summaryrefslogtreecommitdiffstats
path: root/drivers/net/ixgb/ixgb_hw.c
blob: 620cad48bdea98a8ab4302b6c9119b71b7a471ee (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
/*******************************************************************************

  
  Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
  
  This program is free software; you can redistribute it and/or modify it 
  under the terms of the GNU General Public License as published by the Free 
  Software Foundation; either version 2 of the License, or (at your option) 
  any later version.
  
  This program is distributed in the hope that it will be useful, but WITHOUT 
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
  more details.
  
  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc., 59 
  Temple Place - Suite 330, Boston, MA  02111-1307, USA.
  
  The full GNU General Public License is included in this distribution in the
  file called LICENSE.
  
  Contact Information:
  Linux NICS <linux.nics@intel.com>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

/* ixgb_hw.c
 * Shared functions for accessing and configuring the adapter
 */

#include "ixgb_hw.h"
#include "ixgb_ids.h"

/*  Local function prototypes */

static uint32_t ixgb_hash_mc_addr(struct ixgb_hw *hw, uint8_t * mc_addr);

static void ixgb_mta_set(struct ixgb_hw *hw, uint32_t hash_value);

static void ixgb_get_bus_info(struct ixgb_hw *hw);

static boolean_t ixgb_link_reset(struct ixgb_hw *hw);

static void ixgb_optics_reset(struct ixgb_hw *hw);

static ixgb_phy_type ixgb_identify_phy(struct ixgb_hw *hw);

static void ixgb_clear_hw_cntrs(struct ixgb_hw *hw);

static void ixgb_clear_vfta(struct ixgb_hw *hw);

static void ixgb_init_rx_addrs(struct ixgb_hw *hw);

static uint16_t ixgb_read_phy_reg(struct ixgb_hw *hw,
				  uint32_t reg_address,
				  uint32_t phy_address,
				  uint32_t device_type);

static boolean_t ixgb_setup_fc(struct ixgb_hw *hw);

static boolean_t mac_addr_valid(uint8_t *mac_addr);

static uint32_t ixgb_mac_reset(struct ixgb_hw *hw)
{
	uint32_t ctrl_reg;

	ctrl_reg =  IXGB_CTRL0_RST |
				IXGB_CTRL0_SDP3_DIR |   /* All pins are Output=1 */
				IXGB_CTRL0_SDP2_DIR |
				IXGB_CTRL0_SDP1_DIR |
				IXGB_CTRL0_SDP0_DIR |
				IXGB_CTRL0_SDP3	 |   /* Initial value 1101   */
				IXGB_CTRL0_SDP2	 |
				IXGB_CTRL0_SDP0;

#ifdef HP_ZX1
	/* Workaround for 82597EX reset errata */
	IXGB_WRITE_REG_IO(hw, CTRL0, ctrl_reg);
#else
	IXGB_WRITE_REG(hw, CTRL0, ctrl_reg);
#endif

	/* Delay a few ms just to allow the reset to complete */
	msec_delay(IXGB_DELAY_AFTER_RESET);
	ctrl_reg = IXGB_READ_REG(hw, CTRL0);
#ifdef DBG
	/* Make sure the self-clearing global reset bit did self clear */
	ASSERT(!(ctrl_reg & IXGB_CTRL0_RST));
#endif

	if (hw->phy_type == ixgb_phy_type_txn17401) {
		ixgb_optics_reset(hw);
	}

	return ctrl_reg;
}

/******************************************************************************
 * Reset the transmit and receive units; mask and clear all interrupts.
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
boolean_t
ixgb_adapter_stop(struct ixgb_hw *hw)
{
	uint32_t ctrl_reg;
	uint32_t icr_reg;

	DEBUGFUNC("ixgb_adapter_stop");

	/* If we are stopped or resetting exit gracefully and wait to be
	 * started again before accessing the hardware.
	 */
	if(hw->adapter_stopped) {
		DEBUGOUT("Exiting because the adapter is already stopped!!!\n");
		return FALSE;
	}

	/* Set the Adapter Stopped flag so other driver functions stop
	 * touching the Hardware.
	 */
	hw->adapter_stopped = TRUE;

	/* Clear interrupt mask to stop board from generating interrupts */
	DEBUGOUT("Masking off all interrupts\n");
	IXGB_WRITE_REG(hw, IMC, 0xFFFFFFFF);

	/* Disable the Transmit and Receive units.  Then delay to allow
	 * any pending transactions to complete before we hit the MAC with
	 * the global reset.
	 */
	IXGB_WRITE_REG(hw, RCTL, IXGB_READ_REG(hw, RCTL) & ~IXGB_RCTL_RXEN);
	IXGB_WRITE_REG(hw, TCTL, IXGB_READ_REG(hw, TCTL) & ~IXGB_TCTL_TXEN);
	msec_delay(IXGB_DELAY_BEFORE_RESET);

	/* Issue a global reset to the MAC.  This will reset the chip's
	 * transmit, receive, DMA, and link units.  It will not effect
	 * the current PCI configuration.  The global reset bit is self-
	 * clearing, and should clear within a microsecond.
	 */
	DEBUGOUT("Issuing a global reset to MAC\n");

	ctrl_reg = ixgb_mac_reset(hw);

	/* Clear interrupt mask to stop board from generating interrupts */
	DEBUGOUT("Masking off all interrupts\n");
	IXGB_WRITE_REG(hw, IMC, 0xffffffff);

