	sp->tx_dirty = 0;

	/* Write the location of the TFDList to the IPG. */
	IPG_DDEBUG_MSG("Starting TFDListPtr = %08x\n",
		       (u32) sp->txd_map);
	ipg_w32((u32) sp->txd_map, TFD_LIST_PTR_0);
	ipg_w32(0x00000000, TFD_LIST_PTR_1);

	sp->reset_current_tfd = 1;
}

/*
 * Free all transmit buffers which have already been transferred
 * via DMA to the IPG.
 */
static void ipg_nic_txfree(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	unsigned int released, pending, dirty;

	IPG_DEBUG_MSG("_nic_txfree\n");

	pending = sp->tx_current - sp->tx_dirty;
	dirty = sp->tx_dirty % IPG_TFDLIST_LENGTH;

	for (released = 0; released < pending; released++) {
		struct sk_buff *skb = sp->tx_buff[dirty];
		struct ipg_tx *txfd = sp->txd + dirty;

		IPG_DEBUG_MSG("TFC = %016lx\n", (unsigned long) txfd->tfc);

		/* Look at each TFD's TFC field beginning
		 * at the last freed TFD up to the current TFD.
		 * If the TFDDone bit is set, free the associated
		 * buffer.
		 */
		if (!(txfd->tfc & cpu_to_le64(IPG_TFC_TFDDONE)))
                        break;

		/* Free the transmit buffer. */
		if (skb) {
			pci_unmap_single(sp->pdev,
				le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
				skb->len, PCI_DMA_TODEVICE);

			dev_kfree_skb_irq(skb);

			sp->tx_buff[dirty] = NULL;
		}
		dirty = (dirty + 1) % IPG_TFDLIST_LENGTH;
	}

	sp->tx_dirty += released;

	if (netif_queue_stopped(dev) &&
	    (sp->tx_current != (sp->tx_dirty + IPG_TFDLIST_LENGTH))) {
		netif_wake_queue(dev);
	}
}

static void ipg_tx_timeout(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;

	ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA | IPG_AC_NETWORK |
		  IPG_AC_FIFO);

	spin_lock_irq(&sp->lock);

	/* Re-configure after DMA reset. */
	if (ipg_io_config(dev) < 0)
		netdev_info(dev, "Error during re-configuration\n");

	init_tfdlist(dev);

	spin_unlock_irq(&sp->lock);

	ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & IPG_MC_RSVD_MASK,
		MAC_CTRL);
}

/*
 * For TxComplete interrupts, free all transmit
 * buffers which have already been transferred via DMA
 * to the IPG.
 */
static void ipg_nic_txcleanup(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	unsigned int i;

	IPG_DEBUG_MSG("_nic_txcleanup\n");

	for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
		/* Reading the TXSTATUS register clears the
		 * TX_COMPLETE interrupt.
		 */
		u32 txstatusdword = ipg_r32(TX_STATUS);

		IPG_DEBUG_MSG("TxStatus = %08x\n", txstatusdword);

		/* Check for Transmit errors. Error bits only valid if
		 * TX_COMPLETE bit in the TXSTATUS register is a 1.
		 */
		if (!(txstatusdword & IPG_TS_TX_COMPLETE))
			break;

		/* If in 10Mbps mode, indicate transmit is ready. */
		if (sp->tenmbpsmode) {
			netif_wake_queue(dev);
		}

		/* Transmit error, increment stat counters. */
		if (txstatusdword & IPG_TS_TX_ERROR) {
			IPG_DEBUG_MSG("Transmit error\n");
			sp->stats.tx_errors++;
		}

		/* Late collision, re-enable transmitter. */
		if (txstatusdword & IPG_TS_LATE_COLLISION) {
			IPG_DEBUG_MSG("Late collision on transmit\n");
			ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
				IPG_MC_RSVD_MASK, MAC_CTRL);
		}

		/* Maximum collisions, re-enable transmitter. */
		if (txstatusdword & IPG_TS_TX_MAX_COLL) {
			IPG_DEBUG_MSG("Maximum collisions on transmit\n");
			ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
				IPG_MC_RSVD_MASK, MAC_CTRL);
		}

		/* Transmit underrun, reset and re-enable
		 * transmitter.
		 */
		if (txstatusdword & IPG_TS_TX_UNDERRUN) {
			IPG_DEBUG_MSG("Transmitter underrun\n");
			sp->stats.tx_fifo_errors++;
			ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA |
				  IPG_AC_NETWORK | IPG_AC_FIFO);

			/* Re-configure after DMA reset. */
			if (ipg_io_config(dev) < 0) {
				netdev_info(dev, "Error during re-configuration\n");
			}
			init_tfdlist(dev);

			ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
				IPG_MC_RSVD_MASK, MAC_CTRL);
		}
	}

	ipg_nic_txfree(dev);
}

/* Provides statistical information about the IPG NIC. */
static struct net_device_stats *ipg_nic_get_stats(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	u16 temp1;
	u16 temp2;

	IPG_DEBUG_MSG("_nic_get_stats\n");

	/* Check to see if the NIC has been initialized via nic_open,
	 * before trying to read statistic registers.
	 */
	if (!test_bit(__LINK_STATE_START, &dev->state))
		return &sp->stats;

	sp->stats.rx_packets += ipg_r32(IPG_FRAMESRCVDOK);
	sp->stats.tx_packets += ipg_r32(IPG_FRAMESXMTDOK);
	sp->stats.rx_bytes += ipg_r32(IPG_OCTETRCVOK);
	sp->stats.tx_bytes += ipg_r32(IPG_OCTETXMTOK);
	temp1 = ipg_r16(IPG_FRAMESLOSTRXERRORS);
	sp->stats.rx_errors += temp1;
	sp->stats.rx_missed_errors += temp1;
	temp1 = ipg_r32(IPG_SINGLECOLFRAMES) + ipg_r32(IPG_MULTICOLFRAMES) +
		ipg_r32(IPG_LATECOLLISIONS);
	temp2 = ipg_r16(IPG_CARRIERSENSEERRORS);
	sp->stats.collisions += temp1;
	sp->stats.tx_dropped += ipg_r16(IPG_FRAMESABORTXSCOLLS);
	sp->stats.tx_errors += ipg_r16(IPG_FRAMESWEXDEFERRAL) +
		ipg_r32(IPG_FRAMESWDEFERREDXMT) + temp1 + temp2;
	sp->stats.multicast += ipg_r32(IPG_MCSTOCTETRCVDOK);

