summaryrefslogtreecommitdiffstats
path: root/fs/xfs/xfs_inode.c
blob: f64b482a7953f48ecb7e861217bfb7057b085f02 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
/*
 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
 * All Rights Reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it would be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write the Free Software Foundation,
 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */
#include <linux/log2.h>

#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_types.h"
#include "xfs_bit.h"
#include "xfs_log.h"
#include "xfs_inum.h"
#include "xfs_trans.h"
#include "xfs_trans_priv.h"
#include "xfs_sb.h"
#include "xfs_ag.h"
#include "xfs_mount.h"
#include "xfs_bmap_btree.h"
#include "xfs_alloc_btree.h"
#include "xfs_ialloc_btree.h"
#include "xfs_attr_sf.h"
#include "xfs_dinode.h"
#include "xfs_inode.h"
#include "xfs_buf_item.h"
#include "xfs_inode_item.h"
#include "xfs_btree.h"
#include "xfs_alloc.h"
#include "xfs_ialloc.h"
#include "xfs_bmap.h"
#include "xfs_error.h"
#include "xfs_utils.h"
#include "xfs_quota.h"
#include "xfs_filestream.h"
#include "xfs_vnodeops.h"
#include "xfs_trace.h"

kmem_zone_t *xfs_ifork_zone;
kmem_zone_t *xfs_inode_zone;

/*
 * Used in xfs_itruncate_extents().  This is the maximum number of extents
 * freed from a file in a single transaction.
 */
#define	XFS_ITRUNC_MAX_EXTENTS	2

STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);

#ifdef DEBUG
/*
 * Make sure that the extents in the given memory buffer
 * are valid.
 */
STATIC void
xfs_validate_extents(
	xfs_ifork_t		*ifp,
	int			nrecs,
	xfs_exntfmt_t		fmt)
{
	xfs_bmbt_irec_t		irec;
	xfs_bmbt_rec_host_t	rec;
	int			i;

	for (i = 0; i < nrecs; i++) {
		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
		rec.l0 = get_unaligned(&ep->l0);
		rec.l1 = get_unaligned(&ep->l1);
		xfs_bmbt_get_all(&rec, &irec);
		if (fmt == XFS_EXTFMT_NOSTATE)
			ASSERT(irec.br_state == XFS_EXT_NORM);
	}
}
#else /* DEBUG */
#define xfs_validate_extents(ifp, nrecs, fmt)
#endif /* DEBUG */

/*
 * Check that none of the inode's in the buffer have a next
 * unlinked field of 0.
 */
#if defined(DEBUG)
void
xfs_inobp_check(
	xfs_mount_t	*mp,
	xfs_buf_t	*bp)
{
	int		i;
	int		j;
	xfs_dinode_t	*dip;

	j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;

	for (i = 0; i < j; i++) {
		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
					i * mp->m_sb.sb_inodesize);
		if (!dip->di_next_unlinked)  {
			xfs_alert(mp,
	"Detected bogus zero next_unlinked field in incore inode buffer 0x%p.",
				bp);
			ASSERT(dip->di_next_unlinked);
		}
	}
}
#endif

/*
 * Find the buffer associated with the given inode map
 * We do basic validation checks on the buffer once it has been
 * retrieved from disk.
 */
STATIC int
xfs_imap_to_bp(
	xfs_mount_t	*mp,
	xfs_trans_t	*tp,
	struct xfs_imap	*imap,
	xfs_buf_t	**bpp,
	uint		buf_flags,
	uint		iget_flags)
{
	int		error;
	int		i;
	int		ni;
	xfs_buf_t	*bp;

	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
				   (int)imap->im_len, buf_flags, &bp);
	if (error) {
		if (error != EAGAIN) {
			xfs_warn(mp,
				"%s: xfs_trans_read_buf() returned error %d.",
				__func__, error);
		} else {
			ASSERT(buf_flags & XBF_TRYLOCK);
		}
		return error;
	}

	/*
	 * Validate the magic number and version of every inode in the buffer
	 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
	 */
#ifdef DEBUG
	ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
#else	/* usual case */
	ni = 1;
#endif

	for (i = 0; i < ni; i++) {
		int		di_ok;
		xfs_dinode_t	*dip;

		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
					(i << mp->m_sb.sb_inodelog));
		di_ok = dip->di_magic == cpu_to_be16(XFS_DINODE_MAGIC) &&
			    XFS_DINODE_GOOD_VERSION(dip->di_version);
		if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
						XFS_ERRTAG_ITOBP_INOTOBP,
						XFS_RANDOM_ITOBP_INOTOBP))) {
			if (iget_flags & XFS_IGET_UNTRUSTED) {
				xfs_trans_brelse(tp, bp);
				return XFS_ERROR(EINVAL);
			}
			XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
						XFS_ERRLEVEL_HIGH, mp, dip);
#ifdef DEBUG
			xfs_emerg(mp,
				"bad inode magic/vsn daddr %lld #%d (magic=%x)",
				(unsigned long long)imap->im_blkno, i,
				be16_to_cpu(dip->di_magic));
			ASSERT(0);
#endif
			xfs_trans_brelse(tp, bp);
			return XFS_ERROR(EFSCORRUPTED);
		}
	}

	xfs_inobp_check(mp, bp);
	*bpp = bp;
	return 0;
}

/*
 * This routine is called to map an inode number within a file
 * system to the buffer containing the on-disk version of the
 * inode.  It returns a pointer to the buffer containing the
 * on-disk inode in the bpp parameter, and in the dip parameter
 * it returns a pointer to the on-disk inode within that buffer.
 *
 * If a non-zero error is returned, then the contents of bpp and
 * dipp are undefined.
 *
 * Use xfs_imap() to determine the size and location of the
 * buffer to read from disk.
 */
int
xfs_inotobp(
	xfs_mount_t	*mp,
	xfs_trans_t	*tp,
	xfs_ino_t	ino,
	xfs_dinode_t	**dipp,
	xfs_buf_t	**bpp,
	int		*offset,
	uint		imap_flags)
{
	struct xfs_imap	imap;
	xfs_buf_t	*bp;
	int		error;

	imap.im_blkno = 0;
	error = xfs_imap(mp, tp, ino, &imap, imap_flags);
	if (error)
		return error;

	error = xfs_imap_to_bp(mp, tp, &imap, &bp, 0, imap_flags);
	if (error)
		return error;

	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
	*bpp = bp;
	*offset = imap.im_boffset;
	return 0;
}


/*
 * This routine is called to map an inode to the buffer containing
 * the on-disk version of the inode.  It returns a pointer to the
 * buffer containing the on-disk inode in the bpp parameter, and in
 * the dip parameter it returns a pointer to the on-disk inode within
 * that buffer.
 *
 * If a non-zero error is returned, then the contents of bpp and
 * dipp are undefined.
 *
 * The inode is expected to already been mapped to its buffer and read
 * in once, thus we can use the mapping information stored in the inode
 * rather than calling xfs_imap().  This allows us to avoid the overhead
 * of looking at the inode btree for small block file systems
 * (see xfs_imap()).
 */
int
xfs_itobp(
	xfs_mount_t	*mp,
	xfs_trans_t	*tp,
	xfs_inode_t	*ip,
	xfs_dinode_t	**dipp,
	xfs_buf_t	**bpp,
	uint		buf_flags)
{
	xfs_buf_t	*bp;
	int		error;

	ASSERT(ip->i_imap.im_blkno != 0);

	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
	if (error)
		return error;

	if (!bp) {
		ASSERT(buf_flags & XBF_TRYLOCK);
		ASSERT(tp == NULL);
		*bpp = NULL;
		return EAGAIN;
	}

	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
	*bpp = bp;
	return 0;
}

/*
 * Move inode type and inode format specific information from the
 * on-disk inode to the in-core inode.  For fifos, devs, and sockets
 * this means set if_rdev to the proper value.  For files, directories,
 * and symlinks this means to bring in the in-line data or extent
 * pointers.  For a file in B-tree format, only the root is immediately
 * brought in-core.  The rest will be in-lined in if_extents when it
 * is first referenced (see xfs_iread_extents()).
 */
STATIC int
xfs_iformat(
	xfs_inode_t		*ip,
	xfs_dinode_t		*dip)
{
	xfs_attr_shortform_t	*atp;
	int			size;
	int			error = 0;
	xfs_fsize_t             di_size;

	if (unlikely(be32_to_cpu(dip->di_nextents) +
		     be16_to_cpu(dip->di_anextents) >
		     be64_to_cpu(dip->di_nblocks))) {
		xfs_warn(ip->i_mount,
			"corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
			(unsigned long long)ip->i_ino,
			(int)(be32_to_cpu(dip->di_nextents) +
			      be16_to_cpu(dip->di_anextents)),
			(unsigned long long)
				be64_to_cpu(dip->di_nblocks));
		XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
				     ip->i_mount, dip);
		return XFS_ERROR(EFSCORRUPTED);
	}

	if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
		xfs_warn(ip->i_mount, "corrupt dinode %Lu, forkoff = 0x%x.",
			(unsigned long long)ip->i_ino,
			dip->di_forkoff);
		XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
				     ip->i_mount, dip);
		return XFS_ERROR(EFSCORRUPTED);
	}

	if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
		     !ip->i_mount->m_rtdev_targp)) {
		xfs_warn(ip->i_mount,
			"corrupt dinode %Lu, has realtime flag set.",
			ip->i_ino);
		XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
				     XFS_ERRLEVEL_LOW, ip->i_mount, dip);
		return XFS_ERROR(EFSCORRUPTED);
	}

	switch (ip->i_d.di_mode & S_IFMT) {
	case S_IFIFO:
	case S_IFCHR:
	case S_IFBLK:
	case S_IFSOCK:
		if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
			XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
					      ip->i_mount, dip);
			return XFS_ERROR(EFSCORRUPTED);
		}
		ip->i_d.di_size = 0;
		ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
		break;

	case S_IFREG:
	case S_IFLNK:
	case S_IFDIR:
		switch (dip->di_format) {
		case XFS_DINODE_FMT_LOCAL:
			/*
			 * no local regular files yet
			 */
			if (unlikely(S_ISREG(be16_to_cpu(dip->di_mode)))) {
				xfs_warn(ip->i_mount,
			"corrupt inode %Lu (local format for regular file).",
					(unsigned long long) ip->i_ino);
				XFS_CORRUPTION_ERROR("xfs_iformat(4)",
						     XFS_ERRLEVEL_LOW,
						     ip->i_mount, dip);
				return XFS_ERROR(EFSCORRUPTED);
			}

			di_size = be64_to_cpu(dip->di_size);
			if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
				xfs_warn(ip->i_mount,
			"corrupt inode %Lu (bad size %Ld for local inode).",
					(unsigned long long) ip->i_ino,
					(long long) di_size);
				XFS_CORRUPTION_ERROR("xfs_iformat(5)",
						     XFS_ERRLEVEL_LOW,
						     ip->i_mount, dip);
				return XFS_ERROR(EFSCORRUPTED);
			}

			size = (int)di_size;
			error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
			break;
		case XFS_DINODE_FMT_EXTENTS:
			error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
			break;
		case XFS_DINODE_FMT_BTREE:
			error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
			break;
		default:
			XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
					 ip->i_mount);
			return XFS_ERROR(EFSCORRUPTED);
		}
		break;

	default:
		XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
		return XFS_ERROR(EFSCORRUPTED);
	}
	if (error) {
		return error;
	}
	if (!XFS_DFORK_Q(dip))
		return 0;

	ASSERT(ip->i_afp == NULL);
	ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS);

	switch (dip->di_aformat) {
	case XFS_DINODE_FMT_LOCAL:
		atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
		size = be16_to_cpu(atp->hdr.totsize);

		if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
			xfs_warn(ip->i_mount,
				"corrupt inode %Lu (bad attr fork size %Ld).",
				(unsigned long long) ip->i_ino,
				(long long) size);
			XFS_CORRUPTION_ERROR("xfs_iformat(8)",
					     XFS_ERRLEVEL_LOW,
					     ip->i_mount, dip);
			return XFS_ERROR(EFSCORRUPTED);
		}

		error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
		break;
	case XFS_DINODE_FMT_EXTENTS:
		error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
		break;
	case XFS_DINODE_FMT_BTREE:
		error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
		break;
	default:
		error = XFS_ERROR(EFSCORRUPTED);
		break;
	}
	if (error) {
		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
		ip->i_afp = NULL;
		xfs_idestroy_fork(ip, XFS_DATA_FORK);
	}
	return error;
}

/*
 * The file is in-lined in the on-disk inode.
 * If it fits into if_inline_data, then copy
 * it there, otherwise allocate a buffer for it
 * and copy the data there.  Either way, set
 * if_data to point at the data.
 * If we allocate a buffer for the data, make
 * sure that its size is a multiple of 4 and
 * record the real size in i_real_bytes.
 */
STATIC int
xfs_iformat_local(
	xfs_inode_t	*ip,
	xfs_dinode_t	*dip,
	int		whichfork,
	int		size)
{
	xfs_ifork_t	*ifp;
	int		real_size;

	/*
	 * If the size is unreasonable, then something
	 * is wrong and we just bail out rather than crash in
	 * kmem_alloc() or memcpy() below.
	 */
	if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
		xfs_warn(ip->i_mount,
	"corrupt inode %Lu (bad size %d for local fork, size = %d).",
			(unsigned long long) ip->i_ino, size,
			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
		XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
				     ip->i_mount, dip);
		return XFS_ERROR(EFSCORRUPTED);
	}
	ifp = XFS_IFORK_PTR(ip, whichfork);
	real_size = 0;
	if (size == 0)
		ifp->if_u1.if_data = NULL;
	else if (size <= sizeof(ifp->if_u2.if_inline_data))
		ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
	else {
		real_size = roundup(size, 4);
		ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
	}
	ifp->if_bytes = size;
	ifp->if_real_bytes = real_size;
	if (size)
		memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
	ifp->if_flags &= ~XFS_IFEXTENTS;
	ifp->if_flags |= XFS_IFINLINE;
	return 0;
}

