summaryrefslogtreecommitdiffstats
path: root/drivers/net/ethernet/intel/igb/igb_ptp.c
blob: d5ee7fa50723c329330199caa9a29dbfa6f9eb15 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
/*
 * PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
 *
 * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */
#include <linux/module.h>
#include <linux/device.h>
#include <linux/pci.h>

#include "igb.h"

#define INCVALUE_MASK		0x7fffffff
#define ISGN			0x80000000

/*
 * The 82580 timesync updates the system timer every 8ns by 8ns,
 * and this update value cannot be reprogrammed.
 *
 * Neither the 82576 nor the 82580 offer registers wide enough to hold
 * nanoseconds time values for very long. For the 82580, SYSTIM always
 * counts nanoseconds, but the upper 24 bits are not availible. The
 * frequency is adjusted by changing the 32 bit fractional nanoseconds
 * register, TIMINCA.
 *
 * For the 82576, the SYSTIM register time unit is affect by the
 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
 * field are needed to provide the nominal 16 nanosecond period,
 * leaving 19 bits for fractional nanoseconds.
 *
 * We scale the NIC clock cycle by a large factor so that relatively
 * small clock corrections can be added or subtracted at each clock
 * tick. The drawbacks of a large factor are a) that the clock
 * register overflows more quickly (not such a big deal) and b) that
 * the increment per tick has to fit into 24 bits.  As a result we
 * need to use a shift of 19 so we can fit a value of 16 into the
 * TIMINCA register.
 *
 *
 *             SYSTIMH            SYSTIML
 *        +--------------+   +---+---+------+
 *  82576 |      32      |   | 8 | 5 |  19  |
 *        +--------------+   +---+---+------+
 *         \________ 45 bits _______/  fract
 *
 *        +----------+---+   +--------------+
 *  82580 |    24    | 8 |   |      32      |
 *        +----------+---+   +--------------+
 *          reserved  \______ 40 bits _____/
 *
 *
 * The 45 bit 82576 SYSTIM overflows every
 *   2^45 * 10^-9 / 3600 = 9.77 hours.
 *
 * The 40 bit 82580 SYSTIM overflows every
 *   2^40 * 10^-9 /  60  = 18.3 minutes.
 */

#define IGB_OVERFLOW_PERIOD	(HZ * 60 * 9)
#define INCPERIOD_82576		(1 << E1000_TIMINCA_16NS_SHIFT)
#define INCVALUE_82576_MASK	((1 << E1000_TIMINCA_16NS_SHIFT) - 1)
#define INCVALUE_82576		(16 << IGB_82576_TSYNC_SHIFT)
#define IGB_NBITS_82580		40

/*
 * SYSTIM read access for the 82576
 */

static cycle_t igb_82576_systim_read(const struct cyclecounter *cc)
{
	u64 val;
	u32 lo, hi;
	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
	struct e1000_hw *hw = &igb->hw;

	lo = rd32(E1000_SYSTIML);
	hi = rd32(E1000_SYSTIMH);

	val = ((u64) hi) << 32;
	val |= lo;

	return val;
}

/*
 * SYSTIM read access for the 82580
 */

static cycle_t igb_82580_systim_read(const struct cyclecounter *cc)
{
	u64 val;
	u32 lo, hi, jk;
	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
	struct e1000_hw *hw = &igb->hw;

	/*
	 * The timestamp latches on lowest register read. For the 82580
	 * the lowest register is SYSTIMR instead of SYSTIML.  However we only
	 * need to provide nanosecond resolution, so we just ignore it.
	 */
	jk = rd32(E1000_SYSTIMR);
	lo = rd32(E1000_SYSTIML);
	hi = rd32(E1000_SYSTIMH);

	val = ((u64) hi) << 32;
	val |= lo;

	return val;
}

/*
 * PTP clock operations
 */

static int ptp_82576_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
{
	u64 rate;
	u32 incvalue;
	int neg_adj = 0;
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter, caps);
	struct e1000_hw *hw = &igb->hw;

	if (ppb < 0) {
		neg_adj = 1;
		ppb = -ppb;
	}
	rate = ppb;
	rate <<= 14;
	rate = div_u64(rate, 1953125);

	incvalue = 16 << IGB_82576_TSYNC_SHIFT;

	if (neg_adj)
		incvalue -= rate;
	else
		incvalue += rate;

	wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));

	return 0;
}

static int ptp_82580_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
{
	u64 rate;
	u32 inca;
	int neg_adj = 0;
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter, caps);
	struct e1000_hw *hw = &igb->hw;

	if (ppb < 0) {
		neg_adj = 1;
		ppb = -ppb;
	}
	rate = ppb;
	rate <<= 26;
	rate = div_u64(rate, 1953125);

	inca = rate & INCVALUE_MASK;
	if (neg_adj)
		inca |= ISGN;

	wr32(E1000_TIMINCA, inca);

	return 0;
}

static int igb_adjtime(struct ptp_clock_info *ptp, s64 delta)
{
	s64 now;
	unsigned long flags;
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter, caps);

	spin_lock_irqsave(&igb->tmreg_lock, flags);

	now = timecounter_read(&igb->tc);
	now += delta;
	timecounter_init(&igb->tc, &igb->cc, now);

	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

	return 0;
}

static int igb_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
{
	u64 ns;
	u32 remainder;
	unsigned long flags;
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter, caps);

	spin_lock_irqsave(&igb->tmreg_lock, flags);

	ns = timecounter_read(&igb->tc);