	/* detailed tx_errors */
	sp->stats.tx_carrier_errors += temp2;

	/* detailed rx_errors */
	sp->stats.rx_length_errors += ipg_r16(IPG_INRANGELENGTHERRORS) +
		ipg_r16(IPG_FRAMETOOLONGERRRORS);
	sp->stats.rx_crc_errors += ipg_r16(IPG_FRAMECHECKSEQERRORS);

	/* Unutilized IPG statistic registers. */
	ipg_r32(IPG_MCSTFRAMESRCVDOK);

	return &sp->stats;
}

/* Restore used receive buffers. */
static int ipg_nic_rxrestore(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	const unsigned int curr = sp->rx_current;
	unsigned int dirty = sp->rx_dirty;

	IPG_DEBUG_MSG("_nic_rxrestore\n");

	for (dirty = sp->rx_dirty; curr - dirty > 0; dirty++) {
		unsigned int entry = dirty % IPG_RFDLIST_LENGTH;

		/* rx_copybreak may poke hole here and there. */
		if (sp->rx_buff[entry])
			continue;

		/* Generate a new receive buffer to replace the
		 * current buffer (which will be released by the
		 * Linux system).
		 */
		if (ipg_get_rxbuff(dev, entry) < 0) {
			IPG_DEBUG_MSG("Cannot allocate new Rx buffer\n");

			break;
		}

		/* Reset the RFS field. */
		sp->rxd[entry].rfs = 0x0000000000000000;
	}
	sp->rx_dirty = dirty;

	return 0;
}

/* use jumboindex and jumbosize to control jumbo frame status
 * initial status is jumboindex=-1 and jumbosize=0
 * 1. jumboindex = -1 and jumbosize=0 : previous jumbo frame has been done.
 * 2. jumboindex != -1 and jumbosize != 0 : jumbo frame is not over size and receiving
 * 3. jumboindex = -1 and jumbosize != 0 : jumbo frame is over size, already dump
 *               previous receiving and need to continue dumping the current one
 */
enum {
	NORMAL_PACKET,
	ERROR_PACKET
};

enum {
	FRAME_NO_START_NO_END	= 0,
	FRAME_WITH_START		= 1,
	FRAME_WITH_END		= 10,
	FRAME_WITH_START_WITH_END = 11
};

static void ipg_nic_rx_free_skb(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;

	if (sp->rx_buff[entry]) {
		struct ipg_rx *rxfd = sp->rxd + entry;

		pci_unmap_single(sp->pdev,
			le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
			sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
		dev_kfree_skb_irq(sp->rx_buff[entry]);
		sp->rx_buff[entry] = NULL;
	}
}

static int ipg_nic_rx_check_frame_type(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	struct ipg_rx *rxfd = sp->rxd + (sp->rx_current % IPG_RFDLIST_LENGTH);
	int type = FRAME_NO_START_NO_END;

	if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART)
		type += FRAME_WITH_START;
	if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND)
		type += FRAME_WITH_END;
	return type;
}

static int ipg_nic_rx_check_error(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
	struct ipg_rx *rxfd = sp->rxd + entry;

	if (IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
	     (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
	      IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
	      IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR))) {
		IPG_DEBUG_MSG("Rx error, RFS = %016lx\n",
			      (unsigned long) rxfd->rfs);

		/* Increment general receive error statistic. */
		sp->stats.rx_errors++;

		/* Increment detailed receive error statistics. */
		if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
			IPG_DEBUG_MSG("RX FIFO overrun occurred\n");

			sp->stats.rx_fifo_errors++;
		}

		if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
			IPG_DEBUG_MSG("RX runt occurred\n");
			sp->stats.rx_length_errors++;
		}

		/* Do nothing for IPG_RFS_RXOVERSIZEDFRAME,
		 * error count handled by a IPG statistic register.
		 */

		if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
			IPG_DEBUG_MSG("RX alignment error occurred\n");
			sp->stats.rx_frame_errors++;
		}

		/* Do nothing for IPG_RFS_RXFCSERROR, error count
		 * handled by a IPG statistic register.
		 */

		/* Free the memory associated with the RX
		 * buffer since it is erroneous and we will
		 * not pass it to higher layer processes.
		 */
		if (sp->rx_buff[entry]) {
			pci_unmap_single(sp->pdev,
				le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
				sp->rx_buf_sz, PCI_DMA_FROMDEVICE);

			dev_kfree_skb_irq(sp->rx_buff[entry]);
			sp->rx_buff[entry] = NULL;
		}
		return ERROR_PACKET;
	}
	return NORMAL_PACKET;
}

static void ipg_nic_rx_with_start_and_end(struct net_device *dev,
					  struct ipg_nic_private *sp,
					  struct ipg_rx *rxfd, unsigned entry)
{
	struct ipg_jumbo *jumbo = &sp->jumbo;
	struct sk_buff *skb;
	int framelen;

	if (jumbo->found_start) {
		dev_kfree_skb_irq(jumbo->skb);
		jumbo->found_start = 0;
		jumbo->current_size = 0;
		jumbo->skb = NULL;
	}

	/* 1: found error, 0 no error */
	if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET)
		return;

	skb = sp->rx_buff[entry];
	if (!skb)
		return;