/*
 * The file consists of a set of extents all
 * of which fit into the on-disk inode.
 * If there are few enough extents to fit into
 * the if_inline_ext, then copy them there.
 * Otherwise allocate a buffer for them and copy
 * them into it.  Either way, set if_extents
 * to point at the extents.
 */
STATIC int
xfs_iformat_extents(
	xfs_inode_t	*ip,
	xfs_dinode_t	*dip,
	int		whichfork)
{
	xfs_bmbt_rec_t	*dp;
	xfs_ifork_t	*ifp;
	int		nex;
	int		size;
	int		i;

	ifp = XFS_IFORK_PTR(ip, whichfork);
	nex = XFS_DFORK_NEXTENTS(dip, whichfork);
	size = nex * (uint)sizeof(xfs_bmbt_rec_t);

	/*
	 * If the number of extents is unreasonable, then something
	 * is wrong and we just bail out rather than crash in
	 * kmem_alloc() or memcpy() below.
	 */
	if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
		xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).",
			(unsigned long long) ip->i_ino, nex);
		XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
				     ip->i_mount, dip);
		return XFS_ERROR(EFSCORRUPTED);
	}

	ifp->if_real_bytes = 0;
	if (nex == 0)
		ifp->if_u1.if_extents = NULL;
	else if (nex <= XFS_INLINE_EXTS)
		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
	else
		xfs_iext_add(ifp, 0, nex);

	ifp->if_bytes = size;
	if (size) {
		dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
		xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
		for (i = 0; i < nex; i++, dp++) {
			xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
			ep->l0 = get_unaligned_be64(&dp->l0);
			ep->l1 = get_unaligned_be64(&dp->l1);
		}
		XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
		if (whichfork != XFS_DATA_FORK ||
			XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
				if (unlikely(xfs_check_nostate_extents(
				    ifp, 0, nex))) {
					XFS_ERROR_REPORT("xfs_iformat_extents(2)",
							 XFS_ERRLEVEL_LOW,
							 ip->i_mount);
					return XFS_ERROR(EFSCORRUPTED);
				}
	}
	ifp->if_flags |= XFS_IFEXTENTS;
	return 0;
}

/*
 * The file has too many extents to fit into
 * the inode, so they are in B-tree format.
 * Allocate a buffer for the root of the B-tree
 * and copy the root into it.  The i_extents
 * field will remain NULL until all of the
 * extents are read in (when they are needed).
 */
STATIC int
xfs_iformat_btree(
	xfs_inode_t		*ip,
	xfs_dinode_t		*dip,
	int			whichfork)
{
	xfs_bmdr_block_t	*dfp;
	xfs_ifork_t		*ifp;
	/* REFERENCED */
	int			nrecs;
	int			size;

	ifp = XFS_IFORK_PTR(ip, whichfork);
	dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
	size = XFS_BMAP_BROOT_SPACE(dfp);
	nrecs = be16_to_cpu(dfp->bb_numrecs);

	/*
	 * blow out if -- fork has less extents than can fit in
	 * fork (fork shouldn't be a btree format), root btree
	 * block has more records than can fit into the fork,
	 * or the number of extents is greater than the number of
	 * blocks.
	 */
	if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <=
			XFS_IFORK_MAXEXT(ip, whichfork) ||
		     XFS_BMDR_SPACE_CALC(nrecs) >
			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork) ||
		     XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
		xfs_warn(ip->i_mount, "corrupt inode %Lu (btree).",
			(unsigned long long) ip->i_ino);
		XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
				 ip->i_mount, dip);
		return XFS_ERROR(EFSCORRUPTED);
	}

	ifp->if_broot_bytes = size;
	ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
	ASSERT(ifp->if_broot != NULL);
	/*
	 * Copy and convert from the on-disk structure
	 * to the in-memory structure.
	 */
	xfs_bmdr_to_bmbt(ip->i_mount, dfp,
			 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
			 ifp->if_broot, size);
	ifp->if_flags &= ~XFS_IFEXTENTS;
	ifp->if_flags |= XFS_IFBROOT;

	return 0;
}

STATIC void
xfs_dinode_from_disk(
	xfs_icdinode_t		*to,
	xfs_dinode_t		*from)
{
	to->di_magic = be16_to_cpu(from->di_magic);
	to->di_mode = be16_to_cpu(from->di_mode);
	to->di_version = from ->di_version;
	to->di_format = from->di_format;
	to->di_onlink = be16_to_cpu(from->di_onlink);
	to->di_uid = be32_to_cpu(from->di_uid);
	to->di_gid = be32_to_cpu(from->di_gid);
	to->di_nlink = be32_to_cpu(from->di_nlink);
	to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
	to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
	to->di_flushiter = be16_to_cpu(from->di_flushiter);
	to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
	to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
	to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
	to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
	to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
	to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
	to->di_size = be64_to_cpu(from->di_size);
	to->di_nblocks = be64_to_cpu(from->di_nblocks);
	to->di_extsize = be32_to_cpu(from->di_extsize);
	to->di_nextents = be32_to_cpu(from->di_nextents);
	to->di_anextents = be16_to_cpu(from->di_anextents);
	to->di_forkoff = from->di_forkoff;
	to->di_aformat	= from->di_aformat;
	to->di_dmevmask	= be32_to_cpu(from->di_dmevmask);
	to->di_dmstate	= be16_to_cpu(from->di_dmstate);
	to->di_flags	= be16_to_cpu(from->di_flags);
	to->di_gen	= be32_to_cpu(from->di_gen);
}

void
xfs_dinode_to_disk(
	xfs_dinode_t		*to,
	xfs_icdinode_t		*from)
{
	to->di_magic = cpu_to_be16(from->di_magic);
	to->di_mode = cpu_to_be16(from->di_mode);
	to->di_version = from ->di_version;
	to->di_format = from->di_format;
	to->di_onlink = cpu_to_be16(from->di_onlink);
	to->di_uid = cpu_to_be32(from->di_uid);
	to->di_gid = cpu_to_be32(from->di_gid);
	to->di_nlink = cpu_to_be32(from->di_nlink);
	to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
	to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
	to->di_flushiter = cpu_to_be16(from->di_flushiter);
	to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
	to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
	to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
	to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
	to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
	to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
	to->di_size = cpu_to_be64(from->di_size);
	to->di_nblocks = cpu_to_be64(from->di_nblocks);
	to->di_extsize = cpu_to_be32(from->di_extsize);
	to->di_nextents = cpu_to_be32(from->di_nextents);
	to->di_anextents = cpu_to_be16(from->di_anextents);
	to->di_forkoff = from->di_forkoff;
	to->di_aformat = from->di_aformat;
	to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
	to->di_dmstate = cpu_to_be16(from->di_dmstate);
	to->di_flags = cpu_to_be16(from->di_flags);
	to->di_gen = cpu_to_be32(from->di_gen);
}

STATIC uint
_xfs_dic2xflags(
	__uint16_t		di_flags)
{
	uint			flags = 0;

	if (di_flags & XFS_DIFLAG_ANY) {
		if (di_flags & XFS_DIFLAG_REALTIME)
			flags |= XFS_XFLAG_REALTIME;
		if (di_flags & XFS_DIFLAG_PREALLOC)
			flags |= XFS_XFLAG_PREALLOC;
		if (di_flags & XFS_DIFLAG_IMMUTABLE)
			flags |= XFS_XFLAG_IMMUTABLE;
		if (di_flags & XFS_DIFLAG_APPEND)
			flags |= XFS_XFLAG_APPEND;
		if (di_flags & XFS_DIFLAG_SYNC)
			flags |= XFS_XFLAG_SYNC;
		if (di_flags & XFS_DIFLAG_NOATIME)
			flags |= XFS_XFLAG_NOATIME;
		if (di_flags & XFS_DIFLAG_NODUMP)
			flags |= XFS_XFLAG_NODUMP;
		if (di_flags & XFS_DIFLAG_RTINHERIT)
			flags |= XFS_XFLAG_RTINHERIT;
		if (di_flags & XFS_DIFLAG_PROJINHERIT)
			flags |= XFS_XFLAG_PROJINHERIT;
		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
			flags |= XFS_XFLAG_NOSYMLINKS;
		if (di_flags & XFS_DIFLAG_EXTSIZE)
			flags |= XFS_XFLAG_EXTSIZE;
		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
			flags |= XFS_XFLAG_EXTSZINHERIT;
		if (di_flags & XFS_DIFLAG_NODEFRAG)
			flags |= XFS_XFLAG_NODEFRAG;
		if (di_flags & XFS_DIFLAG_FILESTREAM)
			flags |= XFS_XFLAG_FILESTREAM;
	}

	return flags;
}

uint
xfs_ip2xflags(
	xfs_inode_t		*ip)
{
	xfs_icdinode_t		*dic = &ip->i_d;

	return _xfs_dic2xflags(dic->di_flags) |
				(XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
}

uint
xfs_dic2xflags(
	xfs_dinode_t		*dip)
{
	return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
				(XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
}

/*
 * Read the disk inode attributes into the in-core inode structure.
 */
int
xfs_iread(
	xfs_mount_t	*mp,
	xfs_trans_t	*tp,
	xfs_inode_t	*ip,
	uint		iget_flags)
{
	xfs_buf_t	*bp;
	xfs_dinode_t	*dip;
	int		error;

	/*
	 * Fill in the location information in the in-core inode.
	 */
	error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
	if (error)
		return error;

	/*
	 * Get pointers to the on-disk inode and the buffer containing it.
	 */
	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, 0, iget_flags);
	if (error)
		return error;
	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);

	/*
	 * If we got something that isn't an inode it means someone
	 * (nfs or dmi) has a stale handle.
	 */
	if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC)) {
#ifdef DEBUG
		xfs_alert(mp,
			"%s: dip->di_magic (0x%x) != XFS_DINODE_MAGIC (0x%x)",
			__func__, be16_to_cpu(dip->di_magic), XFS_DINODE_MAGIC);
#endif /* DEBUG */
		error = XFS_ERROR(EINVAL);
		goto out_brelse;
	}

	/*
	 * If the on-disk inode is already linked to a directory
	 * entry, copy all of the inode into the in-core inode.
	 * xfs_iformat() handles copying in the inode format
	 * specific information.
	 * Otherwise, just get the truly permanent information.
	 */
	if (dip->di_mode) {
		xfs_dinode_from_disk(&ip->i_d, dip);
		error = xfs_iformat(ip, dip);
		if (error)  {
#ifdef DEBUG
			xfs_alert(mp, "%s: xfs_iformat() returned error %d",
				__func__, error);
#endif /* DEBUG */
			goto out_brelse;
		}
	} else {
		ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
		ip->i_d.di_version = dip->di_version;
		ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
		ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
		/*
		 * Make sure to pull in the mode here as well in
		 * case the inode is released without being used.
		 * This ensures that xfs_inactive() will see that
		 * the inode is already free and not try to mess
		 * with the uninitialized part of it.
		 */
		ip->i_d.di_mode = 0;
	}

	/*
	 * The inode format changed when we moved the link count and
	 * made it 32 bits long.  If this is an old format inode,
	 * convert it in memory to look like a new one.  If it gets
	 * flushed to disk we will convert back before flushing or
	 * logging it.  We zero out the new projid field and the old link
	 * count field.  We'll handle clearing the pad field (the remains
	 * of the old uuid field) when we actually convert the inode to
	 * the new format. We don't change the version number so that we
	 * can distinguish this from a real new format inode.
	 */
	if (ip->i_d.di_version == 1) {
		ip->i_d.di_nlink = ip->i_d.di_onlink;
		ip->i_d.di_onlink = 0;
		xfs_set_projid(ip, 0);
	}

	ip->i_delayed_blks = 0;

	/*
	 * Mark the buffer containing the inode as something to keep
	 * around for a while.  This helps to keep recently accessed
	 * meta-data in-core longer.
	 */
	xfs_buf_set_ref(bp, XFS_INO_REF);

	/*
	 * Use xfs_trans_brelse() to release the buffer containing the
	 * on-disk inode, because it was acquired with xfs_trans_read_buf()
	 * in xfs_itobp() above.  If tp is NULL, this is just a normal
	 * brelse().  If we're within a transaction, then xfs_trans_brelse()
	 * will only release the buffer if it is not dirty within the
	 * transaction.  It will be OK to release the buffer in this case,
	 * because inodes on disk are never destroyed and we will be
	 * locking the new in-core inode before putting it in the hash
	 * table where other processes can find it.  Thus we don't have
	 * to worry about the inode being changed just because we released
	 * the buffer.
	 */
 out_brelse:
	xfs_trans_brelse(tp, bp);
	return error;
}

/*
 * Read in extents from a btree-format inode.
 * Allocate and fill in if_extents.  Real work is done in xfs_bmap.c.
 */
int
xfs_iread_extents(
	xfs_trans_t	*tp,
	xfs_inode_t	*ip,
	int		whichfork)
{
	int		error;
	xfs_ifork_t	*ifp;
	xfs_extnum_t	nextents;

	if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
		XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
				 ip->i_mount);
		return XFS_ERROR(EFSCORRUPTED);
	}
	nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
	ifp = XFS_IFORK_PTR(ip, whichfork);

	/*
	 * We know that the size is valid (it's checked in iformat_btree)
	 */
	ifp->if_bytes = ifp->if_real_bytes = 0;
	ifp->if_flags |= XFS_IFEXTENTS;
	xfs_iext_add(ifp, 0, nextents);
	error = xfs_bmap_read_extents(tp, ip, whichfork);
	if (error) {
		xfs_iext_destroy(ifp);
		ifp->if_flags &= ~XFS_IFEXTENTS;
		return error;
	}
	xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
	return 0;
}