	/* Clear any pending interrupt events. */
	icr_reg = IXGB_READ_REG(hw, ICR);

	return (ctrl_reg & IXGB_CTRL0_RST);
}


/******************************************************************************
 * Identifies the vendor of the optics module on the adapter.  The SR adapters
 * support two different types of XPAK optics, so it is necessary to determine
 * which optics are present before applying any optics-specific workarounds.
 *
 * hw - Struct containing variables accessed by shared code.
 *
 * Returns: the vendor of the XPAK optics module.
 *****************************************************************************/
static ixgb_xpak_vendor
ixgb_identify_xpak_vendor(struct ixgb_hw *hw)
{
	uint32_t i;
	uint16_t vendor_name[5];
	ixgb_xpak_vendor xpak_vendor;

	DEBUGFUNC("ixgb_identify_xpak_vendor");

	/* Read the first few bytes of the vendor string from the XPAK NVR
	 * registers.  These are standard XENPAK/XPAK registers, so all XPAK
	 * devices should implement them. */
	for (i = 0; i < 5; i++) {
		vendor_name[i] = ixgb_read_phy_reg(hw,
						   MDIO_PMA_PMD_XPAK_VENDOR_NAME
						   + i, IXGB_PHY_ADDRESS,
						   MDIO_PMA_PMD_DID);
	}

	/* Determine the actual vendor */
	if (vendor_name[0] == 'I' &&
	    vendor_name[1] == 'N' &&
	    vendor_name[2] == 'T' &&
	    vendor_name[3] == 'E' && vendor_name[4] == 'L') {
		xpak_vendor = ixgb_xpak_vendor_intel;
	} else {
		xpak_vendor = ixgb_xpak_vendor_infineon;
	}

	return (xpak_vendor);
}

/******************************************************************************
 * Determine the physical layer module on the adapter.
 *
 * hw - Struct containing variables accessed by shared code.  The device_id
 *      field must be (correctly) populated before calling this routine.
 *
 * Returns: the phy type of the adapter.
 *****************************************************************************/
static ixgb_phy_type
ixgb_identify_phy(struct ixgb_hw *hw)
{
	ixgb_phy_type phy_type;
	ixgb_xpak_vendor xpak_vendor;

	DEBUGFUNC("ixgb_identify_phy");

	/* Infer the transceiver/phy type from the device id */
	switch (hw->device_id) {
	case IXGB_DEVICE_ID_82597EX:
		DEBUGOUT("Identified TXN17401 optics\n");
		phy_type = ixgb_phy_type_txn17401;
		break;

	case IXGB_DEVICE_ID_82597EX_SR:
		/* The SR adapters carry two different types of XPAK optics
		 * modules; read the vendor identifier to determine the exact
		 * type of optics. */
		xpak_vendor = ixgb_identify_xpak_vendor(hw);
		if (xpak_vendor == ixgb_xpak_vendor_intel) {
			DEBUGOUT("Identified TXN17201 optics\n");
			phy_type = ixgb_phy_type_txn17201;
		} else {
			DEBUGOUT("Identified G6005 optics\n");
			phy_type = ixgb_phy_type_g6005;
		}
		break;
	case IXGB_DEVICE_ID_82597EX_LR:
		DEBUGOUT("Identified G6104 optics\n");
		phy_type = ixgb_phy_type_g6104;
		break;
	default:
		DEBUGOUT("Unknown physical layer module\n");
		phy_type = ixgb_phy_type_unknown;
		break;
	}

	return (phy_type);
}

/******************************************************************************
 * Performs basic configuration of the adapter.
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Resets the controller.
 * Reads and validates the EEPROM.
 * Initializes the receive address registers.
 * Initializes the multicast table.
 * Clears all on-chip counters.
 * Calls routine to setup flow control settings.
 * Leaves the transmit and receive units disabled and uninitialized.
 *
 * Returns:
 *      TRUE if successful,
 *      FALSE if unrecoverable problems were encountered.
 *****************************************************************************/
boolean_t
ixgb_init_hw(struct ixgb_hw *hw)
{
	uint32_t i;
	uint32_t ctrl_reg;
	boolean_t status;

	DEBUGFUNC("ixgb_init_hw");

	/* Issue a global reset to the MAC.  This will reset the chip's
	 * transmit, receive, DMA, and link units.  It will not effect
	 * the current PCI configuration.  The global reset bit is self-
	 * clearing, and should clear within a microsecond.
	 */
	DEBUGOUT("Issuing a global reset to MAC\n");

	ctrl_reg = ixgb_mac_reset(hw);

	DEBUGOUT("Issuing an EE reset to MAC\n");
#ifdef HP_ZX1
	/* Workaround for 82597EX reset errata */
	IXGB_WRITE_REG_IO(hw, CTRL1, IXGB_CTRL1_EE_RST);
#else
	IXGB_WRITE_REG(hw, CTRL1, IXGB_CTRL1_EE_RST);
#endif

	/* Delay a few ms just to allow the reset to complete */
	msec_delay(IXGB_DELAY_AFTER_EE_RESET);

	if (ixgb_get_eeprom_data(hw) == FALSE) {
		return(FALSE);
	}

	/* Use the device id to determine the type of phy/transceiver. */
	hw->device_id = ixgb_get_ee_device_id(hw);
	hw->phy_type = ixgb_identify_phy(hw);