	/* accept this frame and send to upper layer */
	framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
	if (framelen > sp->rxfrag_size)
		framelen = sp->rxfrag_size;

	skb_put(skb, framelen);
	skb->protocol = eth_type_trans(skb, dev);
	skb_checksum_none_assert(skb);
	netif_rx(skb);
	sp->rx_buff[entry] = NULL;
}

static void ipg_nic_rx_with_start(struct net_device *dev,
				  struct ipg_nic_private *sp,
				  struct ipg_rx *rxfd, unsigned entry)
{
	struct ipg_jumbo *jumbo = &sp->jumbo;
	struct pci_dev *pdev = sp->pdev;
	struct sk_buff *skb;

	/* 1: found error, 0 no error */
	if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET)
		return;

	/* accept this frame and send to upper layer */
	skb = sp->rx_buff[entry];
	if (!skb)
		return;

	if (jumbo->found_start)
		dev_kfree_skb_irq(jumbo->skb);

	pci_unmap_single(pdev, le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
			 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);

	skb_put(skb, sp->rxfrag_size);

	jumbo->found_start = 1;
	jumbo->current_size = sp->rxfrag_size;
	jumbo->skb = skb;

	sp->rx_buff[entry] = NULL;
}

static void ipg_nic_rx_with_end(struct net_device *dev,
				struct ipg_nic_private *sp,
				struct ipg_rx *rxfd, unsigned entry)
{
	struct ipg_jumbo *jumbo = &sp->jumbo;

	/* 1: found error, 0 no error */
	if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) {
		struct sk_buff *skb = sp->rx_buff[entry];

		if (!skb)
			return;

		if (jumbo->found_start) {
			int framelen, endframelen;

			framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;

			endframelen = framelen - jumbo->current_size;
			if (framelen > sp->rxsupport_size)
				dev_kfree_skb_irq(jumbo->skb);
			else {
				memcpy(skb_put(jumbo->skb, endframelen),
				       skb->data, endframelen);

				jumbo->skb->protocol =
				    eth_type_trans(jumbo->skb, dev);

				skb_checksum_none_assert(jumbo->skb);
				netif_rx(jumbo->skb);
			}
		}

		jumbo->found_start = 0;
		jumbo->current_size = 0;
		jumbo->skb = NULL;

		ipg_nic_rx_free_skb(dev);
	} else {
		dev_kfree_skb_irq(jumbo->skb);
		jumbo->found_start = 0;
		jumbo->current_size = 0;
		jumbo->skb = NULL;
	}
}

static void ipg_nic_rx_no_start_no_end(struct net_device *dev,
				       struct ipg_nic_private *sp,
				       struct ipg_rx *rxfd, unsigned entry)
{
	struct ipg_jumbo *jumbo = &sp->jumbo;

	/* 1: found error, 0 no error */
	if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) {
		struct sk_buff *skb = sp->rx_buff[entry];

		if (skb) {
			if (jumbo->found_start) {
				jumbo->current_size += sp->rxfrag_size;
				if (jumbo->current_size <= sp->rxsupport_size) {
					memcpy(skb_put(jumbo->skb,
						       sp->rxfrag_size),
					       skb->data, sp->rxfrag_size);
				}
			}
			ipg_nic_rx_free_skb(dev);
		}
	} else {
		dev_kfree_skb_irq(jumbo->skb);
		jumbo->found_start = 0;
		jumbo->current_size = 0;
		jumbo->skb = NULL;
	}
}

static int ipg_nic_rx_jumbo(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	unsigned int curr = sp->rx_current;
	void __iomem *ioaddr = sp->ioaddr;
	unsigned int i;

	IPG_DEBUG_MSG("_nic_rx\n");

	for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
		unsigned int entry = curr % IPG_RFDLIST_LENGTH;
		struct ipg_rx *rxfd = sp->rxd + entry;

		if (!(rxfd->rfs & cpu_to_le64(IPG_RFS_RFDDONE)))
			break;

		switch (ipg_nic_rx_check_frame_type(dev)) {
		case FRAME_WITH_START_WITH_END:
			ipg_nic_rx_with_start_and_end(dev, sp, rxfd, entry);
			break;
		case FRAME_WITH_START:
			ipg_nic_rx_with_start(dev, sp, rxfd, entry);
			break;
		case FRAME_WITH_END:
			ipg_nic_rx_with_end(dev, sp, rxfd, entry);
			break;
		case FRAME_NO_START_NO_END:
			ipg_nic_rx_no_start_no_end(dev, sp, rxfd, entry);
			break;
		}
	}

	sp->rx_current = curr;

	if (i == IPG_MAXRFDPROCESS_COUNT) {
		/* There are more RFDs to process, however the
		 * allocated amount of RFD processing time has
		 * expired. Assert Interrupt Requested to make
		 * sure we come back to process the remaining RFDs.
		 */
		ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);
	}

	ipg_nic_rxrestore(dev);

	return 0;
}

static int ipg_nic_rx(struct net_device *dev)
{
	/* Transfer received Ethernet frames to higher network layers. */
	struct ipg_nic_private *sp = netdev_priv(dev);
	unsigned int curr = sp->rx_current;
	void __iomem *ioaddr = sp->ioaddr;
	struct ipg_rx *rxfd;
	unsigned int i;

	IPG_DEBUG_MSG("_nic_rx\n");

#define __RFS_MASK \
	cpu_to_le64(IPG_RFS_RFDDONE | IPG_RFS_FRAMESTART | IPG_RFS_FRAMEEND)

	for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
		unsigned int entry = curr % IPG_RFDLIST_LENGTH;
		struct sk_buff *skb = sp->rx_buff[entry];
		unsigned int framelen;

		rxfd = sp->rxd + entry;

		if (((rxfd->rfs & __RFS_MASK) != __RFS_MASK) || !skb)
			break;