/*
 * Allocate an inode on disk and return a copy of its in-core version.
 * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
 * appropriately within the inode.  The uid and gid for the inode are
 * set according to the contents of the given cred structure.
 *
 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
 * has a free inode available, call xfs_iget()
 * to obtain the in-core version of the allocated inode.  Finally,
 * fill in the inode and log its initial contents.  In this case,
 * ialloc_context would be set to NULL and call_again set to false.
 *
 * If xfs_dialloc() does not have an available inode,
 * it will replenish its supply by doing an allocation. Since we can
 * only do one allocation within a transaction without deadlocks, we
 * must commit the current transaction before returning the inode itself.
 * In this case, therefore, we will set call_again to true and return.
 * The caller should then commit the current transaction, start a new
 * transaction, and call xfs_ialloc() again to actually get the inode.
 *
 * To ensure that some other process does not grab the inode that
 * was allocated during the first call to xfs_ialloc(), this routine
 * also returns the [locked] bp pointing to the head of the freelist
 * as ialloc_context.  The caller should hold this buffer across
 * the commit and pass it back into this routine on the second call.
 *
 * If we are allocating quota inodes, we do not have a parent inode
 * to attach to or associate with (i.e. pip == NULL) because they
 * are not linked into the directory structure - they are attached
 * directly to the superblock - and so have no parent.
 */
int
xfs_ialloc(
	xfs_trans_t	*tp,
	xfs_inode_t	*pip,
	umode_t		mode,
	xfs_nlink_t	nlink,
	xfs_dev_t	rdev,
	prid_t		prid,
	int		okalloc,
	xfs_buf_t	**ialloc_context,
	boolean_t	*call_again,
	xfs_inode_t	**ipp)
{
	xfs_ino_t	ino;
	xfs_inode_t	*ip;
	uint		flags;
	int		error;
	timespec_t	tv;
	int		filestreams = 0;

	/*
	 * Call the space management code to pick
	 * the on-disk inode to be allocated.
	 */
	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
			    ialloc_context, call_again, &ino);
	if (error)
		return error;
	if (*call_again || ino == NULLFSINO) {
		*ipp = NULL;
		return 0;
	}
	ASSERT(*ialloc_context == NULL);

	/*
	 * Get the in-core inode with the lock held exclusively.
	 * This is because we're setting fields here we need
	 * to prevent others from looking at until we're done.
	 */
	error = xfs_iget(tp->t_mountp, tp, ino, XFS_IGET_CREATE,
			 XFS_ILOCK_EXCL, &ip);
	if (error)
		return error;
	ASSERT(ip != NULL);

	ip->i_d.di_mode = mode;
	ip->i_d.di_onlink = 0;
	ip->i_d.di_nlink = nlink;
	ASSERT(ip->i_d.di_nlink == nlink);
	ip->i_d.di_uid = current_fsuid();
	ip->i_d.di_gid = current_fsgid();
	xfs_set_projid(ip, prid);
	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));

	/*
	 * If the superblock version is up to where we support new format
	 * inodes and this is currently an old format inode, then change
	 * the inode version number now.  This way we only do the conversion
	 * here rather than here and in the flush/logging code.
	 */
	if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
	    ip->i_d.di_version == 1) {
		ip->i_d.di_version = 2;
		/*
		 * We've already zeroed the old link count, the projid field,
		 * and the pad field.
		 */
	}

	/*
	 * Project ids won't be stored on disk if we are using a version 1 inode.
	 */
	if ((prid != 0) && (ip->i_d.di_version == 1))
		xfs_bump_ino_vers2(tp, ip);

	if (pip && XFS_INHERIT_GID(pip)) {
		ip->i_d.di_gid = pip->i_d.di_gid;
		if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
			ip->i_d.di_mode |= S_ISGID;
		}
	}

	/*
	 * If the group ID of the new file does not match the effective group
	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
	 * (and only if the irix_sgid_inherit compatibility variable is set).
	 */
	if ((irix_sgid_inherit) &&
	    (ip->i_d.di_mode & S_ISGID) &&
	    (!in_group_p((gid_t)ip->i_d.di_gid))) {
		ip->i_d.di_mode &= ~S_ISGID;
	}

	ip->i_d.di_size = 0;
	ip->i_d.di_nextents = 0;
	ASSERT(ip->i_d.di_nblocks == 0);

	nanotime(&tv);
	ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
	ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
	ip->i_d.di_atime = ip->i_d.di_mtime;
	ip->i_d.di_ctime = ip->i_d.di_mtime;

	/*
	 * di_gen will have been taken care of in xfs_iread.
	 */
	ip->i_d.di_extsize = 0;
	ip->i_d.di_dmevmask = 0;
	ip->i_d.di_dmstate = 0;
	ip->i_d.di_flags = 0;
	flags = XFS_ILOG_CORE;
	switch (mode & S_IFMT) {
	case S_IFIFO:
	case S_IFCHR:
	case S_IFBLK:
	case S_IFSOCK:
		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
		ip->i_df.if_u2.if_rdev = rdev;
		ip->i_df.if_flags = 0;
		flags |= XFS_ILOG_DEV;
		break;
	case S_IFREG:
		/*
		 * we can't set up filestreams until after the VFS inode
		 * is set up properly.
		 */
		if (pip && xfs_inode_is_filestream(pip))
			filestreams = 1;
		/* fall through */
	case S_IFDIR:
		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
			uint	di_flags = 0;

			if (S_ISDIR(mode)) {
				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
					di_flags |= XFS_DIFLAG_RTINHERIT;
				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
					ip->i_d.di_extsize = pip->i_d.di_extsize;
				}
			} else if (S_ISREG(mode)) {
				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
					di_flags |= XFS_DIFLAG_REALTIME;
				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
					di_flags |= XFS_DIFLAG_EXTSIZE;
					ip->i_d.di_extsize = pip->i_d.di_extsize;
				}
			}
			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
			    xfs_inherit_noatime)
				di_flags |= XFS_DIFLAG_NOATIME;
			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
			    xfs_inherit_nodump)
				di_flags |= XFS_DIFLAG_NODUMP;
			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
			    xfs_inherit_sync)
				di_flags |= XFS_DIFLAG_SYNC;
			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
			    xfs_inherit_nosymlinks)
				di_flags |= XFS_DIFLAG_NOSYMLINKS;
			if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
				di_flags |= XFS_DIFLAG_PROJINHERIT;
			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
			    xfs_inherit_nodefrag)
				di_flags |= XFS_DIFLAG_NODEFRAG;
			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
				di_flags |= XFS_DIFLAG_FILESTREAM;
			ip->i_d.di_flags |= di_flags;
		}
		/* FALLTHROUGH */
	case S_IFLNK:
		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
		ip->i_df.if_flags = XFS_IFEXTENTS;
		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
		ip->i_df.if_u1.if_extents = NULL;
		break;
	default:
		ASSERT(0);
	}
	/*
	 * Attribute fork settings for new inode.
	 */
	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
	ip->i_d.di_anextents = 0;

	/*
	 * Log the new values stuffed into the inode.
	 */
	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
	xfs_trans_log_inode(tp, ip, flags);

	/* now that we have an i_mode we can setup inode ops and unlock */
	xfs_setup_inode(ip);

	/* now we have set up the vfs inode we can associate the filestream */
	if (filestreams) {
		error = xfs_filestream_associate(pip, ip);
		if (error < 0)
			return -error;
		if (!error)
			xfs_iflags_set(ip, XFS_IFILESTREAM);
	}

	*ipp = ip;
	return 0;
}

/*
 * Free up the underlying blocks past new_size.  The new size must be smaller
 * than the current size.  This routine can be used both for the attribute and
 * data fork, and does not modify the inode size, which is left to the caller.
 *
 * The transaction passed to this routine must have made a permanent log
 * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
 * given transaction and start new ones, so make sure everything involved in
 * the transaction is tidy before calling here.  Some transaction will be
 * returned to the caller to be committed.  The incoming transaction must
 * already include the inode, and both inode locks must be held exclusively.
 * The inode must also be "held" within the transaction.  On return the inode
 * will be "held" within the returned transaction.  This routine does NOT
 * require any disk space to be reserved for it within the transaction.
 *
 * If we get an error, we must return with the inode locked and linked into the
 * current transaction. This keeps things simple for the higher level code,
 * because it always knows that the inode is locked and held in the transaction
 * that returns to it whether errors occur or not.  We don't mark the inode
 * dirty on error so that transactions can be easily aborted if possible.
 */
int
xfs_itruncate_extents(
	struct xfs_trans	**tpp,
	struct xfs_inode	*ip,
	int			whichfork,
	xfs_fsize_t		new_size)
{
	struct xfs_mount	*mp = ip->i_mount;
	struct xfs_trans	*tp = *tpp;
	struct xfs_trans	*ntp;
	xfs_bmap_free_t		free_list;
	xfs_fsblock_t		first_block;
	xfs_fileoff_t		first_unmap_block;
	xfs_fileoff_t		last_block;
	xfs_filblks_t		unmap_len;
	int			committed;
	int			error = 0;
	int			done = 0;

	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
	ASSERT(new_size <= XFS_ISIZE(ip));
	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
	ASSERT(ip->i_itemp != NULL);
	ASSERT(ip->i_itemp->ili_lock_flags == 0);
	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));

	trace_xfs_itruncate_extents_start(ip, new_size);

	/*
	 * Since it is possible for space to become allocated beyond
	 * the end of the file (in a crash where the space is allocated
	 * but the inode size is not yet updated), simply remove any
	 * blocks which show up between the new EOF and the maximum
	 * possible file size.  If the first block to be removed is
	 * beyond the maximum file size (ie it is the same as last_block),
	 * then there is nothing to do.
	 */
	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
	last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
	if (first_unmap_block == last_block)
		return 0;

	ASSERT(first_unmap_block < last_block);
	unmap_len = last_block - first_unmap_block + 1;
	while (!done) {
		xfs_bmap_init(&free_list, &first_block);
		error = xfs_bunmapi(tp, ip,
				    first_unmap_block, unmap_len,
				    xfs_bmapi_aflag(whichfork),
				    XFS_ITRUNC_MAX_EXTENTS,
				    &first_block, &free_list,
				    &done);
		if (error)
			goto out_bmap_cancel;

		/*
		 * Duplicate the transaction that has the permanent
		 * reservation and commit the old transaction.
		 */
		error = xfs_bmap_finish(&tp, &free_list, &committed);
		if (committed)
			xfs_trans_ijoin(tp, ip, 0);
		if (error)
			goto out_bmap_cancel;

		if (committed) {
			/*
			 * Mark the inode dirty so it will be logged and
			 * moved forward in the log as part of every commit.
			 */
			xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
		}

		ntp = xfs_trans_dup(tp);
		error = xfs_trans_commit(tp, 0);
		tp = ntp;

		xfs_trans_ijoin(tp, ip, 0);

		if (error)
			goto out;

		/*
		 * Transaction commit worked ok so we can drop the extra ticket
		 * reference that we gained in xfs_trans_dup()
		 */
		xfs_log_ticket_put(tp->t_ticket);
		error = xfs_trans_reserve(tp, 0,
					XFS_ITRUNCATE_LOG_RES(mp), 0,
					XFS_TRANS_PERM_LOG_RES,
					XFS_ITRUNCATE_LOG_COUNT);
		if (error)
			goto out;
	}

	/*
	 * Always re-log the inode so that our permanent transaction can keep
	 * on rolling it forward in the log.
	 */
	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);

	trace_xfs_itruncate_extents_end(ip, new_size);

out:
	*tpp = tp;
	return error;
out_bmap_cancel:
	/*
	 * If the bunmapi call encounters an error, return to the caller where
	 * the transaction can be properly aborted.  We just need to make sure
	 * we're not holding any resources that we were not when we came in.
	 */
	xfs_bmap_cancel(&free_list);
	goto out;
}

/*
 * This is called when the inode's link count goes to 0.
 * We place the on-disk inode on a list in the AGI.  It
 * will be pulled from this list when the inode is freed.
 */
int
xfs_iunlink(
	xfs_trans_t	*tp,
	xfs_inode_t	*ip)
{
	xfs_mount_t	*mp;
	xfs_agi_t	*agi;
	xfs_dinode_t	*dip;
	xfs_buf_t	*agibp;
	xfs_buf_t	*ibp;
	xfs_agino_t	agino;
	short		bucket_index;
	int		offset;
	int		error;

	ASSERT(ip->i_d.di_nlink == 0);
	ASSERT(ip->i_d.di_mode != 0);

	mp = tp->t_mountp;

	/*
	 * Get the agi buffer first.  It ensures lock ordering
	 * on the list.
	 */
	error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
	if (error)
		return error;
	agi = XFS_BUF_TO_AGI(agibp);

	/*
	 * Get the index into the agi hash table for the
	 * list this inode will go on.
	 */
	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
	ASSERT(agino != 0);
	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
	ASSERT(agi->agi_unlinked[bucket_index]);
	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);

	if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
		/*
		 * There is already another inode in the bucket we need
		 * to add ourselves to.  Add us at the front of the list.
		 * Here we put the head pointer into our next pointer,
		 * and then we fall through to point the head at us.
		 */
		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
		if (error)
			return error;

		ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
		offset = ip->i_imap.im_boffset +
			offsetof(xfs_dinode_t, di_next_unlinked);
		xfs_trans_inode_buf(tp, ibp);
		xfs_trans_log_buf(tp, ibp, offset,
				  (offset + sizeof(xfs_agino_t) - 1));
		xfs_inobp_check(mp, ibp);
	}

	/*
	 * Point the bucket head pointer at the inode being inserted.
	 */
	ASSERT(agino != 0);
	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
	offset = offsetof(xfs_agi_t, agi_unlinked) +
		(sizeof(xfs_agino_t) * bucket_index);
	xfs_trans_log_buf(tp, agibp, offset,
			  (offset + sizeof(xfs_agino_t) - 1));
	return 0;
}

