summaryrefslogtreecommitdiffstats
path: root/drivers/net/wimax/i2400m/usb-rx.c
blob: 22d127bf79e12503523ca281f5079fcff1a261fe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
/*
 * Intel Wireless WiMAX Connection 2400m
 * USB RX handling
 *
 *
 * Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in
 *     the documentation and/or other materials provided with the
 *     distribution.
 *   * Neither the name of Intel Corporation nor the names of its
 *     contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 *
 * Intel Corporation <linux-wimax@intel.com>
 * Yanir Lubetkin <yanirx.lubetkin@intel.com>
 *  - Initial implementation
 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
 *  - Use skb_clone(), break up processing in chunks
 *  - Split transport/device specific
 *  - Make buffer size dynamic to exert less memory pressure
 *
 *
 * This handles the RX path on USB.
 *
 * When a notification is received that says 'there is RX data ready',
 * we call i2400mu_rx_kick(); that wakes up the RX kthread, which
 * reads a buffer from USB and passes it to i2400m_rx() in the generic
 * handling code. The RX buffer has an specific format that is
 * described in rx.c.
 *
 * We use a kernel thread in a loop because:
 *
 *  - we want to be able to call the USB power management get/put
 *    functions (blocking) before each transaction.
 *
 *  - We might get a lot of notifications and we don't want to submit
 *    a zillion reads; by serializing, we are throttling.
 *
 *  - RX data processing can get heavy enough so that it is not
 *    appropiate for doing it in the USB callback; thus we run it in a
 *    process context.
 *
 * We provide a read buffer of an arbitrary size (short of a page); if
 * the callback reports -EOVERFLOW, it means it was too small, so we
 * just double the size and retry (being careful to append, as
 * sometimes the device provided some data). Every now and then we
 * check if the average packet size is smaller than the current packet
 * size and if so, we halve it. At the end, the size of the
 * preallocated buffer should be following the average received
 * transaction size, adapting dynamically to it.
 *
 * ROADMAP
 *
 * i2400mu_rx_kick()		   Called from notif.c when we get a
 *   			           'data ready' notification
 * i2400mu_rxd()                   Kernel RX daemon
 *   i2400mu_rx()                  Receive USB data
 *   i2400m_rx()                   Send data to generic i2400m RX handling
 *
 * i2400mu_rx_setup()              called from i2400mu_bus_dev_start()
 *
 * i2400mu_rx_release()            called from i2400mu_bus_dev_stop()
 */
#include <linux/workqueue.h>
#include <linux/usb.h>
#include "i2400m-usb.h"


#define D_SUBMODULE rx
#include "usb-debug-levels.h"

/*
 * Dynamic RX size
 *
 * We can't let the rx_size be a multiple of 512 bytes (the RX
 * endpoint's max packet size). On some USB host controllers (we
 * haven't been able to fully characterize which), if the device is
 * about to send (for example) X bytes and we only post a buffer to
 * receive n*512, it will fail to mark that as babble (so that
 * i2400mu_rx() [case -EOVERFLOW] can resize the buffer and get the
 * rest).
 *
 * So on growing or shrinking, if it is a multiple of the
 * maxpacketsize, we remove some (instead of incresing some, so in a
 * buddy allocator we try to waste less space).
 *
 * Note we also need a hook for this on i2400mu_rx() -- when we do the
 * first read, we are sure we won't hit this spot because
 * i240mm->rx_size has been set properly. However, if we have to
 * double because of -EOVERFLOW, when we launch the read to get the
 * rest of the data, we *have* to make sure that also is not a
 * multiple of the max_pkt_size.
 */

static
size_t i2400mu_rx_size_grow(struct i2400mu *i2400mu)
{
	struct device *dev = &i2400mu->usb_iface->dev;
	size_t rx_size;
	const size_t max_pkt_size = 512;

	rx_size = 2 * i2400mu->rx_size;
	if (rx_size % max_pkt_size == 0) {
		rx_size -= 8;
		d_printf(1, dev,
			 "RX: expected size grew to %zu [adjusted -8] "
			 "from %zu\n",
			 rx_size, i2400mu->rx_size);
	} else
		d_printf(1, dev,
			 "RX: expected size grew to %zu from %zu\n",
			 rx_size, i2400mu->rx_size);
	return rx_size;
}