		/* Get received frame length. */
		framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;

		/* Check for jumbo frame arrival with too small
		 * RXFRAG_SIZE.
		 */
		if (framelen > sp->rxfrag_size) {
			IPG_DEBUG_MSG
			    ("RFS FrameLen > allocated fragment size\n");

			framelen = sp->rxfrag_size;
		}

		if ((IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
		       (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
			IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
			IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR)))) {

			IPG_DEBUG_MSG("Rx error, RFS = %016lx\n",
				      (unsigned long int) rxfd->rfs);

			/* Increment general receive error statistic. */
			sp->stats.rx_errors++;

			/* Increment detailed receive error statistics. */
			if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
				IPG_DEBUG_MSG("RX FIFO overrun occurred\n");
				sp->stats.rx_fifo_errors++;
			}

			if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
				IPG_DEBUG_MSG("RX runt occurred\n");
				sp->stats.rx_length_errors++;
			}

			if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXOVERSIZEDFRAME) ;
			/* Do nothing, error count handled by a IPG
			 * statistic register.
			 */

			if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
				IPG_DEBUG_MSG("RX alignment error occurred\n");
				sp->stats.rx_frame_errors++;
			}

			if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFCSERROR) ;
			/* Do nothing, error count handled by a IPG
			 * statistic register.
			 */

			/* Free the memory associated with the RX
			 * buffer since it is erroneous and we will
			 * not pass it to higher layer processes.
			 */
			if (skb) {
				__le64 info = rxfd->frag_info;

				pci_unmap_single(sp->pdev,
					le64_to_cpu(info) & ~IPG_RFI_FRAGLEN,
					sp->rx_buf_sz, PCI_DMA_FROMDEVICE);

				dev_kfree_skb_irq(skb);
			}
		} else {

			/* Adjust the new buffer length to accommodate the size
			 * of the received frame.
			 */
			skb_put(skb, framelen);

			/* Set the buffer's protocol field to Ethernet. */
			skb->protocol = eth_type_trans(skb, dev);

			/* The IPG encountered an error with (or
			 * there were no) IP/TCP/UDP checksums.
			 * This may or may not indicate an invalid
			 * IP/TCP/UDP frame was received. Let the
			 * upper layer decide.
			 */
			skb_checksum_none_assert(skb);

			/* Hand off frame for higher layer processing.
			 * The function netif_rx() releases the sk_buff
			 * when processing completes.
			 */
			netif_rx(skb);
		}

		/* Assure RX buffer is not reused by IPG. */
		sp->rx_buff[entry] = NULL;
	}

	/*
	 * If there are more RFDs to process and the allocated amount of RFD
	 * processing time has expired, assert Interrupt Requested to make
	 * sure we come back to process the remaining RFDs.
	 */
	if (i == IPG_MAXRFDPROCESS_COUNT)
		ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);

#ifdef IPG_DEBUG
	/* Check if the RFD list contained no receive frame data. */
	if (!i)
		sp->EmptyRFDListCount++;
#endif
	while ((le64_to_cpu(rxfd->rfs) & IPG_RFS_RFDDONE) &&
	       !((le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART) &&
		 (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND))) {
		unsigned int entry = curr++ % IPG_RFDLIST_LENGTH;

		rxfd = sp->rxd + entry;

		IPG_DEBUG_MSG("Frame requires multiple RFDs\n");

		/* An unexpected event, additional code needed to handle
		 * properly. So for the time being, just disregard the
		 * frame.
		 */

		/* Free the memory associated with the RX
		 * buffer since it is erroneous and we will
		 * not pass it to higher layer processes.
		 */
		if (sp->rx_buff[entry]) {
			pci_unmap_single(sp->pdev,
				le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
				sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
			dev_kfree_skb_irq(sp->rx_buff[entry]);
		}

		/* Assure RX buffer is not reused by IPG. */
		sp->rx_buff[entry] = NULL;
	}

	sp->rx_current = curr;

	/* Check to see if there are a minimum number of used
	 * RFDs before restoring any (should improve performance.)
	 */
	if ((curr - sp->rx_dirty) >= IPG_MINUSEDRFDSTOFREE)
		ipg_nic_rxrestore(dev);

	return 0;
}

static void ipg_reset_after_host_error(struct work_struct *work)
{
	struct ipg_nic_private *sp =
		container_of(work, struct ipg_nic_private, task.work);
	struct net_device *dev = sp->dev;

	/*
	 * Acknowledge HostError interrupt by resetting
	 * IPG DMA and HOST.
	 */
	ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);

	init_rfdlist(dev);
	init_tfdlist(dev);

	if (ipg_io_config(dev) < 0) {
		netdev_info(dev, "Cannot recover from PCI error\n");
		schedule_delayed_work(&sp->task, HZ);
	}
}

static irqreturn_t ipg_interrupt_handler(int irq, void *dev_inst)
{
	struct net_device *dev = dev_inst;
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	unsigned int handled = 0;
	u16 status;

	IPG_DEBUG_MSG("_interrupt_handler\n");

	if (sp->is_jumbo)
		ipg_nic_rxrestore(dev);

	spin_lock(&sp->lock);

	/* Get interrupt source information, and acknowledge
	 * some (i.e. TxDMAComplete, RxDMAComplete, RxEarly,
	 * IntRequested, MacControlFrame, LinkEvent) interrupts
	 * if issued. Also, all IPG interrupts are disabled by
	 * reading IntStatusAck.
	 */
	status = ipg_r16(INT_STATUS_ACK);

	IPG_DEBUG_MSG("IntStatusAck = %04x\n", status);

	/* Shared IRQ of remove event. */
	if (!(status & IPG_IS_RSVD_MASK))
		goto out_enable;

	handled = 1;

	if (unlikely(!netif_running(dev)))
		goto out_unlock;