	/* Setup the receive addresses.
	 * Receive Address Registers (RARs 0 - 15).
	 */
	ixgb_init_rx_addrs(hw);

	/*
	 * Check that a valid MAC address has been set.
	 * If it is not valid, we fail hardware init.
	 */
	if (!mac_addr_valid(hw->curr_mac_addr)) {
		DEBUGOUT("MAC address invalid after ixgb_init_rx_addrs\n");
		return(FALSE);
	}

	/* tell the routines in this file they can access hardware again */
	hw->adapter_stopped = FALSE;

	/* Fill in the bus_info structure */
	ixgb_get_bus_info(hw);

	/* Zero out the Multicast HASH table */
	DEBUGOUT("Zeroing the MTA\n");
	for(i = 0; i < IXGB_MC_TBL_SIZE; i++)
		IXGB_WRITE_REG_ARRAY(hw, MTA, i, 0);

	/* Zero out the VLAN Filter Table Array */
	ixgb_clear_vfta(hw);

	/* Zero all of the hardware counters */
	ixgb_clear_hw_cntrs(hw);

	/* Call a subroutine to setup flow control. */
	status = ixgb_setup_fc(hw);

	/* 82597EX errata: Call check-for-link in case lane deskew is locked */
	ixgb_check_for_link(hw);

	return (status);
}

/******************************************************************************
 * Initializes receive address filters.
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Places the MAC address in receive address register 0 and clears the rest
 * of the receive addresss registers. Clears the multicast table. Assumes
 * the receiver is in reset when the routine is called.
 *****************************************************************************/
static void
ixgb_init_rx_addrs(struct ixgb_hw *hw)
{
	uint32_t i;

	DEBUGFUNC("ixgb_init_rx_addrs");

	/*
	 * If the current mac address is valid, assume it is a software override
	 * to the permanent address.
	 * Otherwise, use the permanent address from the eeprom.
	 */
	if (!mac_addr_valid(hw->curr_mac_addr)) {

		/* Get the MAC address from the eeprom for later reference */
		ixgb_get_ee_mac_addr(hw, hw->curr_mac_addr);

		DEBUGOUT3(" Keeping Permanent MAC Addr =%.2X %.2X %.2X ",
			  hw->curr_mac_addr[0],
			  hw->curr_mac_addr[1], hw->curr_mac_addr[2]);
		DEBUGOUT3("%.2X %.2X %.2X\n",
			  hw->curr_mac_addr[3],
			  hw->curr_mac_addr[4], hw->curr_mac_addr[5]);
	} else {

		/* Setup the receive address. */
		DEBUGOUT("Overriding MAC Address in RAR[0]\n");
		DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
			  hw->curr_mac_addr[0],
			  hw->curr_mac_addr[1], hw->curr_mac_addr[2]);
		DEBUGOUT3("%.2X %.2X %.2X\n",
			  hw->curr_mac_addr[3],
			  hw->curr_mac_addr[4], hw->curr_mac_addr[5]);

		ixgb_rar_set(hw, hw->curr_mac_addr, 0);
	}

	/* Zero out the other 15 receive addresses. */
	DEBUGOUT("Clearing RAR[1-15]\n");
	for(i = 1; i < IXGB_RAR_ENTRIES; i++) {
		IXGB_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
		IXGB_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
	}

	return;
}

/******************************************************************************
 * Updates the MAC's list of multicast addresses.
 *
 * hw - Struct containing variables accessed by shared code
 * mc_addr_list - the list of new multicast addresses
 * mc_addr_count - number of addresses
 * pad - number of bytes between addresses in the list
 *
 * The given list replaces any existing list. Clears the last 15 receive
 * address registers and the multicast table. Uses receive address registers
 * for the first 15 multicast addresses, and hashes the rest into the
 * multicast table.
 *****************************************************************************/
void
ixgb_mc_addr_list_update(struct ixgb_hw *hw,
			  uint8_t *mc_addr_list,
			  uint32_t mc_addr_count,
			  uint32_t pad)
{
	uint32_t hash_value;
	uint32_t i;
	uint32_t rar_used_count = 1;		/* RAR[0] is used for our MAC address */

	DEBUGFUNC("ixgb_mc_addr_list_update");

	/* Set the new number of MC addresses that we are being requested to use. */
	hw->num_mc_addrs = mc_addr_count;

	/* Clear RAR[1-15] */
	DEBUGOUT(" Clearing RAR[1-15]\n");
	for(i = rar_used_count; i < IXGB_RAR_ENTRIES; i++) {
		IXGB_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
		IXGB_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
	}

	/* Clear the MTA */
	DEBUGOUT(" Clearing MTA\n");
	for(i = 0; i < IXGB_MC_TBL_SIZE; i++) {
		IXGB_WRITE_REG_ARRAY(hw, MTA, i, 0);
	}

	/* Add the new addresses */
	for(i = 0; i < mc_addr_count; i++) {
		DEBUGOUT(" Adding the multicast addresses:\n");
		DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i,
			  mc_addr_list[i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad)],
			  mc_addr_list[i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad) +
				       1],
			  mc_addr_list[i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad) +
				       2],
			  mc_addr_list[i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad) +
				       3],
			  mc_addr_list[i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad) +
				       4],
			  mc_addr_list[i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad) +
				       5]);