static
void i2400mu_rx_size_maybe_shrink(struct i2400mu *i2400mu)
{
	const size_t max_pkt_size = 512;
	struct device *dev = &i2400mu->usb_iface->dev;

	if (unlikely(i2400mu->rx_size_cnt >= 100
		     && i2400mu->rx_size_auto_shrink)) {
		size_t avg_rx_size =
			i2400mu->rx_size_acc / i2400mu->rx_size_cnt;
		size_t new_rx_size = i2400mu->rx_size / 2;
		if (avg_rx_size < new_rx_size) {
			if (new_rx_size % max_pkt_size == 0) {
				new_rx_size -= 8;
				d_printf(1, dev,
					 "RX: expected size shrank to %zu "
					 "[adjusted -8] from %zu\n",
					 new_rx_size, i2400mu->rx_size);
			} else
				d_printf(1, dev,
					 "RX: expected size shrank to %zu "
					 "from %zu\n",
					 new_rx_size, i2400mu->rx_size);
			i2400mu->rx_size = new_rx_size;
			i2400mu->rx_size_cnt = 0;
			i2400mu->rx_size_acc = i2400mu->rx_size;
		}
	}
}

/*
 * Receive a message with payloads from the USB bus into an skb
 *
 * @i2400mu: USB device descriptor
 * @rx_skb: skb where to place the received message
 *
 * Deals with all the USB-specifics of receiving, dynamically
 * increasing the buffer size if so needed. Returns the payload in the
 * skb, ready to process. On a zero-length packet, we retry.
 *
 * On soft USB errors, we retry (until they become too frequent and
 * then are promoted to hard); on hard USB errors, we reset the
 * device. On other errors (skb realloacation, we just drop it and
 * hope for the next invocation to solve it).
 *
 * Returns: pointer to the skb if ok, ERR_PTR on error.
 *   NOTE: this function might realloc the skb (if it is too small),
 *   so always update with the one returned.
 *   ERR_PTR() is < 0 on error.
 *   Will return NULL if it cannot reallocate -- this can be
 *   considered a transient retryable error.
 */
static
struct sk_buff *i2400mu_rx(struct i2400mu *i2400mu, struct sk_buff *rx_skb)
{
	int result = 0;
	struct device *dev = &i2400mu->usb_iface->dev;
	int usb_pipe, read_size, rx_size, do_autopm;
	struct usb_endpoint_descriptor *epd;
	const size_t max_pkt_size = 512;