	/* If RFDListEnd interrupt, restore all used RFDs. */
	if (status & IPG_IS_RFD_LIST_END) {
		IPG_DEBUG_MSG("RFDListEnd Interrupt\n");

		/* The RFD list end indicates an RFD was encountered
		 * with a 0 NextPtr, or with an RFDDone bit set to 1
		 * (indicating the RFD is not read for use by the
		 * IPG.) Try to restore all RFDs.
		 */
		ipg_nic_rxrestore(dev);

#ifdef IPG_DEBUG
		/* Increment the RFDlistendCount counter. */
		sp->RFDlistendCount++;
#endif
	}

	/* If RFDListEnd, RxDMAPriority, RxDMAComplete, or
	 * IntRequested interrupt, process received frames. */
	if ((status & IPG_IS_RX_DMA_PRIORITY) ||
	    (status & IPG_IS_RFD_LIST_END) ||
	    (status & IPG_IS_RX_DMA_COMPLETE) ||
	    (status & IPG_IS_INT_REQUESTED)) {
#ifdef IPG_DEBUG
		/* Increment the RFD list checked counter if interrupted
		 * only to check the RFD list. */
		if (status & (~(IPG_IS_RX_DMA_PRIORITY | IPG_IS_RFD_LIST_END |
				IPG_IS_RX_DMA_COMPLETE | IPG_IS_INT_REQUESTED) &
			       (IPG_IS_HOST_ERROR | IPG_IS_TX_DMA_COMPLETE |
				IPG_IS_LINK_EVENT | IPG_IS_TX_COMPLETE |
				IPG_IS_UPDATE_STATS)))
			sp->RFDListCheckedCount++;
#endif

		if (sp->is_jumbo)
			ipg_nic_rx_jumbo(dev);
		else
			ipg_nic_rx(dev);
	}

	/* If TxDMAComplete interrupt, free used TFDs. */
	if (status & IPG_IS_TX_DMA_COMPLETE)
		ipg_nic_txfree(dev);

	/* TxComplete interrupts indicate one of numerous actions.
	 * Determine what action to take based on TXSTATUS register.
	 */
	if (status & IPG_IS_TX_COMPLETE)
		ipg_nic_txcleanup(dev);

	/* If UpdateStats interrupt, update Linux Ethernet statistics */
	if (status & IPG_IS_UPDATE_STATS)
		ipg_nic_get_stats(dev);

	/* If HostError interrupt, reset IPG. */
	if (status & IPG_IS_HOST_ERROR) {
		IPG_DDEBUG_MSG("HostError Interrupt\n");

		schedule_delayed_work(&sp->task, 0);
	}

	/* If LinkEvent interrupt, resolve autonegotiation. */
	if (status & IPG_IS_LINK_EVENT) {
		if (ipg_config_autoneg(dev) < 0)
			netdev_info(dev, "Auto-negotiation error\n");
	}

	/* If MACCtrlFrame interrupt, do nothing. */
	if (status & IPG_IS_MAC_CTRL_FRAME)
		IPG_DEBUG_MSG("MACCtrlFrame interrupt\n");

	/* If RxComplete interrupt, do nothing. */
	if (status & IPG_IS_RX_COMPLETE)
		IPG_DEBUG_MSG("RxComplete interrupt\n");

	/* If RxEarly interrupt, do nothing. */
	if (status & IPG_IS_RX_EARLY)
		IPG_DEBUG_MSG("RxEarly interrupt\n");

out_enable:
	/* Re-enable IPG interrupts. */
	ipg_w16(IPG_IE_TX_DMA_COMPLETE | IPG_IE_RX_DMA_COMPLETE |
		IPG_IE_HOST_ERROR | IPG_IE_INT_REQUESTED | IPG_IE_TX_COMPLETE |
		IPG_IE_LINK_EVENT | IPG_IE_UPDATE_STATS, INT_ENABLE);
out_unlock:
	spin_unlock(&sp->lock);

	return IRQ_RETVAL(handled);
}

static void ipg_rx_clear(struct ipg_nic_private *sp)
{
	unsigned int i;

	for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
		if (sp->rx_buff[i]) {
			struct ipg_rx *rxfd = sp->rxd + i;

			dev_kfree_skb_irq(sp->rx_buff[i]);
			sp->rx_buff[i] = NULL;
			pci_unmap_single(sp->pdev,
				le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
				sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
		}
	}
}

static void ipg_tx_clear(struct ipg_nic_private *sp)
{
	unsigned int i;

	for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
		if (sp->tx_buff[i]) {
			struct ipg_tx *txfd = sp->txd + i;

			pci_unmap_single(sp->pdev,
				le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
				sp->tx_buff[i]->len, PCI_DMA_TODEVICE);

			dev_kfree_skb_irq(sp->tx_buff[i]);

			sp->tx_buff[i] = NULL;
		}
	}
}

static int ipg_nic_open(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	struct pci_dev *pdev = sp->pdev;
	int rc;

	IPG_DEBUG_MSG("_nic_open\n");

	sp->rx_buf_sz = sp->rxsupport_size;

	/* Check for interrupt line conflicts, and request interrupt
	 * line for IPG.
	 *
	 * IMPORTANT: Disable IPG interrupts prior to registering
	 *            IRQ.
	 */
	ipg_w16(0x0000, INT_ENABLE);