/*
 * Pull the on-disk inode from the AGI unlinked list.
 */
STATIC int
xfs_iunlink_remove(
	xfs_trans_t	*tp,
	xfs_inode_t	*ip)
{
	xfs_ino_t	next_ino;
	xfs_mount_t	*mp;
	xfs_agi_t	*agi;
	xfs_dinode_t	*dip;
	xfs_buf_t	*agibp;
	xfs_buf_t	*ibp;
	xfs_agnumber_t	agno;
	xfs_agino_t	agino;
	xfs_agino_t	next_agino;
	xfs_buf_t	*last_ibp;
	xfs_dinode_t	*last_dip = NULL;
	short		bucket_index;
	int		offset, last_offset = 0;
	int		error;

	mp = tp->t_mountp;
	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);

	/*
	 * Get the agi buffer first.  It ensures lock ordering
	 * on the list.
	 */
	error = xfs_read_agi(mp, tp, agno, &agibp);
	if (error)
		return error;

	agi = XFS_BUF_TO_AGI(agibp);

	/*
	 * Get the index into the agi hash table for the
	 * list this inode will go on.
	 */
	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
	ASSERT(agino != 0);
	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
	ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
	ASSERT(agi->agi_unlinked[bucket_index]);

	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
		/*
		 * We're at the head of the list.  Get the inode's
		 * on-disk buffer to see if there is anyone after us
		 * on the list.  Only modify our next pointer if it
		 * is not already NULLAGINO.  This saves us the overhead
		 * of dealing with the buffer when there is no need to
		 * change it.
		 */
		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
		if (error) {
			xfs_warn(mp, "%s: xfs_itobp() returned error %d.",
				__func__, error);
			return error;
		}
		next_agino = be32_to_cpu(dip->di_next_unlinked);
		ASSERT(next_agino != 0);
		if (next_agino != NULLAGINO) {
			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
			offset = ip->i_imap.im_boffset +
				offsetof(xfs_dinode_t, di_next_unlinked);
			xfs_trans_inode_buf(tp, ibp);
			xfs_trans_log_buf(tp, ibp, offset,
					  (offset + sizeof(xfs_agino_t) - 1));
			xfs_inobp_check(mp, ibp);
		} else {
			xfs_trans_brelse(tp, ibp);
		}
		/*
		 * Point the bucket head pointer at the next inode.
		 */
		ASSERT(next_agino != 0);
		ASSERT(next_agino != agino);
		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
		offset = offsetof(xfs_agi_t, agi_unlinked) +
			(sizeof(xfs_agino_t) * bucket_index);
		xfs_trans_log_buf(tp, agibp, offset,
				  (offset + sizeof(xfs_agino_t) - 1));
	} else {
		/*
		 * We need to search the list for the inode being freed.
		 */
		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
		last_ibp = NULL;
		while (next_agino != agino) {
			/*
			 * If the last inode wasn't the one pointing to
			 * us, then release its buffer since we're not
			 * going to do anything with it.
			 */
			if (last_ibp != NULL) {
				xfs_trans_brelse(tp, last_ibp);
			}
			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
			error = xfs_inotobp(mp, tp, next_ino, &last_dip,
					    &last_ibp, &last_offset, 0);
			if (error) {
				xfs_warn(mp,
					"%s: xfs_inotobp() returned error %d.",
					__func__, error);
				return error;
			}
			next_agino = be32_to_cpu(last_dip->di_next_unlinked);
			ASSERT(next_agino != NULLAGINO);
			ASSERT(next_agino != 0);
		}
		/*
		 * Now last_ibp points to the buffer previous to us on
		 * the unlinked list.  Pull us from the list.
		 */
		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
		if (error) {
			xfs_warn(mp, "%s: xfs_itobp(2) returned error %d.",
				__func__, error);
			return error;
		}
		next_agino = be32_to_cpu(dip->di_next_unlinked);
		ASSERT(next_agino != 0);
		ASSERT(next_agino != agino);
		if (next_agino != NULLAGINO) {
			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
			offset = ip->i_imap.im_boffset +
				offsetof(xfs_dinode_t, di_next_unlinked);
			xfs_trans_inode_buf(tp, ibp);
			xfs_trans_log_buf(tp, ibp, offset,
					  (offset + sizeof(xfs_agino_t) - 1));
			xfs_inobp_check(mp, ibp);
		} else {
			xfs_trans_brelse(tp, ibp);
		}
		/*
		 * Point the previous inode on the list to the next inode.
		 */
		last_dip->di_next_unlinked = cpu_to_be32(next_agino);
		ASSERT(next_agino != 0);
		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
		xfs_trans_inode_buf(tp, last_ibp);
		xfs_trans_log_buf(tp, last_ibp, offset,
				  (offset + sizeof(xfs_agino_t) - 1));
		xfs_inobp_check(mp, last_ibp);
	}
	return 0;
}

/*
 * A big issue when freeing the inode cluster is is that we _cannot_ skip any
 * inodes that are in memory - they all must be marked stale and attached to
 * the cluster buffer.
 */
STATIC int
xfs_ifree_cluster(
	xfs_inode_t	*free_ip,
	xfs_trans_t	*tp,
	xfs_ino_t	inum)
{
	xfs_mount_t		*mp = free_ip->i_mount;
	int			blks_per_cluster;
	int			nbufs;
	int			ninodes;
	int			i, j;
	xfs_daddr_t		blkno;
	xfs_buf_t		*bp;
	xfs_inode_t		*ip;
	xfs_inode_log_item_t	*iip;
	xfs_log_item_t		*lip;
	struct xfs_perag	*pag;

	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
	if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
		blks_per_cluster = 1;
		ninodes = mp->m_sb.sb_inopblock;
		nbufs = XFS_IALLOC_BLOCKS(mp);
	} else {
		blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
					mp->m_sb.sb_blocksize;
		ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
		nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
	}

	for (j = 0; j < nbufs; j++, inum += ninodes) {
		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
					 XFS_INO_TO_AGBNO(mp, inum));

		/*
		 * We obtain and lock the backing buffer first in the process
		 * here, as we have to ensure that any dirty inode that we
		 * can't get the flush lock on is attached to the buffer.
		 * If we scan the in-memory inodes first, then buffer IO can
		 * complete before we get a lock on it, and hence we may fail
		 * to mark all the active inodes on the buffer stale.
		 */
		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
					mp->m_bsize * blks_per_cluster, 0);

		if (!bp)
			return ENOMEM;
		/*
		 * Walk the inodes already attached to the buffer and mark them
		 * stale. These will all have the flush locks held, so an
		 * in-memory inode walk can't lock them. By marking them all
		 * stale first, we will not attempt to lock them in the loop
		 * below as the XFS_ISTALE flag will be set.
		 */
		lip = bp->b_fspriv;
		while (lip) {
			if (lip->li_type == XFS_LI_INODE) {
				iip = (xfs_inode_log_item_t *)lip;
				ASSERT(iip->ili_logged == 1);
				lip->li_cb = xfs_istale_done;
				xfs_trans_ail_copy_lsn(mp->m_ail,
							&iip->ili_flush_lsn,
							&iip->ili_item.li_lsn);
				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
			}
			lip = lip->li_bio_list;
		}


		/*
		 * For each inode in memory attempt to add it to the inode
		 * buffer and set it up for being staled on buffer IO
		 * completion.  This is safe as we've locked out tail pushing
		 * and flushing by locking the buffer.
		 *
		 * We have already marked every inode that was part of a
		 * transaction stale above, which means there is no point in
		 * even trying to lock them.
		 */
		for (i = 0; i < ninodes; i++) {
retry:
			rcu_read_lock();
			ip = radix_tree_lookup(&pag->pag_ici_root,
					XFS_INO_TO_AGINO(mp, (inum + i)));

			/* Inode not in memory, nothing to do */
			if (!ip) {
				rcu_read_unlock();
				continue;
			}

			/*
			 * because this is an RCU protected lookup, we could
			 * find a recently freed or even reallocated inode
			 * during the lookup. We need to check under the
			 * i_flags_lock for a valid inode here. Skip it if it
			 * is not valid, the wrong inode or stale.
			 */
			spin_lock(&ip->i_flags_lock);
			if (ip->i_ino != inum + i ||
			    __xfs_iflags_test(ip, XFS_ISTALE)) {
				spin_unlock(&ip->i_flags_lock);
				rcu_read_unlock();
				continue;
			}
			spin_unlock(&ip->i_flags_lock);

			/*
			 * Don't try to lock/unlock the current inode, but we
			 * _cannot_ skip the other inodes that we did not find
			 * in the list attached to the buffer and are not
			 * already marked stale. If we can't lock it, back off
			 * and retry.
			 */
			if (ip != free_ip &&
			    !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
				rcu_read_unlock();
				delay(1);
				goto retry;
			}
			rcu_read_unlock();

			xfs_iflock(ip);
			xfs_iflags_set(ip, XFS_ISTALE);

			/*
			 * we don't need to attach clean inodes or those only
			 * with unlogged changes (which we throw away, anyway).
			 */
			iip = ip->i_itemp;
			if (!iip || xfs_inode_clean(ip)) {
				ASSERT(ip != free_ip);
				xfs_ifunlock(ip);
				xfs_iunlock(ip, XFS_ILOCK_EXCL);
				continue;
			}

			iip->ili_last_fields = iip->ili_fields;
			iip->ili_fields = 0;
			iip->ili_logged = 1;
			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
						&iip->ili_item.li_lsn);

			xfs_buf_attach_iodone(bp, xfs_istale_done,
						  &iip->ili_item);

			if (ip != free_ip)
				xfs_iunlock(ip, XFS_ILOCK_EXCL);
		}

		xfs_trans_stale_inode_buf(tp, bp);
		xfs_trans_binval(tp, bp);
	}

	xfs_perag_put(pag);
	return 0;
}

/*
 * This is called to return an inode to the inode free list.
 * The inode should already be truncated to 0 length and have
 * no pages associated with it.  This routine also assumes that
 * the inode is already a part of the transaction.
 *
 * The on-disk copy of the inode will have been added to the list
 * of unlinked inodes in the AGI. We need to remove the inode from
 * that list atomically with respect to freeing it here.
 */
int
xfs_ifree(
	xfs_trans_t	*tp,
	xfs_inode_t	*ip,
	xfs_bmap_free_t	*flist)
{
	int			error;
	int			delete;
	xfs_ino_t		first_ino;
	xfs_dinode_t    	*dip;
	xfs_buf_t       	*ibp;

	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
	ASSERT(ip->i_d.di_nlink == 0);
	ASSERT(ip->i_d.di_nextents == 0);
	ASSERT(ip->i_d.di_anextents == 0);
	ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
	ASSERT(ip->i_d.di_nblocks == 0);

	/*
	 * Pull the on-disk inode from the AGI unlinked list.
	 */
	error = xfs_iunlink_remove(tp, ip);
	if (error != 0) {
		return error;
	}

	error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
	if (error != 0) {
		return error;
	}
	ip->i_d.di_mode = 0;		/* mark incore inode as free */
	ip->i_d.di_flags = 0;
	ip->i_d.di_dmevmask = 0;
	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
	/*
	 * Bump the generation count so no one will be confused
	 * by reincarnations of this inode.
	 */
	ip->i_d.di_gen++;

	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);

	error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, 0);
	if (error)
		return error;

        /*
	* Clear the on-disk di_mode. This is to prevent xfs_bulkstat
	* from picking up this inode when it is reclaimed (its incore state
	* initialzed but not flushed to disk yet). The in-core di_mode is
	* already cleared  and a corresponding transaction logged.
	* The hack here just synchronizes the in-core to on-disk
	* di_mode value in advance before the actual inode sync to disk.
	* This is OK because the inode is already unlinked and would never
	* change its di_mode again for this inode generation.
	* This is a temporary hack that would require a proper fix
	* in the future.
	*/
	dip->di_mode = 0;

	if (delete) {
		error = xfs_ifree_cluster(ip, tp, first_ino);
	}

	return error;
}

/*
 * Reallocate the space for if_broot based on the number of records
 * being added or deleted as indicated in rec_diff.  Move the records
 * and pointers in if_broot to fit the new size.  When shrinking this
 * will eliminate holes between the records and pointers created by
 * the caller.  When growing this will create holes to be filled in
 * by the caller.
 *
 * The caller must not request to add more records than would fit in
 * the on-disk inode root.  If the if_broot is currently NULL, then
 * if we adding records one will be allocated.  The caller must also
 * not request that the number of records go below zero, although
 * it can go to zero.
 *
 * ip -- the inode whose if_broot area is changing
 * ext_diff -- the change in the number of records, positive or negative,
 *	 requested for the if_broot array.
 */
void
xfs_iroot_realloc(
	xfs_inode_t		*ip,
	int			rec_diff,
	int			whichfork)
{
	struct xfs_mount	*mp = ip->i_mount;
	int			cur_max;
	xfs_ifork_t		*ifp;
	struct xfs_btree_block	*new_broot;
	int			new_max;
	size_t			new_size;
	char			*np;
	char			*op;

	/*
	 * Handle the degenerate case quietly.
	 */
	if (rec_diff == 0) {
		return;
	}

	ifp = XFS_IFORK_PTR(ip, whichfork);
	if (rec_diff > 0) {
		/*
		 * If there wasn't any memory allocated before, just
		 * allocate it now and get out.
		 */
		if (ifp->if_broot_bytes == 0) {
			new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
			ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
			ifp->if_broot_bytes = (int)new_size;
			return;
		}

		/*
		 * If there is already an existing if_broot, then we need
		 * to realloc() it and shift the pointers to their new
		 * location.  The records don't change location because
		 * they are kept butted up against the btree block header.
		 */
		cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
		new_max = cur_max + rec_diff;
		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
		ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
				(size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
				KM_SLEEP | KM_NOFS);
		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
						     ifp->if_broot_bytes);
		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
						     (int)new_size);
		ifp->if_broot_bytes = (int)new_size;
		ASSERT(ifp->if_broot_bytes <=
			XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
		memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
		return;
	}

