summaryrefslogtreecommitdiffstats
path: root/drivers/net/wireless/rt2x00/rt2800mmio.c
blob: de4790b41be7d64a7c3a9651e27451c3f76183d6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
/*	Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
 *	Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
 *	Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
 *	Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
 *	Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
 *	Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
 *	Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
 *	Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
 *	<http://rt2x00.serialmonkey.com>
 *
 *	This program is free software; you can redistribute it and/or modify
 *	it under the terms of the GNU General Public License as published by
 *	the Free Software Foundation; either version 2 of the License, or
 *	(at your option) any later version.
 *
 *	This program is distributed in the hope that it will be useful,
 *	but WITHOUT ANY WARRANTY; without even the implied warranty of
 *	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 *	GNU General Public License for more details.
 *
 *	You should have received a copy of the GNU General Public License
 *	along with this program; if not, see <http://www.gnu.org/licenses/>.
 */

/*	Module: rt2800mmio
 *	Abstract: rt2800 MMIO device routines.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/export.h>

#include "rt2x00.h"
#include "rt2x00mmio.h"
#include "rt2800.h"
#include "rt2800lib.h"
#include "rt2800mmio.h"

/*
 * TX descriptor initialization
 */
__le32 *rt2800mmio_get_txwi(struct queue_entry *entry)
{
	return (__le32 *) entry->skb->data;
}
EXPORT_SYMBOL_GPL(rt2800mmio_get_txwi);

void rt2800mmio_write_tx_desc(struct queue_entry *entry,
			      struct txentry_desc *txdesc)
{
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
	__le32 *txd = entry_priv->desc;
	u32 word;
	const unsigned int txwi_size = entry->queue->winfo_size;

	/*
	 * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
	 * must contains a TXWI structure + 802.11 header + padding + 802.11
	 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
	 * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
	 * data. It means that LAST_SEC0 is always 0.
	 */

	/*
	 * Initialize TX descriptor
	 */
	word = 0;
	rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
	rt2x00_desc_write(txd, 0, word);

	word = 0;
	rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
	rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
			   !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W1_BURST,
			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W1_SD_LEN0, txwi_size);
	rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
	rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
	rt2x00_desc_write(txd, 1, word);

	word = 0;
	rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
			   skbdesc->skb_dma + txwi_size);
	rt2x00_desc_write(txd, 2, word);

	word = 0;
	rt2x00_set_field32(&word, TXD_W3_WIV,
			   !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
	rt2x00_desc_write(txd, 3, word);

	/*
	 * Register descriptor details in skb frame descriptor.
	 */
	skbdesc->desc = txd;
	skbdesc->desc_len = TXD_DESC_SIZE;
}
EXPORT_SYMBOL_GPL(rt2800mmio_write_tx_desc);

/*
 * RX control handlers
 */
void rt2800mmio_fill_rxdone(struct queue_entry *entry,
			    struct rxdone_entry_desc *rxdesc)
{
	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
	__le32 *rxd = entry_priv->desc;
	u32 word;

	rt2x00_desc_read(rxd, 3, &word);

	if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;

	/*
	 * Unfortunately we don't know the cipher type used during
	 * decryption. This prevents us from correct providing
	 * correct statistics through debugfs.
	 */
	rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);

	if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
		/*
		 * Hardware has stripped IV/EIV data from 802.11 frame during
		 * decryption. Unfortunately the descriptor doesn't contain
		 * any fields with the EIV/IV data either, so they can't
		 * be restored by rt2x00lib.
		 */
		rxdesc->flags |= RX_FLAG_IV_STRIPPED;

		/*
		 * The hardware has already checked the Michael Mic and has
		 * stripped it from the frame. Signal this to mac80211.
		 */
		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;

		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
			rxdesc->flags |= RX_FLAG_DECRYPTED;
		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
	}

	if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
		rxdesc->dev_flags |= RXDONE_MY_BSS;

	if (rt2x00_get_field32(word, RXD_W3_L2PAD))
		rxdesc->dev_flags |= RXDONE_L2PAD;