	/* Register the interrupt line to be used by the IPG within
	 * the Linux system.
	 */
	rc = request_irq(pdev->irq, ipg_interrupt_handler, IRQF_SHARED,
			 dev->name, dev);
	if (rc < 0) {
		netdev_info(dev, "Error when requesting interrupt\n");
		goto out;
	}

	dev->irq = pdev->irq;

	rc = -ENOMEM;

	sp->rxd = dma_alloc_coherent(&pdev->dev, IPG_RX_RING_BYTES,
				     &sp->rxd_map, GFP_KERNEL);
	if (!sp->rxd)
		goto err_free_irq_0;

	sp->txd = dma_alloc_coherent(&pdev->dev, IPG_TX_RING_BYTES,
				     &sp->txd_map, GFP_KERNEL);
	if (!sp->txd)
		goto err_free_rx_1;

	rc = init_rfdlist(dev);
	if (rc < 0) {
		netdev_info(dev, "Error during configuration\n");
		goto err_free_tx_2;
	}

	init_tfdlist(dev);

	rc = ipg_io_config(dev);
	if (rc < 0) {
		netdev_info(dev, "Error during configuration\n");
		goto err_release_tfdlist_3;
	}

	/* Resolve autonegotiation. */
	if (ipg_config_autoneg(dev) < 0)
		netdev_info(dev, "Auto-negotiation error\n");

	/* initialize JUMBO Frame control variable */
	sp->jumbo.found_start = 0;
	sp->jumbo.current_size = 0;
	sp->jumbo.skb = NULL;

	/* Enable transmit and receive operation of the IPG. */
	ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_RX_ENABLE | IPG_MC_TX_ENABLE) &
		 IPG_MC_RSVD_MASK, MAC_CTRL);

	netif_start_queue(dev);
out:
	return rc;

err_release_tfdlist_3:
	ipg_tx_clear(sp);
	ipg_rx_clear(sp);
err_free_tx_2:
	dma_free_coherent(&pdev->dev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);
err_free_rx_1:
	dma_free_coherent(&pdev->dev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
err_free_irq_0:
	free_irq(pdev->irq, dev);
	goto out;
}

static int ipg_nic_stop(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	struct pci_dev *pdev = sp->pdev;

	IPG_DEBUG_MSG("_nic_stop\n");

	netif_stop_queue(dev);

	IPG_DUMPTFDLIST(dev);

	do {
		(void) ipg_r16(INT_STATUS_ACK);

		ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);

		synchronize_irq(pdev->irq);
	} while (ipg_r16(INT_ENABLE) & IPG_IE_RSVD_MASK);

	ipg_rx_clear(sp);

	ipg_tx_clear(sp);

	pci_free_consistent(pdev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
	pci_free_consistent(pdev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);

	free_irq(pdev->irq, dev);

	return 0;
}

static netdev_tx_t ipg_nic_hard_start_xmit(struct sk_buff *skb,
					   struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	unsigned int entry = sp->tx_current % IPG_TFDLIST_LENGTH;
	unsigned long flags;
	struct ipg_tx *txfd;

	IPG_DDEBUG_MSG("_nic_hard_start_xmit\n");

	/* If in 10Mbps mode, stop the transmit queue so
	 * no more transmit frames are accepted.
	 */
	if (sp->tenmbpsmode)
		netif_stop_queue(dev);

	if (sp->reset_current_tfd) {
		sp->reset_current_tfd = 0;
		entry = 0;
	}

	txfd = sp->txd + entry;

	sp->tx_buff[entry] = skb;

	/* Clear all TFC fields, except TFDDONE. */
	txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);

	/* Specify the TFC field within the TFD. */
	txfd->tfc |= cpu_to_le64(IPG_TFC_WORDALIGNDISABLED |
		(IPG_TFC_FRAMEID & sp->tx_current) |
		(IPG_TFC_FRAGCOUNT & (1 << 24)));
	/*
	 * 16--17 (WordAlign) <- 3 (disable),
	 * 0--15 (FrameId) <- sp->tx_current,
	 * 24--27 (FragCount) <- 1
	 */

	/* Request TxComplete interrupts at an interval defined
	 * by the constant IPG_FRAMESBETWEENTXCOMPLETES.
	 * Request TxComplete interrupt for every frame
	 * if in 10Mbps mode to accommodate problem with 10Mbps
	 * processing.
	 */
	if (sp->tenmbpsmode)
		txfd->tfc |= cpu_to_le64(IPG_TFC_TXINDICATE);
	txfd->tfc |= cpu_to_le64(IPG_TFC_TXDMAINDICATE);
	/* Based on compilation option, determine if FCS is to be
	 * appended to transmit frame by IPG.
	 */
	if (!(IPG_APPEND_FCS_ON_TX))
		txfd->tfc |= cpu_to_le64(IPG_TFC_FCSAPPENDDISABLE);

	/* Based on compilation option, determine if IP, TCP and/or
	 * UDP checksums are to be added to transmit frame by IPG.
	 */
	if (IPG_ADD_IPCHECKSUM_ON_TX)
		txfd->tfc |= cpu_to_le64(IPG_TFC_IPCHECKSUMENABLE);

	if (IPG_ADD_TCPCHECKSUM_ON_TX)
		txfd->tfc |= cpu_to_le64(IPG_TFC_TCPCHECKSUMENABLE);

	if (IPG_ADD_UDPCHECKSUM_ON_TX)
		txfd->tfc |= cpu_to_le64(IPG_TFC_UDPCHECKSUMENABLE);

	/* Based on compilation option, determine if VLAN tag info is to be
	 * inserted into transmit frame by IPG.
	 */
	if (IPG_INSERT_MANUAL_VLAN_TAG) {
		txfd->tfc |= cpu_to_le64(IPG_TFC_VLANTAGINSERT |
			((u64) IPG_MANUAL_VLAN_VID << 32) |
			((u64) IPG_MANUAL_VLAN_CFI << 44) |
			((u64) IPG_MANUAL_VLAN_USERPRIORITY << 45));
	}

	/* The fragment start location within system memory is defined
	 * by the sk_buff structure's data field. The physical address
	 * of this location within the system's virtual memory space
	 * is determined using the IPG_HOST2BUS_MAP function.
	 */
	txfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
		skb->len, PCI_DMA_TODEVICE));