	/*
	 * rec_diff is less than 0.  In this case, we are shrinking the
	 * if_broot buffer.  It must already exist.  If we go to zero
	 * records, just get rid of the root and clear the status bit.
	 */
	ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
	cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
	new_max = cur_max + rec_diff;
	ASSERT(new_max >= 0);
	if (new_max > 0)
		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
	else
		new_size = 0;
	if (new_size > 0) {
		new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
		/*
		 * First copy over the btree block header.
		 */
		memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
	} else {
		new_broot = NULL;
		ifp->if_flags &= ~XFS_IFBROOT;
	}

	/*
	 * Only copy the records and pointers if there are any.
	 */
	if (new_max > 0) {
		/*
		 * First copy the records.
		 */
		op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
		np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
		memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));

		/*
		 * Then copy the pointers.
		 */
		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
						     ifp->if_broot_bytes);
		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
						     (int)new_size);
		memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
	}
	kmem_free(ifp->if_broot);
	ifp->if_broot = new_broot;
	ifp->if_broot_bytes = (int)new_size;
	ASSERT(ifp->if_broot_bytes <=
		XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
	return;
}


/*
 * This is called when the amount of space needed for if_data
 * is increased or decreased.  The change in size is indicated by
 * the number of bytes that need to be added or deleted in the
 * byte_diff parameter.
 *
 * If the amount of space needed has decreased below the size of the
 * inline buffer, then switch to using the inline buffer.  Otherwise,
 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
 * to what is needed.
 *
 * ip -- the inode whose if_data area is changing
 * byte_diff -- the change in the number of bytes, positive or negative,
 *	 requested for the if_data array.
 */
void
xfs_idata_realloc(
	xfs_inode_t	*ip,
	int		byte_diff,
	int		whichfork)
{
	xfs_ifork_t	*ifp;
	int		new_size;
	int		real_size;

	if (byte_diff == 0) {
		return;
	}

	ifp = XFS_IFORK_PTR(ip, whichfork);
	new_size = (int)ifp->if_bytes + byte_diff;
	ASSERT(new_size >= 0);

	if (new_size == 0) {
		if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
			kmem_free(ifp->if_u1.if_data);
		}
		ifp->if_u1.if_data = NULL;
		real_size = 0;
	} else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
		/*
		 * If the valid extents/data can fit in if_inline_ext/data,
		 * copy them from the malloc'd vector and free it.
		 */
		if (ifp->if_u1.if_data == NULL) {
			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
			ASSERT(ifp->if_real_bytes != 0);
			memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
			      new_size);
			kmem_free(ifp->if_u1.if_data);
			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
		}
		real_size = 0;
	} else {
		/*
		 * Stuck with malloc/realloc.
		 * For inline data, the underlying buffer must be
		 * a multiple of 4 bytes in size so that it can be
		 * logged and stay on word boundaries.  We enforce
		 * that here.
		 */
		real_size = roundup(new_size, 4);
		if (ifp->if_u1.if_data == NULL) {
			ASSERT(ifp->if_real_bytes == 0);
			ifp->if_u1.if_data = kmem_alloc(real_size,
							KM_SLEEP | KM_NOFS);
		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
			/*
			 * Only do the realloc if the underlying size
			 * is really changing.
			 */
			if (ifp->if_real_bytes != real_size) {
				ifp->if_u1.if_data =
					kmem_realloc(ifp->if_u1.if_data,
							real_size,
							ifp->if_real_bytes,
							KM_SLEEP | KM_NOFS);
			}
		} else {
			ASSERT(ifp->if_real_bytes == 0);
			ifp->if_u1.if_data = kmem_alloc(real_size,
							KM_SLEEP | KM_NOFS);
			memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
				ifp->if_bytes);
		}
	}
	ifp->if_real_bytes = real_size;
	ifp->if_bytes = new_size;
	ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
}

void
xfs_idestroy_fork(
	xfs_inode_t	*ip,
	int		whichfork)
{
	xfs_ifork_t	*ifp;

	ifp = XFS_IFORK_PTR(ip, whichfork);
	if (ifp->if_broot != NULL) {
		kmem_free(ifp->if_broot);
		ifp->if_broot = NULL;
	}

	/*
	 * If the format is local, then we can't have an extents
	 * array so just look for an inline data array.  If we're
	 * not local then we may or may not have an extents list,
	 * so check and free it up if we do.
	 */
	if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
		if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
		    (ifp->if_u1.if_data != NULL)) {
			ASSERT(ifp->if_real_bytes != 0);
			kmem_free(ifp->if_u1.if_data);
			ifp->if_u1.if_data = NULL;
			ifp->if_real_bytes = 0;
		}
	} else if ((ifp->if_flags & XFS_IFEXTENTS) &&
		   ((ifp->if_flags & XFS_IFEXTIREC) ||
		    ((ifp->if_u1.if_extents != NULL) &&
		     (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
		ASSERT(ifp->if_real_bytes != 0);
		xfs_iext_destroy(ifp);
	}
	ASSERT(ifp->if_u1.if_extents == NULL ||
	       ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
	ASSERT(ifp->if_real_bytes == 0);
	if (whichfork == XFS_ATTR_FORK) {
		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
		ip->i_afp = NULL;
	}
}

/*
 * This is called to unpin an inode.  The caller must have the inode locked
 * in at least shared mode so that the buffer cannot be subsequently pinned
 * once someone is waiting for it to be unpinned.
 */
static void
xfs_iunpin(
	struct xfs_inode	*ip)
{
	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));

	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);

	/* Give the log a push to start the unpinning I/O */
	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);

}

static void
__xfs_iunpin_wait(
	struct xfs_inode	*ip)
{
	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);

	xfs_iunpin(ip);

	do {
		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
		if (xfs_ipincount(ip))
			io_schedule();
	} while (xfs_ipincount(ip));
	finish_wait(wq, &wait.wait);
}

void
xfs_iunpin_wait(
	struct xfs_inode	*ip)
{
	if (xfs_ipincount(ip))
		__xfs_iunpin_wait(ip);
}

/*
 * xfs_iextents_copy()
 *
 * This is called to copy the REAL extents (as opposed to the delayed
 * allocation extents) from the inode into the given buffer.  It
 * returns the number of bytes copied into the buffer.
 *
 * If there are no delayed allocation extents, then we can just
 * memcpy() the extents into the buffer.  Otherwise, we need to
 * examine each extent in turn and skip those which are delayed.
 */
int
xfs_iextents_copy(
	xfs_inode_t		*ip,
	xfs_bmbt_rec_t		*dp,
	int			whichfork)
{
	int			copied;
	int			i;
	xfs_ifork_t		*ifp;
	int			nrecs;
	xfs_fsblock_t		start_block;

	ifp = XFS_IFORK_PTR(ip, whichfork);
	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
	ASSERT(ifp->if_bytes > 0);

	nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
	XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
	ASSERT(nrecs > 0);

	/*
	 * There are some delayed allocation extents in the
	 * inode, so copy the extents one at a time and skip
	 * the delayed ones.  There must be at least one
	 * non-delayed extent.
	 */
	copied = 0;
	for (i = 0; i < nrecs; i++) {
		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
		start_block = xfs_bmbt_get_startblock(ep);
		if (isnullstartblock(start_block)) {
			/*
			 * It's a delayed allocation extent, so skip it.
			 */
			continue;
		}

		/* Translate to on disk format */
		put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
		put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
		dp++;
		copied++;
	}
	ASSERT(copied != 0);
	xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));

	return (copied * (uint)sizeof(xfs_bmbt_rec_t));
}

/*
 * Each of the following cases stores data into the same region
 * of the on-disk inode, so only one of them can be valid at
 * any given time. While it is possible to have conflicting formats
 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
 * in EXTENTS format, this can only happen when the fork has
 * changed formats after being modified but before being flushed.
 * In these cases, the format always takes precedence, because the
 * format indicates the current state of the fork.
 */
/*ARGSUSED*/
STATIC void
xfs_iflush_fork(
	xfs_inode_t		*ip,
	xfs_dinode_t		*dip,
	xfs_inode_log_item_t	*iip,
	int			whichfork,
	xfs_buf_t		*bp)
{
	char			*cp;
	xfs_ifork_t		*ifp;
	xfs_mount_t		*mp;
#ifdef XFS_TRANS_DEBUG
	int			first;
#endif
	static const short	brootflag[2] =
		{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
	static const short	dataflag[2] =
		{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
	static const short	extflag[2] =
		{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };

	if (!iip)
		return;
	ifp = XFS_IFORK_PTR(ip, whichfork);
	/*
	 * This can happen if we gave up in iformat in an error path,
	 * for the attribute fork.
	 */
	if (!ifp) {
		ASSERT(whichfork == XFS_ATTR_FORK);
		return;
	}
	cp = XFS_DFORK_PTR(dip, whichfork);
	mp = ip->i_mount;
	switch (XFS_IFORK_FORMAT(ip, whichfork)) {
	case XFS_DINODE_FMT_LOCAL:
		if ((iip->ili_fields & dataflag[whichfork]) &&
		    (ifp->if_bytes > 0)) {
			ASSERT(ifp->if_u1.if_data != NULL);
			ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
			memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
		}
		break;

	case XFS_DINODE_FMT_EXTENTS:
		ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
		       !(iip->ili_fields & extflag[whichfork]));
		if ((iip->ili_fields & extflag[whichfork]) &&
		    (ifp->if_bytes > 0)) {
			ASSERT(xfs_iext_get_ext(ifp, 0));
			ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
			(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
				whichfork);
		}
		break;

	case XFS_DINODE_FMT_BTREE:
		if ((iip->ili_fields & brootflag[whichfork]) &&
		    (ifp->if_broot_bytes > 0)) {
			ASSERT(ifp->if_broot != NULL);
			ASSERT(ifp->if_broot_bytes <=
			       (XFS_IFORK_SIZE(ip, whichfork) +
				XFS_BROOT_SIZE_ADJ));
			xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
				(xfs_bmdr_block_t *)cp,
				XFS_DFORK_SIZE(dip, mp, whichfork));
		}
		break;

	case XFS_DINODE_FMT_DEV:
		if (iip->ili_fields & XFS_ILOG_DEV) {
			ASSERT(whichfork == XFS_DATA_FORK);
			xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
		}
		break;

	case XFS_DINODE_FMT_UUID:
		if (iip->ili_fields & XFS_ILOG_UUID) {
			ASSERT(whichfork == XFS_DATA_FORK);
			memcpy(XFS_DFORK_DPTR(dip),
			       &ip->i_df.if_u2.if_uuid,
			       sizeof(uuid_t));
		}
		break;

	default:
		ASSERT(0);
		break;
	}
}

STATIC int
xfs_iflush_cluster(
	xfs_inode_t	*ip,
	xfs_buf_t	*bp)
{
	xfs_mount_t		*mp = ip->i_mount;
	struct xfs_perag	*pag;
	unsigned long		first_index, mask;
	unsigned long		inodes_per_cluster;
	int			ilist_size;
	xfs_inode_t		**ilist;
	xfs_inode_t		*iq;
	int			nr_found;
	int			clcount = 0;
	int			bufwasdelwri;
	int			i;

	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));

	inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
	ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
	ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
	if (!ilist)
		goto out_put;

	mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
	rcu_read_lock();
	/* really need a gang lookup range call here */
	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
					first_index, inodes_per_cluster);
	if (nr_found == 0)
		goto out_free;

	for (i = 0; i < nr_found; i++) {
		iq = ilist[i];
		if (iq == ip)
			continue;

		/*
		 * because this is an RCU protected lookup, we could find a
		 * recently freed or even reallocated inode during the lookup.
		 * We need to check under the i_flags_lock for a valid inode
		 * here. Skip it if it is not valid or the wrong inode.
		 */
		spin_lock(&ip->i_flags_lock);
		if (!ip->i_ino ||
		    (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
			spin_unlock(&ip->i_flags_lock);
			continue;
		}
		spin_unlock(&ip->i_flags_lock);

		/*
		 * Do an un-protected check to see if the inode is dirty and
		 * is a candidate for flushing.  These checks will be repeated
		 * later after the appropriate locks are acquired.
		 */
		if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
			continue;

		/*
		 * Try to get locks.  If any are unavailable or it is pinned,
		 * then this inode cannot be flushed and is skipped.
		 */

		if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
			continue;
		if (!xfs_iflock_nowait(iq)) {
			xfs_iunlock(iq, XFS_ILOCK_SHARED);
			continue;
		}
		if (xfs_ipincount(iq)) {
			xfs_ifunlock(iq);
			xfs_iunlock(iq, XFS_ILOCK_SHARED);
			continue;
		}

		/*
		 * arriving here means that this inode can be flushed.  First
		 * re-check that it's dirty before flushing.
		 */
		if (!xfs_inode_clean(iq)) {
			int	error;
			error = xfs_iflush_int(iq, bp);
			if (error) {
				xfs_iunlock(iq, XFS_ILOCK_SHARED);
				goto cluster_corrupt_out;
			}
			clcount++;
		} else {
			xfs_ifunlock(iq);
		}
		xfs_iunlock(iq, XFS_ILOCK_SHARED);
	}

	if (clcount) {
		XFS_STATS_INC(xs_icluster_flushcnt);
		XFS_STATS_ADD(xs_icluster_flushinode, clcount);
	}

out_free:
	rcu_read_unlock();
	kmem_free(ilist);
out_put:
	xfs_perag_put(pag);
	return 0;


cluster_corrupt_out:
	/*
	 * Corruption detected in the clustering loop.  Invalidate the
	 * inode buffer and shut down the filesystem.
	 */
	rcu_read_unlock();
	/*
	 * Clean up the buffer.  If it was delwri, just release it --
	 * brelse can handle it with no problems.  If not, shut down the
	 * filesystem before releasing the buffer.
	 */
	bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
	if (bufwasdelwri)
		xfs_buf_relse(bp);