		/* Place this multicast address in the RAR if there is room, *
		 * else put it in the MTA
		 */
		if(rar_used_count < IXGB_RAR_ENTRIES) {
			ixgb_rar_set(hw,
				     mc_addr_list +
				     (i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad)),
				     rar_used_count);
			DEBUGOUT1("Added a multicast address to RAR[%d]\n", i);
			rar_used_count++;
		} else {
			hash_value = ixgb_hash_mc_addr(hw,
						       mc_addr_list +
						       (i *
							(IXGB_ETH_LENGTH_OF_ADDRESS
							 + pad)));

			DEBUGOUT1(" Hash value = 0x%03X\n", hash_value);

			ixgb_mta_set(hw, hash_value);
		}
	}

	DEBUGOUT("MC Update Complete\n");
	return;
}

/******************************************************************************
 * Hashes an address to determine its location in the multicast table
 *
 * hw - Struct containing variables accessed by shared code
 * mc_addr - the multicast address to hash
 *
 * Returns:
 *      The hash value
 *****************************************************************************/
static uint32_t
ixgb_hash_mc_addr(struct ixgb_hw *hw,
		   uint8_t *mc_addr)
{
	uint32_t hash_value = 0;

	DEBUGFUNC("ixgb_hash_mc_addr");

	/* The portion of the address that is used for the hash table is
	 * determined by the mc_filter_type setting.
	 */
	switch (hw->mc_filter_type) {
		/* [0] [1] [2] [3] [4] [5]
		 * 01  AA  00  12  34  56
		 * LSB                 MSB - According to H/W docs */
	case 0:
		/* [47:36] i.e. 0x563 for above example address */
		hash_value =
		    ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
		break;
	case 1:		/* [46:35] i.e. 0xAC6 for above example address */
		hash_value =
		    ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5));
		break;
	case 2:		/* [45:34] i.e. 0x5D8 for above example address */
		hash_value =
		    ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
		break;
	case 3:		/* [43:32] i.e. 0x634 for above example address */
		hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8));
		break;
	default:
		/* Invalid mc_filter_type, what should we do? */
		DEBUGOUT("MC filter type param set incorrectly\n");
		ASSERT(0);
		break;
	}

	hash_value &= 0xFFF;
	return (hash_value);
}

/******************************************************************************
 * Sets the bit in the multicast table corresponding to the hash value.
 *
 * hw - Struct containing variables accessed by shared code
 * hash_value - Multicast address hash value
 *****************************************************************************/
static void
ixgb_mta_set(struct ixgb_hw *hw,
		  uint32_t hash_value)
{
	uint32_t hash_bit, hash_reg;
	uint32_t mta_reg;

	/* The MTA is a register array of 128 32-bit registers.
	 * It is treated like an array of 4096 bits.  We want to set
	 * bit BitArray[hash_value]. So we figure out what register
	 * the bit is in, read it, OR in the new bit, then write
	 * back the new value.  The register is determined by the
	 * upper 7 bits of the hash value and the bit within that
	 * register are determined by the lower 5 bits of the value.
	 */
	hash_reg = (hash_value >> 5) & 0x7F;
	hash_bit = hash_value & 0x1F;

	mta_reg = IXGB_READ_REG_ARRAY(hw, MTA, hash_reg);

	mta_reg |= (1 << hash_bit);

	IXGB_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta_reg);

	return;
}

/******************************************************************************
 * Puts an ethernet address into a receive address register.
 *
 * hw - Struct containing variables accessed by shared code
 * addr - Address to put into receive address register
 * index - Receive address register to write
 *****************************************************************************/
void
ixgb_rar_set(struct ixgb_hw *hw,
		  uint8_t *addr,
		  uint32_t index)
{
	uint32_t rar_low, rar_high;

	DEBUGFUNC("ixgb_rar_set");

	/* HW expects these in little endian so we reverse the byte order
	 * from network order (big endian) to little endian
	 */
	rar_low = ((uint32_t) addr[0] |
		   ((uint32_t)addr[1] << 8) |
		   ((uint32_t)addr[2] << 16) |
		   ((uint32_t)addr[3] << 24));

	rar_high = ((uint32_t) addr[4] |
			((uint32_t)addr[5] << 8) |
			IXGB_RAH_AV);

	IXGB_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
	IXGB_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
	return;
}

/******************************************************************************
 * Writes a value to the specified offset in the VLAN filter table.
 *
 * hw - Struct containing variables accessed by shared code
 * offset - Offset in VLAN filer table to write
 * value - Value to write into VLAN filter table
 *****************************************************************************/
void
ixgb_write_vfta(struct ixgb_hw *hw,
		 uint32_t offset,
		 uint32_t value)
{
	IXGB_WRITE_REG_ARRAY(hw, VFTA, offset, value);
	return;
}

/******************************************************************************
 * Clears the VLAN filer table
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
static void
ixgb_clear_vfta(struct ixgb_hw *hw)
{
	uint32_t offset;

	for(offset = 0; offset < IXGB_VLAN_FILTER_TBL_SIZE; offset++)
		IXGB_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
	return;
}

/******************************************************************************
 * Configures the flow control settings based on SW configuration.
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/

static boolean_t
ixgb_setup_fc(struct ixgb_hw *hw)
{
	uint32_t ctrl_reg;
	uint32_t pap_reg = 0;   /* by default, assume no pause time */
	boolean_t status = TRUE;