	/* The length of the fragment within system memory is defined by
	 * the sk_buff structure's len field.
	 */
	txfd->frag_info |= cpu_to_le64(IPG_TFI_FRAGLEN &
		((u64) (skb->len & 0xffff) << 48));

	/* Clear the TFDDone bit last to indicate the TFD is ready
	 * for transfer to the IPG.
	 */
	txfd->tfc &= cpu_to_le64(~IPG_TFC_TFDDONE);

	spin_lock_irqsave(&sp->lock, flags);

	sp->tx_current++;

	mmiowb();

	ipg_w32(IPG_DC_TX_DMA_POLL_NOW, DMA_CTRL);

	if (sp->tx_current == (sp->tx_dirty + IPG_TFDLIST_LENGTH))
		netif_stop_queue(dev);

	spin_unlock_irqrestore(&sp->lock, flags);

	return NETDEV_TX_OK;
}

static void ipg_set_phy_default_param(unsigned char rev,
				      struct net_device *dev, int phy_address)
{
	unsigned short length;
	unsigned char revision;
	const unsigned short *phy_param;
	unsigned short address, value;

	phy_param = &DefaultPhyParam[0];
	length = *phy_param & 0x00FF;
	revision = (unsigned char)((*phy_param) >> 8);
	phy_param++;
	while (length != 0) {
		if (rev == revision) {
			while (length > 1) {
				address = *phy_param;
				value = *(phy_param + 1);
				phy_param += 2;
				mdio_write(dev, phy_address, address, value);
				length -= 4;
			}
			break;
		} else {
			phy_param += length / 2;
			length = *phy_param & 0x00FF;
			revision = (unsigned char)((*phy_param) >> 8);
			phy_param++;
		}
	}
}

static int read_eeprom(struct net_device *dev, int eep_addr)
{
	void __iomem *ioaddr = ipg_ioaddr(dev);
	unsigned int i;
	int ret = 0;
	u16 value;

	value = IPG_EC_EEPROM_READOPCODE | (eep_addr & 0xff);
	ipg_w16(value, EEPROM_CTRL);

	for (i = 0; i < 1000; i++) {
		u16 data;

		mdelay(10);
		data = ipg_r16(EEPROM_CTRL);
		if (!(data & IPG_EC_EEPROM_BUSY)) {
			ret = ipg_r16(EEPROM_DATA);
			break;
		}
	}
	return ret;
}

static void ipg_init_mii(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	struct mii_if_info *mii_if = &sp->mii_if;
	int phyaddr;

	mii_if->dev          = dev;
	mii_if->mdio_read    = mdio_read;
	mii_if->mdio_write   = mdio_write;
	mii_if->phy_id_mask  = 0x1f;
	mii_if->reg_num_mask = 0x1f;

	mii_if->phy_id = phyaddr = ipg_find_phyaddr(dev);

	if (phyaddr != 0x1f) {
		u16 mii_phyctrl, mii_1000cr;

		mii_1000cr  = mdio_read(dev, phyaddr, MII_CTRL1000);
		mii_1000cr |= ADVERTISE_1000FULL | ADVERTISE_1000HALF |
			GMII_PHY_1000BASETCONTROL_PreferMaster;
		mdio_write(dev, phyaddr, MII_CTRL1000, mii_1000cr);

		mii_phyctrl = mdio_read(dev, phyaddr, MII_BMCR);

		/* Set default phyparam */
		ipg_set_phy_default_param(sp->pdev->revision, dev, phyaddr);

		/* Reset PHY */
		mii_phyctrl |= BMCR_RESET | BMCR_ANRESTART;
		mdio_write(dev, phyaddr, MII_BMCR, mii_phyctrl);

	}
}

static int ipg_hw_init(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	unsigned int i;
	int rc;

	/* Read/Write and Reset EEPROM Value */
	/* Read LED Mode Configuration from EEPROM */
	sp->led_mode = read_eeprom(dev, 6);

	/* Reset all functions within the IPG. Do not assert
	 * RST_OUT as not compatible with some PHYs.
	 */
	rc = ipg_reset(dev, IPG_RESET_MASK);
	if (rc < 0)
		goto out;

	ipg_init_mii(dev);

	/* Read MAC Address from EEPROM */
	for (i = 0; i < 3; i++)
		sp->station_addr[i] = read_eeprom(dev, 16 + i);

	for (i = 0; i < 3; i++)
		ipg_w16(sp->station_addr[i], STATION_ADDRESS_0 + 2*i);

	/* Set station address in ethernet_device structure. */
	dev->dev_addr[0] =  ipg_r16(STATION_ADDRESS_0) & 0x00ff;
	dev->dev_addr[1] = (ipg_r16(STATION_ADDRESS_0) & 0xff00) >> 8;
	dev->dev_addr[2] =  ipg_r16(STATION_ADDRESS_1) & 0x00ff;
	dev->dev_addr[3] = (ipg_r16(STATION_ADDRESS_1) & 0xff00) >> 8;
	dev->dev_addr[4] =  ipg_r16(STATION_ADDRESS_2) & 0x00ff;
	dev->dev_addr[5] = (ipg_r16(STATION_ADDRESS_2) & 0xff00) >> 8;
out:
	return rc;
}

static int ipg_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	int rc;

	mutex_lock(&sp->mii_mutex);
	rc = generic_mii_ioctl(&sp->mii_if, if_mii(ifr), cmd, NULL);
	mutex_unlock(&sp->mii_mutex);

	return rc;
}

static int ipg_nic_change_mtu(struct net_device *dev, int new_mtu)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	int err;

	/* Function to accommodate changes to Maximum Transfer Unit
	 * (or MTU) of IPG NIC. Cannot use default function since
	 * the default will not allow for MTU > 1500 bytes.
	 */

	IPG_DEBUG_MSG("_nic_change_mtu\n");