	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);

	if (!bufwasdelwri) {
		/*
		 * Just like incore_relse: if we have b_iodone functions,
		 * mark the buffer as an error and call them.  Otherwise
		 * mark it as stale and brelse.
		 */
		if (bp->b_iodone) {
			XFS_BUF_UNDONE(bp);
			xfs_buf_stale(bp);
			xfs_buf_ioerror(bp, EIO);
			xfs_buf_ioend(bp, 0);
		} else {
			xfs_buf_stale(bp);
			xfs_buf_relse(bp);
		}
	}

	/*
	 * Unlocks the flush lock
	 */
	xfs_iflush_abort(iq, false);
	kmem_free(ilist);
	xfs_perag_put(pag);
	return XFS_ERROR(EFSCORRUPTED);
}

/*
 * Flush dirty inode metadata into the backing buffer.
 *
 * The caller must have the inode lock and the inode flush lock held.  The
 * inode lock will still be held upon return to the caller, and the inode
 * flush lock will be released after the inode has reached the disk.
 *
 * The caller must write out the buffer returned in *bpp and release it.
 */
int
xfs_iflush(
	struct xfs_inode	*ip,
	struct xfs_buf		**bpp)
{
	struct xfs_mount	*mp = ip->i_mount;
	struct xfs_buf		*bp;
	struct xfs_dinode	*dip;
	int			error;

	XFS_STATS_INC(xs_iflush_count);

	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
	ASSERT(xfs_isiflocked(ip));
	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));

	*bpp = NULL;

	xfs_iunpin_wait(ip);

	/*
	 * For stale inodes we cannot rely on the backing buffer remaining
	 * stale in cache for the remaining life of the stale inode and so
	 * xfs_itobp() below may give us a buffer that no longer contains
	 * inodes below. We have to check this after ensuring the inode is
	 * unpinned so that it is safe to reclaim the stale inode after the
	 * flush call.
	 */
	if (xfs_iflags_test(ip, XFS_ISTALE)) {
		xfs_ifunlock(ip);
		return 0;
	}

	/*
	 * This may have been unpinned because the filesystem is shutting
	 * down forcibly. If that's the case we must not write this inode
	 * to disk, because the log record didn't make it to disk.
	 *
	 * We also have to remove the log item from the AIL in this case,
	 * as we wait for an empty AIL as part of the unmount process.
	 */
	if (XFS_FORCED_SHUTDOWN(mp)) {
		error = XFS_ERROR(EIO);
		goto abort_out;
	}

	/*
	 * Get the buffer containing the on-disk inode.
	 */
	error = xfs_itobp(mp, NULL, ip, &dip, &bp, XBF_TRYLOCK);
	if (error || !bp) {
		xfs_ifunlock(ip);
		return error;
	}

	/*
	 * First flush out the inode that xfs_iflush was called with.
	 */
	error = xfs_iflush_int(ip, bp);
	if (error)
		goto corrupt_out;

	/*
	 * If the buffer is pinned then push on the log now so we won't
	 * get stuck waiting in the write for too long.
	 */
	if (xfs_buf_ispinned(bp))
		xfs_log_force(mp, 0);

	/*
	 * inode clustering:
	 * see if other inodes can be gathered into this write
	 */
	error = xfs_iflush_cluster(ip, bp);
	if (error)
		goto cluster_corrupt_out;

	*bpp = bp;
	return 0;

corrupt_out:
	xfs_buf_relse(bp);
	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
cluster_corrupt_out:
	error = XFS_ERROR(EFSCORRUPTED);
abort_out:
	/*
	 * Unlocks the flush lock
	 */
	xfs_iflush_abort(ip, false);
	return error;
}


STATIC int
xfs_iflush_int(
	xfs_inode_t		*ip,
	xfs_buf_t		*bp)
{
	xfs_inode_log_item_t	*iip;
	xfs_dinode_t		*dip;
	xfs_mount_t		*mp;
#ifdef XFS_TRANS_DEBUG
	int			first;
#endif

	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
	ASSERT(xfs_isiflocked(ip));
	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));

	iip = ip->i_itemp;
	mp = ip->i_mount;

	/* set *dip = inode's place in the buffer */
	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);

	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
			"%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
		goto corrupt_out;
	}
	if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
				mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
			"%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
			__func__, ip->i_ino, ip, ip->i_d.di_magic);
		goto corrupt_out;
	}
	if (S_ISREG(ip->i_d.di_mode)) {
		if (XFS_TEST_ERROR(
		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
				"%s: Bad regular inode %Lu, ptr 0x%p",
				__func__, ip->i_ino, ip);
			goto corrupt_out;
		}
	} else if (S_ISDIR(ip->i_d.di_mode)) {
		if (XFS_TEST_ERROR(
		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
				"%s: Bad directory inode %Lu, ptr 0x%p",
				__func__, ip->i_ino, ip);
			goto corrupt_out;
		}
	}
	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
				XFS_RANDOM_IFLUSH_5)) {
		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
			"%s: detected corrupt incore inode %Lu, "
			"total extents = %d, nblocks = %Ld, ptr 0x%p",
			__func__, ip->i_ino,
			ip->i_d.di_nextents + ip->i_d.di_anextents,
			ip->i_d.di_nblocks, ip);
		goto corrupt_out;
	}
	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
			"%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
			__func__, ip->i_ino, ip->i_d.di_forkoff, ip);
		goto corrupt_out;
	}
	/*
	 * bump the flush iteration count, used to detect flushes which
	 * postdate a log record during recovery.
	 */

	ip->i_d.di_flushiter++;

	/*
	 * Copy the dirty parts of the inode into the on-disk
	 * inode.  We always copy out the core of the inode,
	 * because if the inode is dirty at all the core must
	 * be.
	 */
	xfs_dinode_to_disk(dip, &ip->i_d);

	/* Wrap, we never let the log put out DI_MAX_FLUSH */
	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
		ip->i_d.di_flushiter = 0;

	/*
	 * If this is really an old format inode and the superblock version
	 * has not been updated to support only new format inodes, then
	 * convert back to the old inode format.  If the superblock version
	 * has been updated, then make the conversion permanent.
	 */
	ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
	if (ip->i_d.di_version == 1) {
		if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
			/*
			 * Convert it back.
			 */
			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
			dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
		} else {
			/*
			 * The superblock version has already been bumped,
			 * so just make the conversion to the new inode
			 * format permanent.
			 */
			ip->i_d.di_version = 2;
			dip->di_version = 2;
			ip->i_d.di_onlink = 0;
			dip->di_onlink = 0;
			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
			memset(&(dip->di_pad[0]), 0,
			      sizeof(dip->di_pad));
			ASSERT(xfs_get_projid(ip) == 0);
		}
	}

	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
	if (XFS_IFORK_Q(ip))
		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
	xfs_inobp_check(mp, bp);

	/*
	 * We've recorded everything logged in the inode, so we'd like to clear
	 * the ili_fields bits so we don't log and flush things unnecessarily.
	 * However, we can't stop logging all this information until the data
	 * we've copied into the disk buffer is written to disk.  If we did we
	 * might overwrite the copy of the inode in the log with all the data
	 * after re-logging only part of it, and in the face of a crash we
	 * wouldn't have all the data we need to recover.
	 *
	 * What we do is move the bits to the ili_last_fields field.  When
	 * logging the inode, these bits are moved back to the ili_fields field.
	 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
	 * know that the information those bits represent is permanently on
	 * disk.  As long as the flush completes before the inode is logged
	 * again, then both ili_fields and ili_last_fields will be cleared.
	 *
	 * We can play with the ili_fields bits here, because the inode lock
	 * must be held exclusively in order to set bits there and the flush
	 * lock protects the ili_last_fields bits.  Set ili_logged so the flush
	 * done routine can tell whether or not to look in the AIL.  Also, store
	 * the current LSN of the inode so that we can tell whether the item has
	 * moved in the AIL from xfs_iflush_done().  In order to read the lsn we
	 * need the AIL lock, because it is a 64 bit value that cannot be read
	 * atomically.
	 */
	if (iip != NULL && iip->ili_fields != 0) {
		iip->ili_last_fields = iip->ili_fields;
		iip->ili_fields = 0;
		iip->ili_logged = 1;

		xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
					&iip->ili_item.li_lsn);

		/*
		 * Attach the function xfs_iflush_done to the inode's
		 * buffer.  This will remove the inode from the AIL
		 * and unlock the inode's flush lock when the inode is
		 * completely written to disk.
		 */
		xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);

		ASSERT(bp->b_fspriv != NULL);
		ASSERT(bp->b_iodone != NULL);
	} else {
		/*
		 * We're flushing an inode which is not in the AIL and has
		 * not been logged.  For this case we can immediately drop
		 * the inode flush lock because we can avoid the whole
		 * AIL state thing.  It's OK to drop the flush lock now,
		 * because we've already locked the buffer and to do anything
		 * you really need both.
		 */
		if (iip != NULL) {
			ASSERT(iip->ili_logged == 0);
			ASSERT(iip->ili_last_fields == 0);
			ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
		}
		xfs_ifunlock(ip);
	}

	return 0;

corrupt_out:
	return XFS_ERROR(EFSCORRUPTED);
}

/*
 * Return a pointer to the extent record at file index idx.
 */
xfs_bmbt_rec_host_t *
xfs_iext_get_ext(
	xfs_ifork_t	*ifp,		/* inode fork pointer */
	xfs_extnum_t	idx)		/* index of target extent */
{
	ASSERT(idx >= 0);
	ASSERT(idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t));

	if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
		return ifp->if_u1.if_ext_irec->er_extbuf;
	} else if (ifp->if_flags & XFS_IFEXTIREC) {
		xfs_ext_irec_t	*erp;		/* irec pointer */
		int		erp_idx = 0;	/* irec index */
		xfs_extnum_t	page_idx = idx;	/* ext index in target list */

		erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
		return &erp->er_extbuf[page_idx];
	} else if (ifp->if_bytes) {
		return &ifp->if_u1.if_extents[idx];
	} else {
		return NULL;
	}
}

/*
 * Insert new item(s) into the extent records for incore inode
 * fork 'ifp'.  'count' new items are inserted at index 'idx'.
 */
void
xfs_iext_insert(
	xfs_inode_t	*ip,		/* incore inode pointer */
	xfs_extnum_t	idx,		/* starting index of new items */
	xfs_extnum_t	count,		/* number of inserted items */
	xfs_bmbt_irec_t	*new,		/* items to insert */
	int		state)		/* type of extent conversion */
{
	xfs_ifork_t	*ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
	xfs_extnum_t	i;		/* extent record index */

	trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);

	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
	xfs_iext_add(ifp, idx, count);
	for (i = idx; i < idx + count; i++, new++)
		xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
}

/*
 * This is called when the amount of space required for incore file
 * extents needs to be increased. The ext_diff parameter stores the
 * number of new extents being added and the idx parameter contains
 * the extent index where the new extents will be added. If the new
 * extents are being appended, then we just need to (re)allocate and
 * initialize the space. Otherwise, if the new extents are being
 * inserted into the middle of the existing entries, a bit more work
 * is required to make room for the new extents to be inserted. The
 * caller is responsible for filling in the new extent entries upon
 * return.
 */
void
xfs_iext_add(
	xfs_ifork_t	*ifp,		/* inode fork pointer */
	xfs_extnum_t	idx,		/* index to begin adding exts */
	int		ext_diff)	/* number of extents to add */
{
	int		byte_diff;	/* new bytes being added */
	int		new_size;	/* size of extents after adding */
	xfs_extnum_t	nextents;	/* number of extents in file */

	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
	ASSERT((idx >= 0) && (idx <= nextents));
	byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
	new_size = ifp->if_bytes + byte_diff;
	/*
	 * If the new number of extents (nextents + ext_diff)
	 * fits inside the inode, then continue to use the inline
	 * extent buffer.
	 */
	if (nextents + ext_diff <= XFS_INLINE_EXTS) {
		if (idx < nextents) {
			memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
				&ifp->if_u2.if_inline_ext[idx],
				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
			memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
		}
		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
		ifp->if_real_bytes = 0;
	}
	/*
	 * Otherwise use a linear (direct) extent list.
	 * If the extents are currently inside the inode,
	 * xfs_iext_realloc_direct will switch us from
	 * inline to direct extent allocation mode.
	 */
	else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
		xfs_iext_realloc_direct(ifp, new_size);
		if (idx < nextents) {
			memmove(&ifp->if_u1.if_extents[idx + ext_diff],
				&ifp->if_u1.if_extents[idx],
				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
			memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
		}
	}
	/* Indirection array */
	else {
		xfs_ext_irec_t	*erp;
		int		erp_idx = 0;
		int		page_idx = idx;

		ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
		if (ifp->if_flags & XFS_IFEXTIREC) {
			erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
		} else {
			xfs_iext_irec_init(ifp);
			ASSERT(ifp->if_flags & XFS_IFEXTIREC);
			erp = ifp->if_u1.if_ext_irec;
		}
		/* Extents fit in target extent page */
		if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
			if (page_idx < erp->er_extcount) {
				memmove(&erp->er_extbuf[page_idx + ext_diff],
					&erp->er_extbuf[page_idx],
					(erp->er_extcount - page_idx) *
					sizeof(xfs_bmbt_rec_t));
				memset(&erp->er_extbuf[page_idx], 0, byte_diff);
			}
			erp->er_extcount += ext_diff;
			xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
		}
		/* Insert a new extent page */
		else if (erp) {
			xfs_iext_add_indirect_multi(ifp,
				erp_idx, page_idx, ext_diff);
		}
		/*
		 * If extent(s) are being appended to the last page in
		 * the indirection array and the new extent(s) don't fit
		 * in the page, then erp is NULL and erp_idx is set to
		 * the next index needed in the indirection array.
		 */
		else {
			int	count = ext_diff;

			while (count) {
				erp = xfs_iext_irec_new(ifp, erp_idx);
				erp->er_extcount = count;
				count -= MIN(count, (int)XFS_LINEAR_EXTS);
				if (count) {
					erp_idx++;
				}
			}
		}
	}
	ifp->if_bytes = new_size;
}