	DEBUGFUNC("ixgb_setup_fc");

	/* Get the current control reg 0 settings */
	ctrl_reg = IXGB_READ_REG(hw, CTRL0);

	/* Clear the Receive Pause Enable and Transmit Pause Enable bits */
	ctrl_reg &= ~(IXGB_CTRL0_RPE | IXGB_CTRL0_TPE);

	/* The possible values of the "flow_control" parameter are:
	 *      0:  Flow control is completely disabled
	 *      1:  Rx flow control is enabled (we can receive pause frames
	 *          but not send pause frames).
	 *      2:  Tx flow control is enabled (we can send pause frames
	 *          but we do not support receiving pause frames).
	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
	 *  other:  Invalid.
	 */
	switch (hw->fc.type) {
	case ixgb_fc_none:	/* 0 */
		/* Set CMDC bit to disable Rx Flow control */
		ctrl_reg |= (IXGB_CTRL0_CMDC);
		break;
	case ixgb_fc_rx_pause:	/* 1 */
		/* RX Flow control is enabled, and TX Flow control is
		 * disabled.
		 */
		ctrl_reg |= (IXGB_CTRL0_RPE);
		break;
	case ixgb_fc_tx_pause:	/* 2 */
		/* TX Flow control is enabled, and RX Flow control is
		 * disabled, by a software over-ride.
		 */
		ctrl_reg |= (IXGB_CTRL0_TPE);
		pap_reg = hw->fc.pause_time;
		break;
	case ixgb_fc_full:	/* 3 */
		/* Flow control (both RX and TX) is enabled by a software
		 * over-ride.
		 */
		ctrl_reg |= (IXGB_CTRL0_RPE | IXGB_CTRL0_TPE);
		pap_reg = hw->fc.pause_time;
		break;
	default:
		/* We should never get here.  The value should be 0-3. */
		DEBUGOUT("Flow control param set incorrectly\n");
		ASSERT(0);
		break;
	}

	/* Write the new settings */
	IXGB_WRITE_REG(hw, CTRL0, ctrl_reg);

	if (pap_reg != 0) {
		IXGB_WRITE_REG(hw, PAP, pap_reg);
	}

	/* Set the flow control receive threshold registers.  Normally,
	 * these registers will be set to a default threshold that may be
	 * adjusted later by the driver's runtime code.  However, if the
	 * ability to transmit pause frames in not enabled, then these
	 * registers will be set to 0.
	 */
	if(!(hw->fc.type & ixgb_fc_tx_pause)) {
		IXGB_WRITE_REG(hw, FCRTL, 0);
		IXGB_WRITE_REG(hw, FCRTH, 0);
	} else {
	   /* We need to set up the Receive Threshold high and low water
	    * marks as well as (optionally) enabling the transmission of XON
	    * frames. */
		if(hw->fc.send_xon) {
			IXGB_WRITE_REG(hw, FCRTL,
				(hw->fc.low_water | IXGB_FCRTL_XONE));
		} else {
			IXGB_WRITE_REG(hw, FCRTL, hw->fc.low_water);
		}
		IXGB_WRITE_REG(hw, FCRTH, hw->fc.high_water);
	}
	return (status);
}

/******************************************************************************
 * Reads a word from a device over the Management Data Interface (MDI) bus.
 * This interface is used to manage Physical layer devices.
 *
 * hw          - Struct containing variables accessed by hw code
 * reg_address - Offset of device register being read.
 * phy_address - Address of device on MDI.
 *
 * Returns:  Data word (16 bits) from MDI device.
 *
 * The 82597EX has support for several MDI access methods.  This routine
 * uses the new protocol MDI Single Command and Address Operation.
 * This requires that first an address cycle command is sent, followed by a
 * read command.
 *****************************************************************************/
static uint16_t
ixgb_read_phy_reg(struct ixgb_hw *hw,
		uint32_t reg_address,
		uint32_t phy_address,
		uint32_t device_type)
{
	uint32_t i;
	uint32_t data;
	uint32_t command = 0;

	ASSERT(reg_address <= IXGB_MAX_PHY_REG_ADDRESS);
	ASSERT(phy_address <= IXGB_MAX_PHY_ADDRESS);
	ASSERT(device_type <= IXGB_MAX_PHY_DEV_TYPE);

	/* Setup and write the address cycle command */
	command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) |
		   (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) |
		   (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) |
		   (IXGB_MSCA_ADDR_CYCLE | IXGB_MSCA_MDI_COMMAND));

	IXGB_WRITE_REG(hw, MSCA, command);

    /**************************************************************
    ** Check every 10 usec to see if the address cycle completed
    ** The COMMAND bit will clear when the operation is complete.
    ** This may take as long as 64 usecs (we'll wait 100 usecs max)
    ** from the CPU Write to the Ready bit assertion.
    **************************************************************/

	for(i = 0; i < 10; i++)
	{
		udelay(10);

		command = IXGB_READ_REG(hw, MSCA);

		if ((command & IXGB_MSCA_MDI_COMMAND) == 0)
			break;
	}

	ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0);

	/* Address cycle complete, setup and write the read command */
	command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) |
		   (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) |
		   (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) |
		   (IXGB_MSCA_READ | IXGB_MSCA_MDI_COMMAND));