	d_fnstart(4, dev, "(i2400mu %p)\n", i2400mu);
	do_autopm = atomic_read(&i2400mu->do_autopm);
	result = do_autopm ?
		usb_autopm_get_interface(i2400mu->usb_iface) : 0;
	if (result < 0) {
		dev_err(dev, "RX: can't get autopm: %d\n", result);
		do_autopm = 0;
	}
	epd = usb_get_epd(i2400mu->usb_iface, i2400mu->endpoint_cfg.bulk_in);
	usb_pipe = usb_rcvbulkpipe(i2400mu->usb_dev, epd->bEndpointAddress);
retry:
	rx_size = skb_end_pointer(rx_skb) - rx_skb->data - rx_skb->len;
	if (unlikely(rx_size % max_pkt_size == 0)) {
		rx_size -= 8;
		d_printf(1, dev, "RX: rx_size adapted to %d [-8]\n", rx_size);
	}
	result = usb_bulk_msg(
		i2400mu->usb_dev, usb_pipe, rx_skb->data + rx_skb->len,
		rx_size, &read_size, 200);
	usb_mark_last_busy(i2400mu->usb_dev);
	switch (result) {
	case 0:
		if (read_size == 0)
			goto retry;	/* ZLP, just resubmit */
		skb_put(rx_skb, read_size);
		break;
	case -EINVAL:			/* while removing driver */
	case -ENODEV:			/* dev disconnect ... */
	case -ENOENT:			/* just ignore it */
	case -ESHUTDOWN:
	case -ECONNRESET:
		break;
	case -EOVERFLOW: {		/* too small, reallocate */
		struct sk_buff *new_skb;
		rx_size = i2400mu_rx_size_grow(i2400mu);
		if (rx_size <= (1 << 16))	/* cap it */
			i2400mu->rx_size = rx_size;
		else if (printk_ratelimit()) {
			dev_err(dev, "BUG? rx_size up to %d\n", rx_size);
			result = -EINVAL;
			goto out;
		}
		skb_put(rx_skb, read_size);
		new_skb = skb_copy_expand(rx_skb, 0, rx_size - rx_skb->len,
					  GFP_KERNEL);
		if (new_skb == NULL) {
			if (printk_ratelimit())
				dev_err(dev, "RX: Can't reallocate skb to %d; "
					"RX dropped\n", rx_size);
			kfree_skb(rx_skb);
			rx_skb = NULL;
			goto out;	/* drop it...*/
		}
		kfree_skb(rx_skb);
		rx_skb = new_skb;
		i2400mu->rx_size_cnt = 0;
		i2400mu->rx_size_acc = i2400mu->rx_size;
		d_printf(1, dev, "RX: size changed to %d, received %d, "
			 "copied %d, capacity %ld\n",
			 rx_size, read_size, rx_skb->len,
			 (long) (skb_end_pointer(new_skb) - new_skb->head));
		goto retry;
	}
		/* In most cases, it happens due to the hardware scheduling a
		 * read when there was no data - unfortunately, we have no way
		 * to tell this timeout from a USB timeout. So we just ignore
		 * it. */
	case -ETIMEDOUT:
		dev_err(dev, "RX: timeout: %d\n", result);
		result = 0;
		break;
	default:			/* Any error */
		if (edc_inc(&i2400mu->urb_edc,
			    EDC_MAX_ERRORS, EDC_ERROR_TIMEFRAME))
			goto error_reset;
		dev_err(dev, "RX: error receiving URB: %d, retrying\n", result);
		goto retry;
	}
out:
	if (do_autopm)
		usb_autopm_put_interface(i2400mu->usb_iface);
	d_fnend(4, dev, "(i2400mu %p) = %p\n", i2400mu, rx_skb);
	return rx_skb;

error_reset:
	dev_err(dev, "RX: maximum errors in URB exceeded; "
		"resetting device\n");
	usb_queue_reset_device(i2400mu->usb_iface);
	rx_skb = ERR_PTR(result);
	goto out;
}


/*
 * Kernel thread for USB reception of data
 *
 * This thread waits for a kick; once kicked, it will allocate an skb
 * and receive a single message to it from USB (using
 * i2400mu_rx()). Once received, it is passed to the generic i2400m RX
 * code for processing.
 *
 * When done processing, it runs some dirty statistics to verify if
 * the last 100 messages received were smaller than half of the
 * current RX buffer size. In that case, the RX buffer size is
 * halved. This will helps lowering the pressure on the memory
 * allocator.
 *
 * Hard errors force the thread to exit.
 */
static
int i2400mu_rxd(void *_i2400mu)
{
	int result = 0;
	struct i2400mu *i2400mu = _i2400mu;
	struct i2400m *i2400m = &i2400mu->i2400m;
	struct device *dev = &i2400mu->usb_iface->dev;
	struct net_device *net_dev = i2400m->wimax_dev.net_dev;
	size_t pending;
	int rx_size;
	struct sk_buff *rx_skb;
	unsigned long flags;