/*
 * This is called when incore extents are being added to the indirection
 * array and the new extents do not fit in the target extent list. The
 * erp_idx parameter contains the irec index for the target extent list
 * in the indirection array, and the idx parameter contains the extent
 * index within the list. The number of extents being added is stored
 * in the count parameter.
 *
 *    |-------|   |-------|
 *    |       |   |       |    idx - number of extents before idx
 *    |  idx  |   | count |
 *    |       |   |       |    count - number of extents being inserted at idx
 *    |-------|   |-------|
 *    | count |   | nex2  |    nex2 - number of extents after idx + count
 *    |-------|   |-------|
 */
void
xfs_iext_add_indirect_multi(
	xfs_ifork_t	*ifp,			/* inode fork pointer */
	int		erp_idx,		/* target extent irec index */
	xfs_extnum_t	idx,			/* index within target list */
	int		count)			/* new extents being added */
{
	int		byte_diff;		/* new bytes being added */
	xfs_ext_irec_t	*erp;			/* pointer to irec entry */
	xfs_extnum_t	ext_diff;		/* number of extents to add */
	xfs_extnum_t	ext_cnt;		/* new extents still needed */
	xfs_extnum_t	nex2;			/* extents after idx + count */
	xfs_bmbt_rec_t	*nex2_ep = NULL;	/* temp list for nex2 extents */
	int		nlists;			/* number of irec's (lists) */

	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
	erp = &ifp->if_u1.if_ext_irec[erp_idx];
	nex2 = erp->er_extcount - idx;
	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;

	/*
	 * Save second part of target extent list
	 * (all extents past */
	if (nex2) {
		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
		nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
		memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
		erp->er_extcount -= nex2;
		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
		memset(&erp->er_extbuf[idx], 0, byte_diff);
	}

	/*
	 * Add the new extents to the end of the target
	 * list, then allocate new irec record(s) and
	 * extent buffer(s) as needed to store the rest
	 * of the new extents.
	 */
	ext_cnt = count;
	ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
	if (ext_diff) {
		erp->er_extcount += ext_diff;
		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
		ext_cnt -= ext_diff;
	}
	while (ext_cnt) {
		erp_idx++;
		erp = xfs_iext_irec_new(ifp, erp_idx);
		ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
		erp->er_extcount = ext_diff;
		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
		ext_cnt -= ext_diff;
	}

	/* Add nex2 extents back to indirection array */
	if (nex2) {
		xfs_extnum_t	ext_avail;
		int		i;

		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
		ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
		i = 0;
		/*
		 * If nex2 extents fit in the current page, append
		 * nex2_ep after the new extents.
		 */
		if (nex2 <= ext_avail) {
			i = erp->er_extcount;
		}
		/*
		 * Otherwise, check if space is available in the
		 * next page.
		 */
		else if ((erp_idx < nlists - 1) &&
			 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
			  ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
			erp_idx++;
			erp++;
			/* Create a hole for nex2 extents */
			memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
				erp->er_extcount * sizeof(xfs_bmbt_rec_t));
		}
		/*
		 * Final choice, create a new extent page for
		 * nex2 extents.
		 */
		else {
			erp_idx++;
			erp = xfs_iext_irec_new(ifp, erp_idx);
		}
		memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
		kmem_free(nex2_ep);
		erp->er_extcount += nex2;
		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
	}
}

/*
 * This is called when the amount of space required for incore file
 * extents needs to be decreased. The ext_diff parameter stores the
 * number of extents to be removed and the idx parameter contains
 * the extent index where the extents will be removed from.
 *
 * If the amount of space needed has decreased below the linear
 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
 * extent array.  Otherwise, use kmem_realloc() to adjust the
 * size to what is needed.
 */
void
xfs_iext_remove(
	xfs_inode_t	*ip,		/* incore inode pointer */
	xfs_extnum_t	idx,		/* index to begin removing exts */
	int		ext_diff,	/* number of extents to remove */
	int		state)		/* type of extent conversion */
{
	xfs_ifork_t	*ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
	xfs_extnum_t	nextents;	/* number of extents in file */
	int		new_size;	/* size of extents after removal */

	trace_xfs_iext_remove(ip, idx, state, _RET_IP_);

	ASSERT(ext_diff > 0);
	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
	new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);

	if (new_size == 0) {
		xfs_iext_destroy(ifp);
	} else if (ifp->if_flags & XFS_IFEXTIREC) {
		xfs_iext_remove_indirect(ifp, idx, ext_diff);
	} else if (ifp->if_real_bytes) {
		xfs_iext_remove_direct(ifp, idx, ext_diff);
	} else {
		xfs_iext_remove_inline(ifp, idx, ext_diff);
	}
	ifp->if_bytes = new_size;
}

/*
 * This removes ext_diff extents from the inline buffer, beginning
 * at extent index idx.
 */
void
xfs_iext_remove_inline(
	xfs_ifork_t	*ifp,		/* inode fork pointer */
	xfs_extnum_t	idx,		/* index to begin removing exts */
	int		ext_diff)	/* number of extents to remove */
{
	int		nextents;	/* number of extents in file */

	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
	ASSERT(idx < XFS_INLINE_EXTS);
	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
	ASSERT(((nextents - ext_diff) > 0) &&
		(nextents - ext_diff) < XFS_INLINE_EXTS);

	if (idx + ext_diff < nextents) {
		memmove(&ifp->if_u2.if_inline_ext[idx],
			&ifp->if_u2.if_inline_ext[idx + ext_diff],
			(nextents - (idx + ext_diff)) *
			 sizeof(xfs_bmbt_rec_t));
		memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
			0, ext_diff * sizeof(xfs_bmbt_rec_t));
	} else {
		memset(&ifp->if_u2.if_inline_ext[idx], 0,
			ext_diff * sizeof(xfs_bmbt_rec_t));
	}
}

/*
 * This removes ext_diff extents from a linear (direct) extent list,
 * beginning at extent index idx. If the extents are being removed
 * from the end of the list (ie. truncate) then we just need to re-
 * allocate the list to remove the extra space. Otherwise, if the
 * extents are being removed from the middle of the existing extent
 * entries, then we first need to move the extent records beginning
 * at idx + ext_diff up in the list to overwrite the records being
 * removed, then remove the extra space via kmem_realloc.
 */
void
xfs_iext_remove_direct(
	xfs_ifork_t	*ifp,		/* inode fork pointer */
	xfs_extnum_t	idx,		/* index to begin removing exts */
	int		ext_diff)	/* number of extents to remove */
{
	xfs_extnum_t	nextents;	/* number of extents in file */
	int		new_size;	/* size of extents after removal */

	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
	new_size = ifp->if_bytes -
		(ext_diff * sizeof(xfs_bmbt_rec_t));
	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);

	if (new_size == 0) {
		xfs_iext_destroy(ifp);
		return;
	}
	/* Move extents up in the list (if needed) */
	if (idx + ext_diff < nextents) {
		memmove(&ifp->if_u1.if_extents[idx],
			&ifp->if_u1.if_extents[idx + ext_diff],
			(nextents - (idx + ext_diff)) *
			 sizeof(xfs_bmbt_rec_t));
	}
	memset(&ifp->if_u1.if_extents[nextents - ext_diff],
		0, ext_diff * sizeof(xfs_bmbt_rec_t));
	/*
	 * Reallocate the direct extent list. If the extents
	 * will fit inside the inode then xfs_iext_realloc_direct
	 * will switch from direct to inline extent allocation
	 * mode for us.
	 */
	xfs_iext_realloc_direct(ifp, new_size);
	ifp->if_bytes = new_size;
}

/*
 * This is called when incore extents are being removed from the
 * indirection array and the extents being removed span multiple extent
 * buffers. The idx parameter contains the file extent index where we
 * want to begin removing extents, and the count parameter contains
 * how many extents need to be removed.
 *
 *    |-------|   |-------|
 *    | nex1  |   |       |    nex1 - number of extents before idx
 *    |-------|   | count |
 *    |       |   |       |    count - number of extents being removed at idx
 *    | count |   |-------|
 *    |       |   | nex2  |    nex2 - number of extents after idx + count
 *    |-------|   |-------|
 */
void
xfs_iext_remove_indirect(
	xfs_ifork_t	*ifp,		/* inode fork pointer */
	xfs_extnum_t	idx,		/* index to begin removing extents */
	int		count)		/* number of extents to remove */
{
	xfs_ext_irec_t	*erp;		/* indirection array pointer */
	int		erp_idx = 0;	/* indirection array index */
	xfs_extnum_t	ext_cnt;	/* extents left to remove */
	xfs_extnum_t	ext_diff;	/* extents to remove in current list */
	xfs_extnum_t	nex1;		/* number of extents before idx */
	xfs_extnum_t	nex2;		/* extents after idx + count */
	int		page_idx = idx;	/* index in target extent list */

	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
	erp = xfs_iext_idx_to_irec(ifp,  &page_idx, &erp_idx, 0);
	ASSERT(erp != NULL);
	nex1 = page_idx;
	ext_cnt = count;
	while (ext_cnt) {
		nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
		ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
		/*
		 * Check for deletion of entire list;
		 * xfs_iext_irec_remove() updates extent offsets.
		 */
		if (ext_diff == erp->er_extcount) {
			xfs_iext_irec_remove(ifp, erp_idx);
			ext_cnt -= ext_diff;
			nex1 = 0;
			if (ext_cnt) {
				ASSERT(erp_idx < ifp->if_real_bytes /
					XFS_IEXT_BUFSZ);
				erp = &ifp->if_u1.if_ext_irec[erp_idx];
				nex1 = 0;
				continue;
			} else {
				break;
			}
		}
		/* Move extents up (if needed) */
		if (nex2) {
			memmove(&erp->er_extbuf[nex1],
				&erp->er_extbuf[nex1 + ext_diff],
				nex2 * sizeof(xfs_bmbt_rec_t));
		}
		/* Zero out rest of page */
		memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
			((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
		/* Update remaining counters */
		erp->er_extcount -= ext_diff;
		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
		ext_cnt -= ext_diff;
		nex1 = 0;
		erp_idx++;
		erp++;
	}
	ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
	xfs_iext_irec_compact(ifp);
}

/*
 * Create, destroy, or resize a linear (direct) block of extents.
 */
void
xfs_iext_realloc_direct(
	xfs_ifork_t	*ifp,		/* inode fork pointer */
	int		new_size)	/* new size of extents */
{
	int		rnew_size;	/* real new size of extents */

	rnew_size = new_size;

	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
		((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
		 (new_size != ifp->if_real_bytes)));

	/* Free extent records */
	if (new_size == 0) {
		xfs_iext_destroy(ifp);
	}
	/* Resize direct extent list and zero any new bytes */
	else if (ifp->if_real_bytes) {
		/* Check if extents will fit inside the inode */
		if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
			xfs_iext_direct_to_inline(ifp, new_size /
				(uint)sizeof(xfs_bmbt_rec_t));
			ifp->if_bytes = new_size;
			return;
		}
		if (!is_power_of_2(new_size)){
			rnew_size = roundup_pow_of_two(new_size);
		}
		if (rnew_size != ifp->if_real_bytes) {
			ifp->if_u1.if_extents =
				kmem_realloc(ifp->if_u1.if_extents,
						rnew_size,
						ifp->if_real_bytes, KM_NOFS);
		}
		if (rnew_size > ifp->if_real_bytes) {
			memset(&ifp->if_u1.if_extents[ifp->if_bytes /
				(uint)sizeof(xfs_bmbt_rec_t)], 0,
				rnew_size - ifp->if_real_bytes);
		}
	}
	/*
	 * Switch from the inline extent buffer to a direct
	 * extent list. Be sure to include the inline extent
	 * bytes in new_size.
	 */
	else {
		new_size += ifp->if_bytes;
		if (!is_power_of_2(new_size)) {
			rnew_size = roundup_pow_of_two(new_size);
		}
		xfs_iext_inline_to_direct(ifp, rnew_size);
	}
	ifp->if_real_bytes = rnew_size;
	ifp->if_bytes = new_size;
}

/*
 * Switch from linear (direct) extent records to inline buffer.
 */
void
xfs_iext_direct_to_inline(
	xfs_ifork_t	*ifp,		/* inode fork pointer */
	xfs_extnum_t	nextents)	/* number of extents in file */
{
	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
	ASSERT(nextents <= XFS_INLINE_EXTS);
	/*
	 * The inline buffer was zeroed when we switched
	 * from inline to direct extent allocation mode,
	 * so we don't need to clear it here.
	 */
	memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
		nextents * sizeof(xfs_bmbt_rec_t));
	kmem_free(ifp->if_u1.if_extents);
	ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
	ifp->if_real_bytes = 0;
}

/*
 * Switch from inline buffer to linear (direct) extent records.
 * new_size should already be rounded up to the next power of 2
 * by the caller (when appropriate), so use new_size as it is.
 * However, since new_size may be rounded up, we can't update
 * if_bytes here. It is the caller's responsibility to update
 * if_bytes upon return.
 */
void
xfs_iext_inline_to_direct(
	xfs_ifork_t	*ifp,		/* inode fork pointer */
	int		new_size)	/* number of extents in file */
{
	ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
	memset(ifp->if_u1.if_extents, 0, new_size);
	if (ifp->if_bytes) {
		memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
			ifp->if_bytes);
		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
			sizeof(xfs_bmbt_rec_t));
	}
	ifp->if_real_bytes = new_size;
}

/*
 * Resize an extent indirection array to new_size bytes.
 */
STATIC void
xfs_iext_realloc_indirect(
	xfs_ifork_t	*ifp,		/* inode fork pointer */
	int		new_size)	/* new indirection array size */
{
	int		nlists;		/* number of irec's (ex lists) */
	int		size;		/* current indirection array size */