	/*
	 * Process the RXWI structure that is at the start of the buffer.
	 */
	rt2800_process_rxwi(entry, rxdesc);
}
EXPORT_SYMBOL_GPL(rt2800mmio_fill_rxdone);

/*
 * Interrupt functions.
 */
static void rt2800mmio_wakeup(struct rt2x00_dev *rt2x00dev)
{
	struct ieee80211_conf conf = { .flags = 0 };
	struct rt2x00lib_conf libconf = { .conf = &conf };

	rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
}

static bool rt2800mmio_txdone_entry_check(struct queue_entry *entry, u32 status)
{
	__le32 *txwi;
	u32 word;
	int wcid, tx_wcid;

	wcid = rt2x00_get_field32(status, TX_STA_FIFO_WCID);

	txwi = rt2800_drv_get_txwi(entry);
	rt2x00_desc_read(txwi, 1, &word);
	tx_wcid = rt2x00_get_field32(word, TXWI_W1_WIRELESS_CLI_ID);

	return (tx_wcid == wcid);
}

static bool rt2800mmio_txdone_find_entry(struct queue_entry *entry, void *data)
{
	u32 status = *(u32 *)data;

	/*
	 * rt2800pci hardware might reorder frames when exchanging traffic
	 * with multiple BA enabled STAs.
	 *
	 * For example, a tx queue
	 *    [ STA1 | STA2 | STA1 | STA2 ]
	 * can result in tx status reports
	 *    [ STA1 | STA1 | STA2 | STA2 ]
	 * when the hw decides to aggregate the frames for STA1 into one AMPDU.
	 *
	 * To mitigate this effect, associate the tx status to the first frame
	 * in the tx queue with a matching wcid.
	 */
	if (rt2800mmio_txdone_entry_check(entry, status) &&
	    !test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) {
		/*
		 * Got a matching frame, associate the tx status with
		 * the frame
		 */
		entry->status = status;
		set_bit(ENTRY_DATA_STATUS_SET, &entry->flags);
		return true;
	}

	/* Check the next frame */
	return false;
}

static bool rt2800mmio_txdone_match_first(struct queue_entry *entry, void *data)
{
	u32 status = *(u32 *)data;

	/*
	 * Find the first frame without tx status and assign this status to it
	 * regardless if it matches or not.
	 */
	if (!test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) {
		/*
		 * Got a matching frame, associate the tx status with
		 * the frame
		 */
		entry->status = status;
		set_bit(ENTRY_DATA_STATUS_SET, &entry->flags);
		return true;
	}

	/* Check the next frame */
	return false;
}
static bool rt2800mmio_txdone_release_entries(struct queue_entry *entry,
					      void *data)
{
	if (test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) {
		rt2800_txdone_entry(entry, entry->status,
				    rt2800mmio_get_txwi(entry));
		return false;
	}

	/* No more frames to release */
	return true;
}

static bool rt2800mmio_txdone(struct rt2x00_dev *rt2x00dev)
{
	struct data_queue *queue;
	u32 status;
	u8 qid;
	int max_tx_done = 16;

	while (kfifo_get(&rt2x00dev->txstatus_fifo, &status)) {
		qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE);
		if (unlikely(qid >= QID_RX)) {
			/*
			 * Unknown queue, this shouldn't happen. Just drop
			 * this tx status.
			 */
			rt2x00_warn(rt2x00dev, "Got TX status report with unexpected pid %u, dropping\n",
				    qid);
			break;
		}

		queue = rt2x00queue_get_tx_queue(rt2x00dev, qid);
		if (unlikely(queue == NULL)) {
			/*
			 * The queue is NULL, this shouldn't happen. Stop
			 * processing here and drop the tx status
			 */
			rt2x00_warn(rt2x00dev, "Got TX status for an unavailable queue %u, dropping\n",
				    qid);
			break;
		}

		if (unlikely(rt2x00queue_empty(queue))) {
			/*
			 * The queue is empty. Stop processing here
			 * and drop the tx status.
			 */
			rt2x00_warn(rt2x00dev, "Got TX status for an empty queue %u, dropping\n",
				    qid);
			break;
		}