	d_fnstart(4, dev, "(i2400mu %p)\n", i2400mu);
	spin_lock_irqsave(&i2400m->rx_lock, flags);
	BUG_ON(i2400mu->rx_kthread != NULL);
	i2400mu->rx_kthread = current;
	spin_unlock_irqrestore(&i2400m->rx_lock, flags);
	while (1) {
		d_printf(2, dev, "RX: waiting for messages\n");
		pending = 0;
		wait_event_interruptible(
			i2400mu->rx_wq,
			(kthread_should_stop()	/* check this first! */
			 || (pending = atomic_read(&i2400mu->rx_pending_count)))
			);
		if (kthread_should_stop())
			break;
		if (pending == 0)
			continue;
		rx_size = i2400mu->rx_size;
		d_printf(2, dev, "RX: reading up to %d bytes\n", rx_size);
		rx_skb = __netdev_alloc_skb(net_dev, rx_size, GFP_KERNEL);
		if (rx_skb == NULL) {
			dev_err(dev, "RX: can't allocate skb [%d bytes]\n",
				rx_size);
			msleep(50);	/* give it some time? */
			continue;
		}

		/* Receive the message with the payloads */
		rx_skb = i2400mu_rx(i2400mu, rx_skb);
		result = PTR_ERR(rx_skb);
		if (IS_ERR(rx_skb))
			goto out;
		atomic_dec(&i2400mu->rx_pending_count);
		if (rx_skb == NULL || rx_skb->len == 0) {
			/* some "ignorable" condition */
			kfree_skb(rx_skb);
			continue;
		}

		/* Deliver the message to the generic i2400m code */
		i2400mu->rx_size_cnt++;
		i2400mu->rx_size_acc += rx_skb->len;
		result = i2400m_rx(i2400m, rx_skb);
		if (result == -EIO
		    && edc_inc(&i2400mu->urb_edc,
			       EDC_MAX_ERRORS, EDC_ERROR_TIMEFRAME)) {
			goto error_reset;
		}

		/* Maybe adjust RX buffer size */
		i2400mu_rx_size_maybe_shrink(i2400mu);
	}
	result = 0;
out:
	spin_lock_irqsave(&i2400m->rx_lock, flags);
	i2400mu->rx_kthread = NULL;
	spin_unlock_irqrestore(&i2400m->rx_lock, flags);
	d_fnend(4, dev, "(i2400mu %p) = %d\n", i2400mu, result);
	return result;

error_reset:
	dev_err(dev, "RX: maximum errors in received buffer exceeded; "
		"resetting device\n");
	usb_queue_reset_device(i2400mu->usb_iface);
	goto out;
}


/*
 * Start reading from the device
 *
 * @i2400m: device instance
 *
 * Notify the RX thread that there is data pending.
 */
void i2400mu_rx_kick(struct i2400mu *i2400mu)
{
	struct i2400m *i2400m = &i2400mu->i2400m;
	struct device *dev = &i2400mu->usb_iface->dev;

	d_fnstart(3, dev, "(i2400mu %p)\n", i2400m);
	atomic_inc(&i2400mu->rx_pending_count);
	wake_up_all(&i2400mu->rx_wq);
	d_fnend(3, dev, "(i2400m %p) = void\n", i2400m);
}


int i2400mu_rx_setup(struct i2400mu *i2400mu)
{
	int result = 0;
	struct i2400m *i2400m = &i2400mu->i2400m;
	struct device *dev = &i2400mu->usb_iface->dev;
	struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
	struct task_struct *kthread;

	kthread = kthread_run(i2400mu_rxd, i2400mu, "%s-rx",
			      wimax_dev->name);
	/* the kthread function sets i2400mu->rx_thread */
	if (IS_ERR(kthread)) {
		result = PTR_ERR(kthread);
		dev_err(dev, "RX: cannot start thread: %d\n", result);
	}
	return result;
}


void i2400mu_rx_release(struct i2400mu *i2400mu)
{
	unsigned long flags;
	struct i2400m *i2400m = &i2400mu->i2400m;
	struct device *dev = i2400m_dev(i2400m);
	struct task_struct *kthread;

	spin_lock_irqsave(&i2400m->rx_lock, flags);
	kthread = i2400mu->rx_kthread;
	i2400mu->rx_kthread = NULL;
	spin_unlock_irqrestore(&i2400m->rx_lock, flags);
	if (kthread)
		kthread_stop(kthread);
	else
		d_printf(1, dev, "RX: kthread had already exited\n");
}