summaryrefslogtreecommitdiffstats
path: root/include/asm-x86/bitops_64.h
blob: 1d7d9b4bcacb0846f44f72282008552f4582dba5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
#ifndef _X86_64_BITOPS_H
#define _X86_64_BITOPS_H

/*
 * Copyright 1992, Linus Torvalds.
 */

#include <asm/alternative.h>

#if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 1)
/* Technically wrong, but this avoids compilation errors on some gcc
   versions. */
#define ADDR "=m" (*(volatile long *) addr)
#else
#define ADDR "+m" (*(volatile long *) addr)
#endif

/**
 * set_bit - Atomically set a bit in memory
 * @nr: the bit to set
 * @addr: the address to start counting from
 *
 * This function is atomic and may not be reordered.  See __set_bit()
 * if you do not require the atomic guarantees.
 * Note that @nr may be almost arbitrarily large; this function is not
 * restricted to acting on a single-word quantity.
 */
static __inline__ void set_bit(int nr, volatile void * addr)
{
	__asm__ __volatile__( LOCK_PREFIX
		"btsl %1,%0"
		:ADDR
		:"dIr" (nr) : "memory");
}

/**
 * __set_bit - Set a bit in memory
 * @nr: the bit to set
 * @addr: the address to start counting from
 *
 * Unlike set_bit(), this function is non-atomic and may be reordered.
 * If it's called on the same region of memory simultaneously, the effect
 * may be that only one operation succeeds.
 */
static __inline__ void __set_bit(int nr, volatile void * addr)
{
	__asm__ volatile(
		"btsl %1,%0"
		:ADDR
		:"dIr" (nr) : "memory");
}

/**
 * clear_bit - Clears a bit in memory
 * @nr: Bit to clear
 * @addr: Address to start counting from
 *
 * clear_bit() is atomic and may not be reordered.  However, it does
 * not contain a memory barrier, so if it is used for locking purposes,
 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
 * in order to ensure changes are visible on other processors.
 */
static __inline__ void clear_bit(int nr, volatile void * addr)
{
	__asm__ __volatile__( LOCK_PREFIX
		"btrl %1,%0"
		:ADDR
		:"dIr" (nr));
}

static __inline__ void __clear_bit(int nr, volatile void * addr)
{
	__asm__ __volatile__(
		"btrl %1,%0"
		:ADDR
		:"dIr" (nr));
}

#define smp_mb__before_clear_bit()	barrier()
#define smp_mb__after_clear_bit()	barrier()

/**
 * __change_bit - Toggle a bit in memory
 * @nr: the bit to change
 * @addr: the address to start counting from
 *
 * Unlike change_bit(), this function is non-atomic and may be reordered.
 * If it's called on the same region of memory simultaneously, the effect
 * may be that only one operation succeeds.
 */
static __inline__ void __change_bit(int nr, volatile void * addr)
{
	__asm__ __volatile__(
		"btcl %1,%0"
		:ADDR
		:"dIr" (nr));
}

/**
 * change_bit - Toggle a bit in memory
 * @nr: Bit to change
 * @addr: Address to start counting from
 *
 * change_bit() is atomic and may not be reordered.
 * Note that @nr may be almost arbitrarily large; this function is not
 * restricted to acting on a single-word quantity.
 */
static __inline__ void change_bit(int nr, volatile void * addr)
{
	__asm__ __volatile__( LOCK_PREFIX
		"btcl %1,%0"
		:ADDR
		:"dIr" (nr));
}

/**
 * test_and_set_bit - Set a bit and return its old value
 * @nr: Bit to set
 * @addr: Address to count from
 *
 * This operation is atomic and cannot be reordered.  
 * It also implies a memory barrier.
 */
static __inline__ int test_and_set_bit(int nr, volatile void * addr)
{
	int oldbit;

	__asm__ __volatile__( LOCK_PREFIX
		"btsl %2,%1\n\tsbbl %0,%0"
		:"=r" (oldbit),ADDR
		:"dIr" (nr) : "memory");
	return oldbit;
}