		/*
		 * Let's associate this tx status with the first
		 * matching frame.
		 */
		if (!rt2x00queue_for_each_entry(queue, Q_INDEX_DONE,
						Q_INDEX, &status,
						rt2800mmio_txdone_find_entry)) {
			/*
			 * We cannot match the tx status to any frame, so just
			 * use the first one.
			 */
			if (!rt2x00queue_for_each_entry(queue, Q_INDEX_DONE,
							Q_INDEX, &status,
							rt2800mmio_txdone_match_first)) {
				rt2x00_warn(rt2x00dev, "No frame found for TX status on queue %u, dropping\n",
					    qid);
				break;
			}
		}

		/*
		 * Release all frames with a valid tx status.
		 */
		rt2x00queue_for_each_entry(queue, Q_INDEX_DONE,
					   Q_INDEX, NULL,
					   rt2800mmio_txdone_release_entries);

		if (--max_tx_done == 0)
			break;
	}

	return !max_tx_done;
}

static inline void rt2800mmio_enable_interrupt(struct rt2x00_dev *rt2x00dev,
					       struct rt2x00_field32 irq_field)
{
	u32 reg;

	/*
	 * Enable a single interrupt. The interrupt mask register
	 * access needs locking.
	 */
	spin_lock_irq(&rt2x00dev->irqmask_lock);
	rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, &reg);
	rt2x00_set_field32(&reg, irq_field, 1);
	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
	spin_unlock_irq(&rt2x00dev->irqmask_lock);
}

void rt2800mmio_txstatus_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
	if (rt2800mmio_txdone(rt2x00dev))
		tasklet_schedule(&rt2x00dev->txstatus_tasklet);

	/*
	 * No need to enable the tx status interrupt here as we always
	 * leave it enabled to minimize the possibility of a tx status
	 * register overflow. See comment in interrupt handler.
	 */
}
EXPORT_SYMBOL_GPL(rt2800mmio_txstatus_tasklet);

void rt2800mmio_pretbtt_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
	rt2x00lib_pretbtt(rt2x00dev);
	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
}
EXPORT_SYMBOL_GPL(rt2800mmio_pretbtt_tasklet);

void rt2800mmio_tbtt_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
	struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
	u32 reg;

	rt2x00lib_beacondone(rt2x00dev);

	if (rt2x00dev->intf_ap_count) {
		/*
		 * The rt2800pci hardware tbtt timer is off by 1us per tbtt
		 * causing beacon skew and as a result causing problems with
		 * some powersaving clients over time. Shorten the beacon
		 * interval every 64 beacons by 64us to mitigate this effect.
		 */
		if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 2)) {
			rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
			rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
					   (rt2x00dev->beacon_int * 16) - 1);
			rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
		} else if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 1)) {
			rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
			rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
					   (rt2x00dev->beacon_int * 16));
			rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
		}
		drv_data->tbtt_tick++;
		drv_data->tbtt_tick %= BCN_TBTT_OFFSET;
	}

	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
}
EXPORT_SYMBOL_GPL(rt2800mmio_tbtt_tasklet);

void rt2800mmio_rxdone_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
	if (rt2x00mmio_rxdone(rt2x00dev))
		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
	else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
}
EXPORT_SYMBOL_GPL(rt2800mmio_rxdone_tasklet);

void rt2800mmio_autowake_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
	rt2800mmio_wakeup(rt2x00dev);
	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		rt2800mmio_enable_interrupt(rt2x00dev,
					    INT_MASK_CSR_AUTO_WAKEUP);
}
EXPORT_SYMBOL_GPL(rt2800mmio_autowake_tasklet);

static void rt2800mmio_txstatus_interrupt(struct rt2x00_dev *rt2x00dev)
{
	u32 status;
	int i;