	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

	ts->tv_sec = div_u64_rem(ns, 1000000000, &remainder);
	ts->tv_nsec = remainder;

	return 0;
}

static int igb_settime(struct ptp_clock_info *ptp, const struct timespec *ts)
{
	u64 ns;
	unsigned long flags;
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter, caps);

	ns = ts->tv_sec * 1000000000ULL;
	ns += ts->tv_nsec;

	spin_lock_irqsave(&igb->tmreg_lock, flags);

	timecounter_init(&igb->tc, &igb->cc, ns);

	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

	return 0;
}

static int ptp_82576_enable(struct ptp_clock_info *ptp,
			    struct ptp_clock_request *rq, int on)
{
	return -EOPNOTSUPP;
}

static int ptp_82580_enable(struct ptp_clock_info *ptp,
			    struct ptp_clock_request *rq, int on)
{
	return -EOPNOTSUPP;
}

static void igb_overflow_check(struct work_struct *work)
{
	struct timespec ts;
	struct igb_adapter *igb =
		container_of(work, struct igb_adapter, overflow_work.work);

	igb_gettime(&igb->caps, &ts);

	pr_debug("igb overflow check at %ld.%09lu\n", ts.tv_sec, ts.tv_nsec);

	schedule_delayed_work(&igb->overflow_work, IGB_OVERFLOW_PERIOD);
}

void igb_ptp_init(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	switch (hw->mac.type) {
	case e1000_i210:
	case e1000_i211:
	case e1000_i350:
	case e1000_82580:
		adapter->caps.owner	= THIS_MODULE;
		strcpy(adapter->caps.name, "igb-82580");
		adapter->caps.max_adj	= 62499999;
		adapter->caps.n_ext_ts	= 0;
		adapter->caps.pps	= 0;
		adapter->caps.adjfreq	= ptp_82580_adjfreq;
		adapter->caps.adjtime	= igb_adjtime;
		adapter->caps.gettime	= igb_gettime;
		adapter->caps.settime	= igb_settime;
		adapter->caps.enable	= ptp_82580_enable;
		adapter->cc.read	= igb_82580_systim_read;
		adapter->cc.mask	= CLOCKSOURCE_MASK(IGB_NBITS_82580);
		adapter->cc.mult	= 1;
		adapter->cc.shift	= 0;
		/* Enable the timer functions by clearing bit 31. */
		wr32(E1000_TSAUXC, 0x0);
		break;

	case e1000_82576:
		adapter->caps.owner	= THIS_MODULE;
		strcpy(adapter->caps.name, "igb-82576");
		adapter->caps.max_adj	= 1000000000;
		adapter->caps.n_ext_ts	= 0;
		adapter->caps.pps	= 0;
		adapter->caps.adjfreq	= ptp_82576_adjfreq;
		adapter->caps.adjtime	= igb_adjtime;
		adapter->caps.gettime	= igb_gettime;
		adapter->caps.settime	= igb_settime;
		adapter->caps.enable	= ptp_82576_enable;
		adapter->cc.read	= igb_82576_systim_read;
		adapter->cc.mask	= CLOCKSOURCE_MASK(64);
		adapter->cc.mult	= 1;
		adapter->cc.shift	= IGB_82576_TSYNC_SHIFT;
		/* Dial the nominal frequency. */
		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
		break;

	default:
		adapter->ptp_clock = NULL;
		return;
	}

	wrfl();

	timecounter_init(&adapter->tc, &adapter->cc,
			 ktime_to_ns(ktime_get_real()));

	INIT_DELAYED_WORK(&adapter->overflow_work, igb_overflow_check);

	spin_lock_init(&adapter->tmreg_lock);

	schedule_delayed_work(&adapter->overflow_work, IGB_OVERFLOW_PERIOD);

	adapter->ptp_clock = ptp_clock_register(&adapter->caps);
	if (IS_ERR(adapter->ptp_clock)) {
		adapter->ptp_clock = NULL;
		dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
	} else
		dev_info(&adapter->pdev->dev, "added PHC on %s\n",
			 adapter->netdev->name);
}

void igb_ptp_remove(struct igb_adapter *adapter)
{
	cancel_delayed_work_sync(&adapter->overflow_work);

	if (adapter->ptp_clock) {
		ptp_clock_unregister(adapter->ptp_clock);
		dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
			 adapter->netdev->name);
	}
}

/**
 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
 * @adapter: board private structure
 * @hwtstamps: timestamp structure to update
 * @systim: unsigned 64bit system time value.
 *
 * We need to convert the system time value stored in the RX/TXSTMP registers
 * into a hwtstamp which can be used by the upper level timestamping functions.
 *
 * The 'tmreg_lock' spinlock is used to protect the consistency of the
 * system time value. This is needed because reading the 64 bit time
 * value involves reading two (or three) 32 bit registers. The first
 * read latches the value. Ditto for writing.
 *
 * In addition, here have extended the system time with an overflow
 * counter in software.
 **/
void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
			    struct skb_shared_hwtstamps *hwtstamps,
			    u64 systim)
{
	u64 ns;
	unsigned long flags;

	switch (adapter->hw.mac.type) {
	case e1000_i210:
	case e1000_i211:
	case e1000_i350:
	case e1000_82580:
	case e1000_82576:
		break;
	default:
		return;
	}

	spin_lock_irqsave(&adapter->tmreg_lock, flags);

	ns = timecounter_cyc2time(&adapter->tc, systim);

	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);

	memset(hwtstamps, 0, sizeof(*hwtstamps));
	hwtstamps->hwtstamp = ns_to_ktime(ns);
}