/**
 * __test_and_set_bit - Set a bit and return its old value
 * @nr: Bit to set
 * @addr: Address to count from
 *
 * This operation is non-atomic and can be reordered.  
 * If two examples of this operation race, one can appear to succeed
 * but actually fail.  You must protect multiple accesses with a lock.
 */
static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
{
	int oldbit;

	__asm__(
		"btsl %2,%1\n\tsbbl %0,%0"
		:"=r" (oldbit),ADDR
		:"dIr" (nr));
	return oldbit;
}

/**
 * test_and_clear_bit - Clear a bit and return its old value
 * @nr: Bit to clear
 * @addr: Address to count from
 *
 * This operation is atomic and cannot be reordered.  
 * It also implies a memory barrier.
 */
static __inline__ int test_and_clear_bit(int nr, volatile void * addr)
{
	int oldbit;

	__asm__ __volatile__( LOCK_PREFIX
		"btrl %2,%1\n\tsbbl %0,%0"
		:"=r" (oldbit),ADDR
		:"dIr" (nr) : "memory");
	return oldbit;
}

/**
 * __test_and_clear_bit - Clear a bit and return its old value
 * @nr: Bit to clear
 * @addr: Address to count from
 *
 * This operation is non-atomic and can be reordered.  
 * If two examples of this operation race, one can appear to succeed
 * but actually fail.  You must protect multiple accesses with a lock.
 */
static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
{
	int oldbit;

	__asm__(
		"btrl %2,%1\n\tsbbl %0,%0"
		:"=r" (oldbit),ADDR
		:"dIr" (nr));
	return oldbit;
}

/* WARNING: non atomic and it can be reordered! */
static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
{
	int oldbit;

	__asm__ __volatile__(
		"btcl %2,%1\n\tsbbl %0,%0"
		:"=r" (oldbit),ADDR
		:"dIr" (nr) : "memory");
	return oldbit;
}

/**
 * test_and_change_bit - Change a bit and return its old value
 * @nr: Bit to change
 * @addr: Address to count from
 *
 * This operation is atomic and cannot be reordered.  
 * It also implies a memory barrier.
 */
static __inline__ int test_and_change_bit(int nr, volatile void * addr)
{
	int oldbit;

	__asm__ __volatile__( LOCK_PREFIX
		"btcl %2,%1\n\tsbbl %0,%0"
		:"=r" (oldbit),ADDR
		:"dIr" (nr) : "memory");
	return oldbit;
}

#if 0 /* Fool kernel-doc since it doesn't do macros yet */
/**
 * test_bit - Determine whether a bit is set
 * @nr: bit number to test
 * @addr: Address to start counting from
 */
static int test_bit(int nr, const volatile void * addr);
#endif

static __inline__ int constant_test_bit(int nr, const volatile void * addr)
{
	return ((1UL << (nr & 31)) & (((const volatile unsigned int *) addr)[nr >> 5])) != 0;
}

static __inline__ int variable_test_bit(int nr, volatile const void * addr)
{
	int oldbit;

	__asm__ __volatile__(
		"btl %2,%1\n\tsbbl %0,%0"
		:"=r" (oldbit)
		:"m" (*(volatile long *)addr),"dIr" (nr));
	return oldbit;
}

#define test_bit(nr,addr) \
(__builtin_constant_p(nr) ? \
 constant_test_bit((nr),(addr)) : \
 variable_test_bit((nr),(addr)))

#undef ADDR

extern long find_first_zero_bit(const unsigned long * addr, unsigned long size);
extern long find_next_zero_bit (const unsigned long * addr, long size, long offset);
extern long find_first_bit(const unsigned long * addr, unsigned long size);
extern long find_next_bit(const unsigned long * addr, long size, long offset);

/* return index of first bet set in val or max when no bit is set */
static inline long __scanbit(unsigned long val, unsigned long max)
{
	asm("bsfq %1,%0 ; cmovz %2,%0" : "=&r" (val) : "r" (val), "r" (max));
	return val;
}

#define find_first_bit(addr,size) \
((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? \
  (__scanbit(*(unsigned long *)addr,(size))) : \
  find_first_bit(addr,size)))