	/*
	 * The TX_FIFO_STATUS interrupt needs special care. We should
	 * read TX_STA_FIFO but we should do it immediately as otherwise
	 * the register can overflow and we would lose status reports.
	 *
	 * Hence, read the TX_STA_FIFO register and copy all tx status
	 * reports into a kernel FIFO which is handled in the txstatus
	 * tasklet. We use a tasklet to process the tx status reports
	 * because we can schedule the tasklet multiple times (when the
	 * interrupt fires again during tx status processing).
	 *
	 * Furthermore we don't disable the TX_FIFO_STATUS
	 * interrupt here but leave it enabled so that the TX_STA_FIFO
	 * can also be read while the tx status tasklet gets executed.
	 *
	 * Since we have only one producer and one consumer we don't
	 * need to lock the kfifo.
	 */
	for (i = 0; i < rt2x00dev->tx->limit; i++) {
		rt2x00mmio_register_read(rt2x00dev, TX_STA_FIFO, &status);

		if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
			break;

		if (!kfifo_put(&rt2x00dev->txstatus_fifo, status)) {
			rt2x00_warn(rt2x00dev, "TX status FIFO overrun, drop tx status report\n");
			break;
		}
	}

	/* Schedule the tasklet for processing the tx status. */
	tasklet_schedule(&rt2x00dev->txstatus_tasklet);
}

irqreturn_t rt2800mmio_interrupt(int irq, void *dev_instance)
{
	struct rt2x00_dev *rt2x00dev = dev_instance;
	u32 reg, mask;

	/* Read status and ACK all interrupts */
	rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
	rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);

	if (!reg)
		return IRQ_NONE;

	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		return IRQ_HANDLED;

	/*
	 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
	 * for interrupts and interrupt masks we can just use the value of
	 * INT_SOURCE_CSR to create the interrupt mask.
	 */
	mask = ~reg;

	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
		rt2800mmio_txstatus_interrupt(rt2x00dev);
		/*
		 * Never disable the TX_FIFO_STATUS interrupt.
		 */
		rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1);
	}

	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
		tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);

	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);

	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
		tasklet_schedule(&rt2x00dev->rxdone_tasklet);

	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
		tasklet_schedule(&rt2x00dev->autowake_tasklet);

	/*
	 * Disable all interrupts for which a tasklet was scheduled right now,
	 * the tasklet will reenable the appropriate interrupts.
	 */
	spin_lock(&rt2x00dev->irqmask_lock);
	rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, &reg);
	reg &= mask;
	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
	spin_unlock(&rt2x00dev->irqmask_lock);

	return IRQ_HANDLED;
}
EXPORT_SYMBOL_GPL(rt2800mmio_interrupt);

void rt2800mmio_toggle_irq(struct rt2x00_dev *rt2x00dev,
			   enum dev_state state)
{
	u32 reg;
	unsigned long flags;

	/*
	 * When interrupts are being enabled, the interrupt registers
	 * should clear the register to assure a clean state.
	 */
	if (state == STATE_RADIO_IRQ_ON) {
		rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
		rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
	}

	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
	reg = 0;
	if (state == STATE_RADIO_IRQ_ON) {
		rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, 1);
		rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, 1);
		rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, 1);
		rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, 1);
		rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, 1);
	}
	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);

	if (state == STATE_RADIO_IRQ_OFF) {
		/*
		 * Wait for possibly running tasklets to finish.
		 */
		tasklet_kill(&rt2x00dev->txstatus_tasklet);
		tasklet_kill(&rt2x00dev->rxdone_tasklet);
		tasklet_kill(&rt2x00dev->autowake_tasklet);
		tasklet_kill(&rt2x00dev->tbtt_tasklet);
		tasklet_kill(&rt2x00dev->pretbtt_tasklet);
	}
}
EXPORT_SYMBOL_GPL(rt2800mmio_toggle_irq);