	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
	size = nlists * sizeof(xfs_ext_irec_t);
	ASSERT(ifp->if_real_bytes);
	ASSERT((new_size >= 0) && (new_size != size));
	if (new_size == 0) {
		xfs_iext_destroy(ifp);
	} else {
		ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
			kmem_realloc(ifp->if_u1.if_ext_irec,
				new_size, size, KM_NOFS);
	}
}

/*
 * Switch from indirection array to linear (direct) extent allocations.
 */
STATIC void
xfs_iext_indirect_to_direct(
	 xfs_ifork_t	*ifp)		/* inode fork pointer */
{
	xfs_bmbt_rec_host_t *ep;	/* extent record pointer */
	xfs_extnum_t	nextents;	/* number of extents in file */
	int		size;		/* size of file extents */

	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
	ASSERT(nextents <= XFS_LINEAR_EXTS);
	size = nextents * sizeof(xfs_bmbt_rec_t);

	xfs_iext_irec_compact_pages(ifp);
	ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);

	ep = ifp->if_u1.if_ext_irec->er_extbuf;
	kmem_free(ifp->if_u1.if_ext_irec);
	ifp->if_flags &= ~XFS_IFEXTIREC;
	ifp->if_u1.if_extents = ep;
	ifp->if_bytes = size;
	if (nextents < XFS_LINEAR_EXTS) {
		xfs_iext_realloc_direct(ifp, size);
	}
}

/*
 * Free incore file extents.
 */
void
xfs_iext_destroy(
	xfs_ifork_t	*ifp)		/* inode fork pointer */
{
	if (ifp->if_flags & XFS_IFEXTIREC) {
		int	erp_idx;
		int	nlists;

		nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
		for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
			xfs_iext_irec_remove(ifp, erp_idx);
		}
		ifp->if_flags &= ~XFS_IFEXTIREC;
	} else if (ifp->if_real_bytes) {
		kmem_free(ifp->if_u1.if_extents);
	} else if (ifp->if_bytes) {
		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
			sizeof(xfs_bmbt_rec_t));
	}
	ifp->if_u1.if_extents = NULL;
	ifp->if_real_bytes = 0;
	ifp->if_bytes = 0;
}

/*
 * Return a pointer to the extent record for file system block bno.
 */
xfs_bmbt_rec_host_t *			/* pointer to found extent record */
xfs_iext_bno_to_ext(
	xfs_ifork_t	*ifp,		/* inode fork pointer */
	xfs_fileoff_t	bno,		/* block number to search for */
	xfs_extnum_t	*idxp)		/* index of target extent */
{
	xfs_bmbt_rec_host_t *base;	/* pointer to first extent */
	xfs_filblks_t	blockcount = 0;	/* number of blocks in extent */
	xfs_bmbt_rec_host_t *ep = NULL;	/* pointer to target extent */
	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
	int		high;		/* upper boundary in search */
	xfs_extnum_t	idx = 0;	/* index of target extent */
	int		low;		/* lower boundary in search */
	xfs_extnum_t	nextents;	/* number of file extents */
	xfs_fileoff_t	startoff = 0;	/* start offset of extent */

	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
	if (nextents == 0) {
		*idxp = 0;
		return NULL;
	}
	low = 0;
	if (ifp->if_flags & XFS_IFEXTIREC) {
		/* Find target extent list */
		int	erp_idx = 0;
		erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
		base = erp->er_extbuf;
		high = erp->er_extcount - 1;
	} else {
		base = ifp->if_u1.if_extents;
		high = nextents - 1;
	}
	/* Binary search extent records */
	while (low <= high) {
		idx = (low + high) >> 1;
		ep = base + idx;
		startoff = xfs_bmbt_get_startoff(ep);
		blockcount = xfs_bmbt_get_blockcount(ep);
		if (bno < startoff) {
			high = idx - 1;
		} else if (bno >= startoff + blockcount) {
			low = idx + 1;
		} else {
			/* Convert back to file-based extent index */
			if (ifp->if_flags & XFS_IFEXTIREC) {
				idx += erp->er_extoff;
			}
			*idxp = idx;
			return ep;
		}
	}
	/* Convert back to file-based extent index */
	if (ifp->if_flags & XFS_IFEXTIREC) {
		idx += erp->er_extoff;
	}
	if (bno >= startoff + blockcount) {
		if (++idx == nextents) {
			ep = NULL;
		} else {
			ep = xfs_iext_get_ext(ifp, idx);
		}
	}
	*idxp = idx;
	return ep;
}

/*
 * Return a pointer to the indirection array entry containing the
 * extent record for filesystem block bno. Store the index of the
 * target irec in *erp_idxp.
 */
xfs_ext_irec_t *			/* pointer to found extent record */
xfs_iext_bno_to_irec(
	xfs_ifork_t	*ifp,		/* inode fork pointer */
	xfs_fileoff_t	bno,		/* block number to search for */
	int		*erp_idxp)	/* irec index of target ext list */
{
	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
	xfs_ext_irec_t	*erp_next;	/* next indirection array entry */
	int		erp_idx;	/* indirection array index */
	int		nlists;		/* number of extent irec's (lists) */
	int		high;		/* binary search upper limit */
	int		low;		/* binary search lower limit */

	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
	erp_idx = 0;
	low = 0;
	high = nlists - 1;
	while (low <= high) {
		erp_idx = (low + high) >> 1;
		erp = &ifp->if_u1.if_ext_irec[erp_idx];
		erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
		if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
			high = erp_idx - 1;
		} else if (erp_next && bno >=
			   xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
			low = erp_idx + 1;
		} else {
			break;
		}
	}
	*erp_idxp = erp_idx;
	return erp;
}

/*
 * Return a pointer to the indirection array entry containing the
 * extent record at file extent index *idxp. Store the index of the
 * target irec in *erp_idxp and store the page index of the target
 * extent record in *idxp.
 */
xfs_ext_irec_t *
xfs_iext_idx_to_irec(
	xfs_ifork_t	*ifp,		/* inode fork pointer */
	xfs_extnum_t	*idxp,		/* extent index (file -> page) */
	int		*erp_idxp,	/* pointer to target irec */
	int		realloc)	/* new bytes were just added */
{
	xfs_ext_irec_t	*prev;		/* pointer to previous irec */
	xfs_ext_irec_t	*erp = NULL;	/* pointer to current irec */
	int		erp_idx;	/* indirection array index */
	int		nlists;		/* number of irec's (ex lists) */
	int		high;		/* binary search upper limit */
	int		low;		/* binary search lower limit */
	xfs_extnum_t	page_idx = *idxp; /* extent index in target list */

	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
	ASSERT(page_idx >= 0);
	ASSERT(page_idx <= ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
	ASSERT(page_idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t) || realloc);

	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
	erp_idx = 0;
	low = 0;
	high = nlists - 1;

	/* Binary search extent irec's */
	while (low <= high) {
		erp_idx = (low + high) >> 1;
		erp = &ifp->if_u1.if_ext_irec[erp_idx];
		prev = erp_idx > 0 ? erp - 1 : NULL;
		if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
		     realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
			high = erp_idx - 1;
		} else if (page_idx > erp->er_extoff + erp->er_extcount ||
			   (page_idx == erp->er_extoff + erp->er_extcount &&
			    !realloc)) {
			low = erp_idx + 1;
		} else if (page_idx == erp->er_extoff + erp->er_extcount &&
			   erp->er_extcount == XFS_LINEAR_EXTS) {
			ASSERT(realloc);
			page_idx = 0;
			erp_idx++;
			erp = erp_idx < nlists ? erp + 1 : NULL;
			break;
		} else {
			page_idx -= erp->er_extoff;
			break;
		}
	}
	*idxp = page_idx;
	*erp_idxp = erp_idx;
	return(erp);
}

/*
 * Allocate and initialize an indirection array once the space needed
 * for incore extents increases above XFS_IEXT_BUFSZ.
 */
void
xfs_iext_irec_init(
	xfs_ifork_t	*ifp)		/* inode fork pointer */
{
	xfs_ext_irec_t	*erp;		/* indirection array pointer */
	xfs_extnum_t	nextents;	/* number of extents in file */

	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
	ASSERT(nextents <= XFS_LINEAR_EXTS);

	erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);

	if (nextents == 0) {
		ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
	} else if (!ifp->if_real_bytes) {
		xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
	} else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
		xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
	}
	erp->er_extbuf = ifp->if_u1.if_extents;
	erp->er_extcount = nextents;
	erp->er_extoff = 0;

	ifp->if_flags |= XFS_IFEXTIREC;
	ifp->if_real_bytes = XFS_IEXT_BUFSZ;
	ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
	ifp->if_u1.if_ext_irec = erp;

	return;
}

/*
 * Allocate and initialize a new entry in the indirection array.
 */
xfs_ext_irec_t *
xfs_iext_irec_new(
	xfs_ifork_t	*ifp,		/* inode fork pointer */
	int		erp_idx)	/* index for new irec */
{
	xfs_ext_irec_t	*erp;		/* indirection array pointer */
	int		i;		/* loop counter */
	int		nlists;		/* number of irec's (ex lists) */

	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;

	/* Resize indirection array */
	xfs_iext_realloc_indirect(ifp, ++nlists *
				  sizeof(xfs_ext_irec_t));
	/*
	 * Move records down in the array so the
	 * new page can use erp_idx.
	 */
	erp = ifp->if_u1.if_ext_irec;
	for (i = nlists - 1; i > erp_idx; i--) {
		memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
	}
	ASSERT(i == erp_idx);

	/* Initialize new extent record */
	erp = ifp->if_u1.if_ext_irec;
	erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
	memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
	erp[erp_idx].er_extcount = 0;
	erp[erp_idx].er_extoff = erp_idx > 0 ?
		erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
	return (&erp[erp_idx]);
}

/*
 * Remove a record from the indirection array.
 */
void
xfs_iext_irec_remove(
	xfs_ifork_t	*ifp,		/* inode fork pointer */
	int		erp_idx)	/* irec index to remove */
{
	xfs_ext_irec_t	*erp;		/* indirection array pointer */
	int		i;		/* loop counter */
	int		nlists;		/* number of irec's (ex lists) */

	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
	erp = &ifp->if_u1.if_ext_irec[erp_idx];
	if (erp->er_extbuf) {
		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
			-erp->er_extcount);
		kmem_free(erp->er_extbuf);
	}
	/* Compact extent records */
	erp = ifp->if_u1.if_ext_irec;
	for (i = erp_idx; i < nlists - 1; i++) {
		memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
	}
	/*
	 * Manually free the last extent record from the indirection
	 * array.  A call to xfs_iext_realloc_indirect() with a size
	 * of zero would result in a call to xfs_iext_destroy() which
	 * would in turn call this function again, creating a nasty
	 * infinite loop.
	 */
	if (--nlists) {
		xfs_iext_realloc_indirect(ifp,
			nlists * sizeof(xfs_ext_irec_t));
	} else {
		kmem_free(ifp->if_u1.if_ext_irec);
	}
	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
}

/*
 * This is called to clean up large amounts of unused memory allocated
 * by the indirection array.  Before compacting anything though, verify
 * that the indirection array is still needed and switch back to the
 * linear extent list (or even the inline buffer) if possible.  The
 * compaction policy is as follows:
 *
 *    Full Compaction: Extents fit into a single page (or inline buffer)
 * Partial Compaction: Extents occupy less than 50% of allocated space
 *      No Compaction: Extents occupy at least 50% of allocated space
 */
void
xfs_iext_irec_compact(
	xfs_ifork_t	*ifp)		/* inode fork pointer */
{
	xfs_extnum_t	nextents;	/* number of extents in file */
	int		nlists;		/* number of irec's (ex lists) */

	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);

	if (nextents == 0) {
		xfs_iext_destroy(ifp);
	} else if (nextents <= XFS_INLINE_EXTS) {
		xfs_iext_indirect_to_direct(ifp);
		xfs_iext_direct_to_inline(ifp, nextents);
	} else if (nextents <= XFS_LINEAR_EXTS) {
		xfs_iext_indirect_to_direct(ifp);
	} else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
		xfs_iext_irec_compact_pages(ifp);
	}
}

/*
 * Combine extents from neighboring extent pages.
 */
void
xfs_iext_irec_compact_pages(
	xfs_ifork_t	*ifp)		/* inode fork pointer */
{
	xfs_ext_irec_t	*erp, *erp_next;/* pointers to irec entries */
	int		erp_idx = 0;	/* indirection array index */
	int		nlists;		/* number of irec's (ex lists) */

	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
	while (erp_idx < nlists - 1) {
		erp = &ifp->if_u1.if_ext_irec[erp_idx];
		erp_next = erp + 1;
		if (erp_next->er_extcount <=
		    (XFS_LINEAR_EXTS - erp->er_extcount)) {
			memcpy(&erp->er_extbuf[erp->er_extcount],
				erp_next->er_extbuf, erp_next->er_extcount *
				sizeof(xfs_bmbt_rec_t));
			erp->er_extcount += erp_next->er_extcount;
			/*
			 * Free page before removing extent record
			 * so er_extoffs don't get modified in
			 * xfs_iext_irec_remove.
			 */
			kmem_free(erp_next->er_extbuf);
			erp_next->er_extbuf = NULL;
			xfs_iext_irec_remove(ifp, erp_idx + 1);
			nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
		} else {
			erp_idx++;
		}
	}
}

/*
 * This is called to update the er_extoff field in the indirection
 * array when extents have been added or removed from one of the
 * extent lists. erp_idx contains the irec index to begin updating
 * at and ext_diff contains the number of extents that were added
 * or removed.
 */
void
xfs_iext_irec_update_extoffs(
	xfs_ifork_t	*ifp,		/* inode fork pointer */
	int		erp_idx,	/* irec index to update */
	int		ext_diff)	/* number of new extents */
{
	int		i;		/* loop counter */
	int		nlists;		/* number of irec's (ex lists */

	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
	for (i = erp_idx; i < nlists; i++) {
		ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
	}
}