#define find_next_bit(addr,size,off) \
((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? 	  \
  ((off) + (__scanbit((*(unsigned long *)addr) >> (off),(size)-(off)))) : \
	find_next_bit(addr,size,off)))

#define find_first_zero_bit(addr,size) \
((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? \
  (__scanbit(~*(unsigned long *)addr,(size))) : \
  	find_first_zero_bit(addr,size)))
	
#define find_next_zero_bit(addr,size,off) \
((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? 	  \
  ((off)+(__scanbit(~(((*(unsigned long *)addr)) >> (off)),(size)-(off)))) : \
	find_next_zero_bit(addr,size,off)))

/* 
 * Find string of zero bits in a bitmap. -1 when not found.
 */ 
extern unsigned long 
find_next_zero_string(unsigned long *bitmap, long start, long nbits, int len);

static inline void set_bit_string(unsigned long *bitmap, unsigned long i, 
				  int len) 
{ 
	unsigned long end = i + len; 
	while (i < end) {
		__set_bit(i, bitmap); 
		i++;
	}
} 

static inline void __clear_bit_string(unsigned long *bitmap, unsigned long i, 
				    int len) 
{ 
	unsigned long end = i + len; 
	while (i < end) {
		__clear_bit(i, bitmap); 
		i++;
	}
} 

/**
 * ffz - find first zero in word.
 * @word: The word to search
 *
 * Undefined if no zero exists, so code should check against ~0UL first.
 */
static __inline__ unsigned long ffz(unsigned long word)
{
	__asm__("bsfq %1,%0"
		:"=r" (word)
		:"r" (~word));
	return word;
}

/**
 * __ffs - find first bit in word.
 * @word: The word to search
 *
 * Undefined if no bit exists, so code should check against 0 first.
 */
static __inline__ unsigned long __ffs(unsigned long word)
{
	__asm__("bsfq %1,%0"
		:"=r" (word)
		:"rm" (word));
	return word;
}

/*
 * __fls: find last bit set.
 * @word: The word to search
 *
 * Undefined if no zero exists, so code should check against ~0UL first.
 */
static __inline__ unsigned long __fls(unsigned long word)
{
	__asm__("bsrq %1,%0"
		:"=r" (word)
		:"rm" (word));
	return word;
}

#ifdef __KERNEL__

#include <asm-generic/bitops/sched.h>

/**
 * ffs - find first bit set
 * @x: the word to search
 *
 * This is defined the same way as
 * the libc and compiler builtin ffs routines, therefore
 * differs in spirit from the above ffz (man ffs).
 */
static __inline__ int ffs(int x)
{
	int r;

	__asm__("bsfl %1,%0\n\t"
		"cmovzl %2,%0" 
		: "=r" (r) : "rm" (x), "r" (-1));
	return r+1;
}

/**
 * fls64 - find last bit set in 64 bit word
 * @x: the word to search
 *
 * This is defined the same way as fls.
 */
static __inline__ int fls64(__u64 x)
{
	if (x == 0)
		return 0;
	return __fls(x) + 1;
}

/**
 * fls - find last bit set
 * @x: the word to search
 *
 * This is defined the same way as ffs.
 */
static __inline__ int fls(int x)
{
	int r;

	__asm__("bsrl %1,%0\n\t"
		"cmovzl %2,%0"
		: "=&r" (r) : "rm" (x), "rm" (-1));
	return r+1;
}

#define ARCH_HAS_FAST_MULTIPLIER 1

#include <asm-generic/bitops/hweight.h>

#endif /* __KERNEL__ */

#ifdef __KERNEL__

#include <asm-generic/bitops/ext2-non-atomic.h>

#define ext2_set_bit_atomic(lock,nr,addr) \
	        test_and_set_bit((nr),(unsigned long*)addr)
#define ext2_clear_bit_atomic(lock,nr,addr) \
	        test_and_clear_bit((nr),(unsigned long*)addr)

#include <asm-generic/bitops/minix.h>

#endif /* __KERNEL__ */

#endif /* _X86_64_BITOPS_H */