/*
 * Queue handlers.
 */
void rt2800mmio_start_queue(struct data_queue *queue)
{
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
	u32 reg;

	switch (queue->qid) {
	case QID_RX:
		rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
		rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
		rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
		break;
	case QID_BEACON:
		rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
		rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
		rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
		rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
		rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);

		rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN, &reg);
		rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
		rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);
		break;
	default:
		break;
	}
}
EXPORT_SYMBOL_GPL(rt2800mmio_start_queue);

void rt2800mmio_kick_queue(struct data_queue *queue)
{
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
	struct queue_entry *entry;

	switch (queue->qid) {
	case QID_AC_VO:
	case QID_AC_VI:
	case QID_AC_BE:
	case QID_AC_BK:
		entry = rt2x00queue_get_entry(queue, Q_INDEX);
		rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(queue->qid),
					  entry->entry_idx);
		break;
	case QID_MGMT:
		entry = rt2x00queue_get_entry(queue, Q_INDEX);
		rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(5),
					  entry->entry_idx);
		break;
	default:
		break;
	}
}
EXPORT_SYMBOL_GPL(rt2800mmio_kick_queue);

void rt2800mmio_stop_queue(struct data_queue *queue)
{
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
	u32 reg;

	switch (queue->qid) {
	case QID_RX:
		rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
		rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
		rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
		break;
	case QID_BEACON:
		rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
		rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
		rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
		rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
		rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);

		rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN, &reg);
		rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
		rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);

		/*
		 * Wait for current invocation to finish. The tasklet
		 * won't be scheduled anymore afterwards since we disabled
		 * the TBTT and PRE TBTT timer.
		 */
		tasklet_kill(&rt2x00dev->tbtt_tasklet);
		tasklet_kill(&rt2x00dev->pretbtt_tasklet);

		break;
	default:
		break;
	}
}
EXPORT_SYMBOL_GPL(rt2800mmio_stop_queue);

void rt2800mmio_queue_init(struct data_queue *queue)
{
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
	unsigned short txwi_size, rxwi_size;

	rt2800_get_txwi_rxwi_size(rt2x00dev, &txwi_size, &rxwi_size);

	switch (queue->qid) {
	case QID_RX:
		queue->limit = 128;
		queue->data_size = AGGREGATION_SIZE;
		queue->desc_size = RXD_DESC_SIZE;
		queue->winfo_size = rxwi_size;
		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
		break;

	case QID_AC_VO:
	case QID_AC_VI:
	case QID_AC_BE:
	case QID_AC_BK:
		queue->limit = 64;
		queue->data_size = AGGREGATION_SIZE;
		queue->desc_size = TXD_DESC_SIZE;
		queue->winfo_size = txwi_size;
		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
		break;

	case QID_BEACON:
		queue->limit = 8;
		queue->data_size = 0; /* No DMA required for beacons */
		queue->desc_size = TXD_DESC_SIZE;
		queue->winfo_size = txwi_size;
		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
		break;

	case QID_ATIM:
		/* fallthrough */
	default:
		BUG();
		break;
	}
}
EXPORT_SYMBOL_GPL(rt2800mmio_queue_init);

/*
 * Initialization functions.
 */
bool rt2800mmio_get_entry_state(struct queue_entry *entry)
{
	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
	u32 word;

	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 1, &word);

		return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
	} else {
		rt2x00_desc_read(entry_priv->desc, 1, &word);

		return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
	}
}
EXPORT_SYMBOL_GPL(rt2800mmio_get_entry_state);

void rt2800mmio_clear_entry(struct queue_entry *entry)
{
	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
	u32 word;

	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 0, &word);
		rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
		rt2x00_desc_write(entry_priv->desc, 0, word);

		rt2x00_desc_read(entry_priv->desc, 1, &word);
		rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
		rt2x00_desc_write(entry_priv->desc, 1, word);