	IXGB_WRITE_REG(hw, MSCA, command);

    /**************************************************************
    ** Check every 10 usec to see if the read command completed
    ** The COMMAND bit will clear when the operation is complete.
    ** The read may take as long as 64 usecs (we'll wait 100 usecs max)
    ** from the CPU Write to the Ready bit assertion.
    **************************************************************/

	for(i = 0; i < 10; i++)
	{
		udelay(10);

		command = IXGB_READ_REG(hw, MSCA);

		if ((command & IXGB_MSCA_MDI_COMMAND) == 0)
			break;
	}

	ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0);

	/* Operation is complete, get the data from the MDIO Read/Write Data
	 * register and return.
	 */
	data = IXGB_READ_REG(hw, MSRWD);
	data >>= IXGB_MSRWD_READ_DATA_SHIFT;
	return((uint16_t) data);
}

/******************************************************************************
 * Writes a word to a device over the Management Data Interface (MDI) bus.
 * This interface is used to manage Physical layer devices.
 *
 * hw          - Struct containing variables accessed by hw code
 * reg_address - Offset of device register being read.
 * phy_address - Address of device on MDI.
 * device_type - Also known as the Device ID or DID.
 * data        - 16-bit value to be written
 *
 * Returns:  void.
 *
 * The 82597EX has support for several MDI access methods.  This routine
 * uses the new protocol MDI Single Command and Address Operation.
 * This requires that first an address cycle command is sent, followed by a
 * write command.
 *****************************************************************************/
static void
ixgb_write_phy_reg(struct ixgb_hw *hw,
			uint32_t reg_address,
			uint32_t phy_address,
			uint32_t device_type,
			uint16_t data)
{
	uint32_t i;
	uint32_t command = 0;

	ASSERT(reg_address <= IXGB_MAX_PHY_REG_ADDRESS);
	ASSERT(phy_address <= IXGB_MAX_PHY_ADDRESS);
	ASSERT(device_type <= IXGB_MAX_PHY_DEV_TYPE);

	/* Put the data in the MDIO Read/Write Data register */
	IXGB_WRITE_REG(hw, MSRWD, (uint32_t)data);

	/* Setup and write the address cycle command */
	command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT)  |
			   (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) |
			   (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) |
			   (IXGB_MSCA_ADDR_CYCLE | IXGB_MSCA_MDI_COMMAND));

	IXGB_WRITE_REG(hw, MSCA, command);

	/**************************************************************
	** Check every 10 usec to see if the address cycle completed
	** The COMMAND bit will clear when the operation is complete.
	** This may take as long as 64 usecs (we'll wait 100 usecs max)
	** from the CPU Write to the Ready bit assertion.
	**************************************************************/

	for(i = 0; i < 10; i++)
	{
		udelay(10);

		command = IXGB_READ_REG(hw, MSCA);

		if ((command & IXGB_MSCA_MDI_COMMAND) == 0)
			break;
	}

	ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0);

	/* Address cycle complete, setup and write the write command */
	command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT)  |
			   (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) |
			   (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) |
			   (IXGB_MSCA_WRITE | IXGB_MSCA_MDI_COMMAND));

	IXGB_WRITE_REG(hw, MSCA, command);

	/**************************************************************
	** Check every 10 usec to see if the read command completed
	** The COMMAND bit will clear when the operation is complete.
	** The write may take as long as 64 usecs (we'll wait 100 usecs max)
	** from the CPU Write to the Ready bit assertion.
	**************************************************************/

	for(i = 0; i < 10; i++)
	{
		udelay(10);

		command = IXGB_READ_REG(hw, MSCA);

		if ((command & IXGB_MSCA_MDI_COMMAND) == 0)
			break;
	}

	ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0);

	/* Operation is complete, return. */
}

/******************************************************************************
 * Checks to see if the link status of the hardware has changed.
 *
 * hw - Struct containing variables accessed by hw code
 *
 * Called by any function that needs to check the link status of the adapter.
 *****************************************************************************/
void
ixgb_check_for_link(struct ixgb_hw *hw)
{
	uint32_t status_reg;
	uint32_t xpcss_reg;

	DEBUGFUNC("ixgb_check_for_link");

	xpcss_reg = IXGB_READ_REG(hw, XPCSS);
	status_reg = IXGB_READ_REG(hw, STATUS);

	if ((xpcss_reg & IXGB_XPCSS_ALIGN_STATUS) &&
	    (status_reg & IXGB_STATUS_LU)) {
		hw->link_up = TRUE;
	} else if (!(xpcss_reg & IXGB_XPCSS_ALIGN_STATUS) &&
		   (status_reg & IXGB_STATUS_LU)) {
		DEBUGOUT("XPCSS Not Aligned while Status:LU is set.\n");
		hw->link_up = ixgb_link_reset(hw);
	} else {
		/*
		 * 82597EX errata.  Since the lane deskew problem may prevent
		 * link, reset the link before reporting link down.
		 */
		hw->link_up = ixgb_link_reset(hw);
	}
	/*  Anything else for 10 Gig?? */
}