	/*
	 * Check that the new MTU value is between 68 (14 byte header, 46 byte
	 * payload, 4 byte FCS) and 10 KB, which is the largest supported MTU.
	 */
	if (new_mtu < 68 || new_mtu > 10240)
		return -EINVAL;

	err = ipg_nic_stop(dev);
	if (err)
		return err;

	dev->mtu = new_mtu;

	sp->max_rxframe_size = new_mtu;

	sp->rxfrag_size = new_mtu;
	if (sp->rxfrag_size > 4088)
		sp->rxfrag_size = 4088;

	sp->rxsupport_size = sp->max_rxframe_size;

	if (new_mtu > 0x0600)
		sp->is_jumbo = true;
	else
		sp->is_jumbo = false;

	return ipg_nic_open(dev);
}

static int ipg_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	int rc;

	mutex_lock(&sp->mii_mutex);
	rc = mii_ethtool_gset(&sp->mii_if, cmd);
	mutex_unlock(&sp->mii_mutex);

	return rc;
}

static int ipg_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	int rc;

	mutex_lock(&sp->mii_mutex);
	rc = mii_ethtool_sset(&sp->mii_if, cmd);
	mutex_unlock(&sp->mii_mutex);

	return rc;
}

static int ipg_nway_reset(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	int rc;

	mutex_lock(&sp->mii_mutex);
	rc = mii_nway_restart(&sp->mii_if);
	mutex_unlock(&sp->mii_mutex);

	return rc;
}

static const struct ethtool_ops ipg_ethtool_ops = {
	.get_settings = ipg_get_settings,
	.set_settings = ipg_set_settings,
	.nway_reset   = ipg_nway_reset,
};

static void ipg_remove(struct pci_dev *pdev)
{
	struct net_device *dev = pci_get_drvdata(pdev);
	struct ipg_nic_private *sp = netdev_priv(dev);

	IPG_DEBUG_MSG("_remove\n");

	/* Un-register Ethernet device. */
	unregister_netdev(dev);

	pci_iounmap(pdev, sp->ioaddr);

	pci_release_regions(pdev);

	free_netdev(dev);
	pci_disable_device(pdev);
	pci_set_drvdata(pdev, NULL);
}

static const struct net_device_ops ipg_netdev_ops = {
	.ndo_open		= ipg_nic_open,
	.ndo_stop		= ipg_nic_stop,
	.ndo_start_xmit		= ipg_nic_hard_start_xmit,
	.ndo_get_stats		= ipg_nic_get_stats,
	.ndo_set_rx_mode	= ipg_nic_set_multicast_list,
	.ndo_do_ioctl		= ipg_ioctl,
	.ndo_tx_timeout 	= ipg_tx_timeout,
	.ndo_change_mtu 	= ipg_nic_change_mtu,
	.ndo_set_mac_address	= eth_mac_addr,
	.ndo_validate_addr	= eth_validate_addr,
};

static int ipg_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
	unsigned int i = id->driver_data;
	struct ipg_nic_private *sp;
	struct net_device *dev;
	void __iomem *ioaddr;
	int rc;

	rc = pci_enable_device(pdev);
	if (rc < 0)
		goto out;

	pr_info("%s: %s\n", pci_name(pdev), ipg_brand_name[i]);

	pci_set_master(pdev);

	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
	if (rc < 0) {
		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
		if (rc < 0) {
			pr_err("%s: DMA config failed\n", pci_name(pdev));
			goto err_disable_0;
		}
	}

	/*
	 * Initialize net device.
	 */
	dev = alloc_etherdev(sizeof(struct ipg_nic_private));
	if (!dev) {
		rc = -ENOMEM;
		goto err_disable_0;
	}

	sp = netdev_priv(dev);
	spin_lock_init(&sp->lock);
	mutex_init(&sp->mii_mutex);

	sp->is_jumbo = IPG_IS_JUMBO;
	sp->rxfrag_size = IPG_RXFRAG_SIZE;
	sp->rxsupport_size = IPG_RXSUPPORT_SIZE;
	sp->max_rxframe_size = IPG_MAX_RXFRAME_SIZE;

	/* Declare IPG NIC functions for Ethernet device methods.
	 */
	dev->netdev_ops = &ipg_netdev_ops;
	SET_NETDEV_DEV(dev, &pdev->dev);
	SET_ETHTOOL_OPS(dev, &ipg_ethtool_ops);

	rc = pci_request_regions(pdev, DRV_NAME);
	if (rc)
		goto err_free_dev_1;

	ioaddr = pci_iomap(pdev, 1, pci_resource_len(pdev, 1));
	if (!ioaddr) {
		pr_err("%s: cannot map MMIO\n", pci_name(pdev));
		rc = -EIO;
		goto err_release_regions_2;
	}

	/* Save the pointer to the PCI device information. */
	sp->ioaddr = ioaddr;
	sp->pdev = pdev;
	sp->dev = dev;

	INIT_DELAYED_WORK(&sp->task, ipg_reset_after_host_error);

	pci_set_drvdata(pdev, dev);

	rc = ipg_hw_init(dev);
	if (rc < 0)
		goto err_unmap_3;

	rc = register_netdev(dev);
	if (rc < 0)
		goto err_unmap_3;

	netdev_info(dev, "Ethernet device registered\n");
out:
	return rc;

err_unmap_3:
	pci_iounmap(pdev, ioaddr);
err_release_regions_2:
	pci_release_regions(pdev);
err_free_dev_1:
	free_netdev(dev);
err_disable_0:
	pci_disable_device(pdev);
	goto out;
}

static struct pci_driver ipg_pci_driver = {
	.name		= IPG_DRIVER_NAME,
	.id_table	= ipg_pci_tbl,
	.probe		= ipg_probe,
	.remove		= ipg_remove,
};

module_pci_driver(ipg_pci_driver);