		/*
		 * Set RX IDX in register to inform hardware that we have
		 * handled this entry and it is available for reuse again.
		 */
		rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
					  entry->entry_idx);
	} else {
		rt2x00_desc_read(entry_priv->desc, 1, &word);
		rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
		rt2x00_desc_write(entry_priv->desc, 1, word);
	}
}
EXPORT_SYMBOL_GPL(rt2800mmio_clear_entry);

int rt2800mmio_init_queues(struct rt2x00_dev *rt2x00dev)
{
	struct queue_entry_priv_mmio *entry_priv;

	/*
	 * Initialize registers.
	 */
	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR0,
				  entry_priv->desc_dma);
	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT0,
				  rt2x00dev->tx[0].limit);
	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX0, 0);
	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX0, 0);

	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR1,
				  entry_priv->desc_dma);
	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT1,
				  rt2x00dev->tx[1].limit);
	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX1, 0);
	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX1, 0);

	entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR2,
				  entry_priv->desc_dma);
	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT2,
				  rt2x00dev->tx[2].limit);
	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX2, 0);
	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX2, 0);

	entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR3,
				  entry_priv->desc_dma);
	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT3,
				  rt2x00dev->tx[3].limit);
	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX3, 0);
	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX3, 0);

	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR4, 0);
	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT4, 0);
	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX4, 0);
	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX4, 0);

	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR5, 0);
	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT5, 0);
	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX5, 0);
	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX5, 0);

	entry_priv = rt2x00dev->rx->entries[0].priv_data;
	rt2x00mmio_register_write(rt2x00dev, RX_BASE_PTR,
				  entry_priv->desc_dma);
	rt2x00mmio_register_write(rt2x00dev, RX_MAX_CNT,
				  rt2x00dev->rx[0].limit);
	rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
				  rt2x00dev->rx[0].limit - 1);
	rt2x00mmio_register_write(rt2x00dev, RX_DRX_IDX, 0);

	rt2800_disable_wpdma(rt2x00dev);

	rt2x00mmio_register_write(rt2x00dev, DELAY_INT_CFG, 0);

	return 0;
}
EXPORT_SYMBOL_GPL(rt2800mmio_init_queues);

int rt2800mmio_init_registers(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	/*
	 * Reset DMA indexes
	 */
	rt2x00mmio_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
	rt2x00mmio_register_write(rt2x00dev, WPDMA_RST_IDX, reg);

	rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
	rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);

	if (rt2x00_is_pcie(rt2x00dev) &&
	    (rt2x00_rt(rt2x00dev, RT3090) ||
	     rt2x00_rt(rt2x00dev, RT3390) ||
	     rt2x00_rt(rt2x00dev, RT3572) ||
	     rt2x00_rt(rt2x00dev, RT3593) ||
	     rt2x00_rt(rt2x00dev, RT5390) ||
	     rt2x00_rt(rt2x00dev, RT5392) ||
	     rt2x00_rt(rt2x00dev, RT5592))) {
		rt2x00mmio_register_read(rt2x00dev, AUX_CTRL, &reg);
		rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
		rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
		rt2x00mmio_register_write(rt2x00dev, AUX_CTRL, reg);
	}

	rt2x00mmio_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);

	reg = 0;
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
	rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);

	rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);

	return 0;
}
EXPORT_SYMBOL_GPL(rt2800mmio_init_registers);

/*
 * Device state switch handlers.
 */
int rt2800mmio_enable_radio(struct rt2x00_dev *rt2x00dev)
{
	/* Wait for DMA, ignore error until we initialize queues. */
	rt2800_wait_wpdma_ready(rt2x00dev);

	if (unlikely(rt2800mmio_init_queues(rt2x00dev)))
		return -EIO;

	return rt2800_enable_radio(rt2x00dev);
}
EXPORT_SYMBOL_GPL(rt2800mmio_enable_radio);

MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("rt2800 MMIO library");
MODULE_LICENSE("GPL");