/******************************************************************************
 * Check for a bad link condition that may have occured.
 * The indication is that the RFC / LFC registers may be incrementing
 * continually.  A full adapter reset is required to recover.
 *
 * hw - Struct containing variables accessed by hw code
 *
 * Called by any function that needs to check the link status of the adapter.
 *****************************************************************************/
boolean_t ixgb_check_for_bad_link(struct ixgb_hw *hw)
{
	uint32_t newLFC, newRFC;
	boolean_t bad_link_returncode = FALSE;

	if (hw->phy_type == ixgb_phy_type_txn17401) {
		newLFC = IXGB_READ_REG(hw, LFC);
		newRFC = IXGB_READ_REG(hw, RFC);
		if ((hw->lastLFC + 250 < newLFC)
		    || (hw->lastRFC + 250 < newRFC)) {
			DEBUGOUT
			    ("BAD LINK! too many LFC/RFC since last check\n");
			bad_link_returncode = TRUE;
		}
		hw->lastLFC = newLFC;
		hw->lastRFC = newRFC;
	}

	return bad_link_returncode;
}

/******************************************************************************
 * Clears all hardware statistics counters.
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
static void
ixgb_clear_hw_cntrs(struct ixgb_hw *hw)
{
	volatile uint32_t temp_reg;

	DEBUGFUNC("ixgb_clear_hw_cntrs");

	/* if we are stopped or resetting exit gracefully */
	if(hw->adapter_stopped) {
		DEBUGOUT("Exiting because the adapter is stopped!!!\n");
		return;
	}

	temp_reg = IXGB_READ_REG(hw, TPRL);
	temp_reg = IXGB_READ_REG(hw, TPRH);
	temp_reg = IXGB_READ_REG(hw, GPRCL);
	temp_reg = IXGB_READ_REG(hw, GPRCH);
	temp_reg = IXGB_READ_REG(hw, BPRCL);
	temp_reg = IXGB_READ_REG(hw, BPRCH);
	temp_reg = IXGB_READ_REG(hw, MPRCL);
	temp_reg = IXGB_READ_REG(hw, MPRCH);
	temp_reg = IXGB_READ_REG(hw, UPRCL);
	temp_reg = IXGB_READ_REG(hw, UPRCH);
	temp_reg = IXGB_READ_REG(hw, VPRCL);
	temp_reg = IXGB_READ_REG(hw, VPRCH);
	temp_reg = IXGB_READ_REG(hw, JPRCL);
	temp_reg = IXGB_READ_REG(hw, JPRCH);
	temp_reg = IXGB_READ_REG(hw, GORCL);
	temp_reg = IXGB_READ_REG(hw, GORCH);
	temp_reg = IXGB_READ_REG(hw, TORL);
	temp_reg = IXGB_READ_REG(hw, TORH);
	temp_reg = IXGB_READ_REG(hw, RNBC);
	temp_reg = IXGB_READ_REG(hw, RUC);
	temp_reg = IXGB_READ_REG(hw, ROC);
	temp_reg = IXGB_READ_REG(hw, RLEC);
	temp_reg = IXGB_READ_REG(hw, CRCERRS);
	temp_reg = IXGB_READ_REG(hw, ICBC);
	temp_reg = IXGB_READ_REG(hw, ECBC);
	temp_reg = IXGB_READ_REG(hw, MPC);
	temp_reg = IXGB_READ_REG(hw, TPTL);
	temp_reg = IXGB_READ_REG(hw, TPTH);
	temp_reg = IXGB_READ_REG(hw, GPTCL);
	temp_reg = IXGB_READ_REG(hw, GPTCH);
	temp_reg = IXGB_READ_REG(hw, BPTCL);
	temp_reg = IXGB_READ_REG(hw, BPTCH);
	temp_reg = IXGB_READ_REG(hw, MPTCL);
	temp_reg = IXGB_READ_REG(hw, MPTCH);
	temp_reg = IXGB_READ_REG(hw, UPTCL);
	temp_reg = IXGB_READ_REG(hw, UPTCH);
	temp_reg = IXGB_READ_REG(hw, VPTCL);
	temp_reg = IXGB_READ_REG(hw, VPTCH);
	temp_reg = IXGB_READ_REG(hw, JPTCL);
	temp_reg = IXGB_READ_REG(hw, JPTCH);
	temp_reg = IXGB_READ_REG(hw, GOTCL);
	temp_reg = IXGB_READ_REG(hw, GOTCH);
	temp_reg = IXGB_READ_REG(hw, TOTL);
	temp_reg = IXGB_READ_REG(hw, TOTH);
	temp_reg = IXGB_READ_REG(hw, DC);
	temp_reg = IXGB_READ_REG(hw, PLT64C);
	temp_reg = IXGB_READ_REG(hw, TSCTC);
	temp_reg = IXGB_READ_REG(hw, TSCTFC);
	temp_reg = IXGB_READ_REG(hw, IBIC);
	temp_reg = IXGB_READ_REG(hw, RFC);
	temp_reg = IXGB_READ_REG(hw, LFC);
	temp_reg = IXGB_READ_REG(hw, PFRC);
	temp_reg = IXGB_READ_REG(hw, PFTC);
	temp_reg = IXGB_READ_REG(hw, MCFRC);
	temp_reg = IXGB_READ_REG(hw, MCFTC);
	temp_reg = IXGB_READ_REG(hw, XONRXC);
	temp_reg = IXGB_READ_REG(hw, XONTXC);
	temp_reg = IXGB_READ_REG(hw, XOFFRXC);
	temp_reg = IXGB_READ_REG(hw, XOFFTXC);
	temp_reg = IXGB_READ_REG(hw, RJC);
	return;
}

/******************************************************************************
 * Turns on the software controllable LED
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
void
ixgb_led_on(struct ixgb_hw *hw)
{
	uint32_t ctrl0_reg = IXGB_READ_REG(hw, CTRL0);

	/* To turn on the LED, clear software-definable pin 0 (SDP0). */
	ctrl0_reg &= ~IXGB_CTRL0_SDP0;
	IXGB_WRITE_REG(hw, CTRL0, ctrl0_reg);
	return;
}

/******************************************************************************
 * Turns off the software controllable LED
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
void
ixgb_led_off(struct ixgb_hw *hw)
{
	uint32_t ctrl0_reg = IXGB_READ_REG(hw, CTRL0);

	/* To turn off the LED, set software-definable pin 0 (SDP0). */
	ctrl0_reg |= IXGB_CTRL0_SDP0;
	IXGB_WRITE_REG(hw, CTRL0, ctrl0_reg);
	return;
}

/******************************************************************************
 * Gets the current PCI bus type, speed, and width of the hardware
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
static void
ixgb_get_bus_info(struct ixgb_hw *hw)
{
	uint32_t status_reg;

	status_reg = IXGB_READ_REG(hw, STATUS);

	hw->bus.type = (status_reg & IXGB_STATUS_PCIX_MODE) ?
		ixgb_bus_type_pcix : ixgb_bus_type_pci;

	if (hw->bus.type == ixgb_bus_type_pci) {
		hw->bus.speed = (status_reg & IXGB_STATUS_PCI_SPD) ?
			ixgb_bus_speed_66 : ixgb_bus_speed_33;
	} else {
		switch (status_reg & IXGB_STATUS_PCIX_SPD_MASK) {
		case IXGB_STATUS_PCIX_SPD_66:
			hw->bus.speed = ixgb_bus_speed_66;
			break;
		case IXGB_STATUS_PCIX_SPD_100:
			hw->bus.speed = ixgb_bus_speed_100;
			break;
		case IXGB_STATUS_PCIX_SPD_133:
			hw->bus.speed = ixgb_bus_speed_133;
			break;
		default:
			hw->bus.speed = ixgb_bus_speed_reserved;
			break;
		}
	}

	hw->bus.width = (status_reg & IXGB_STATUS_BUS64) ?
		ixgb_bus_width_64 : ixgb_bus_width_32;

	return;
}

/******************************************************************************
 * Tests a MAC address to ensure it is a valid Individual Address
 *
 * mac_addr - pointer to MAC address.
 *
 *****************************************************************************/
static boolean_t
mac_addr_valid(uint8_t *mac_addr)
{
	boolean_t is_valid = TRUE;
	DEBUGFUNC("mac_addr_valid");

	/* Make sure it is not a multicast address */
	if (IS_MULTICAST(mac_addr)) {
		DEBUGOUT("MAC address is multicast\n");
		is_valid = FALSE;
	}
	/* Not a broadcast address */
	else if (IS_BROADCAST(mac_addr)) {
		DEBUGOUT("MAC address is broadcast\n");
		is_valid = FALSE;
	}
	/* Reject the zero address */
	else if (mac_addr[0] == 0 &&
			 mac_addr[1] == 0 &&
			 mac_addr[2] == 0 &&
			 mac_addr[3] == 0 &&
			 mac_addr[4] == 0 &&
			 mac_addr[5] == 0) {
		DEBUGOUT("MAC address is all zeros\n");
		is_valid = FALSE;
	}
	return (is_valid);
}

/******************************************************************************
 * Resets the 10GbE link.  Waits the settle time and returns the state of
 * the link.
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
boolean_t
ixgb_link_reset(struct ixgb_hw *hw)
{
	boolean_t link_status = FALSE;
	uint8_t wait_retries = MAX_RESET_ITERATIONS;
	uint8_t lrst_retries = MAX_RESET_ITERATIONS;

	do {
		/* Reset the link */
		IXGB_WRITE_REG(hw, CTRL0,
			       IXGB_READ_REG(hw, CTRL0) | IXGB_CTRL0_LRST);

		/* Wait for link-up and lane re-alignment */
		do {
			udelay(IXGB_DELAY_USECS_AFTER_LINK_RESET);
			link_status =
			    ((IXGB_READ_REG(hw, STATUS) & IXGB_STATUS_LU)
			     && (IXGB_READ_REG(hw, XPCSS) &
				 IXGB_XPCSS_ALIGN_STATUS)) ? TRUE : FALSE;
		} while (!link_status && --wait_retries);

	} while (!link_status && --lrst_retries);

	return link_status;
}

/******************************************************************************
 * Resets the 10GbE optics module.
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
void
ixgb_optics_reset(struct ixgb_hw *hw)
{
	if (hw->phy_type == ixgb_phy_type_txn17401) {
		uint16_t mdio_reg;

		ixgb_write_phy_reg(hw,
					MDIO_PMA_PMD_CR1,
					IXGB_PHY_ADDRESS,
					MDIO_PMA_PMD_DID,
					MDIO_PMA_PMD_CR1_RESET);

		mdio_reg = ixgb_read_phy_reg( hw,
						MDIO_PMA_PMD_CR1,
						IXGB_PHY_ADDRESS,
						MDIO_PMA_PMD_DID);
	}

	return;
}