summaryrefslogtreecommitdiffstats
path: root/include/linux/mm.h
blob: fe039bdba4edd9d04818a35f8a29fa0784357848 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
#ifndef _LINUX_MM_H
#define _LINUX_MM_H

#include <linux/errno.h>

#ifdef __KERNEL__

#include <linux/gfp.h>
#include <linux/bug.h>
#include <linux/list.h>
#include <linux/mmzone.h>
#include <linux/rbtree.h>
#include <linux/atomic.h>
#include <linux/debug_locks.h>
#include <linux/mm_types.h>
#include <linux/range.h>
#include <linux/pfn.h>
#include <linux/bit_spinlock.h>
#include <linux/shrinker.h>

struct mempolicy;
struct anon_vma;
struct anon_vma_chain;
struct file_ra_state;
struct user_struct;
struct writeback_control;

#ifndef CONFIG_DISCONTIGMEM          /* Don't use mapnrs, do it properly */
extern unsigned long max_mapnr;
#endif

extern unsigned long num_physpages;
extern unsigned long totalram_pages;
extern void * high_memory;
extern int page_cluster;

#ifdef CONFIG_SYSCTL
extern int sysctl_legacy_va_layout;
#else
#define sysctl_legacy_va_layout 0
#endif

#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/processor.h>

#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))

/* to align the pointer to the (next) page boundary */
#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)

/*
 * Linux kernel virtual memory manager primitives.
 * The idea being to have a "virtual" mm in the same way
 * we have a virtual fs - giving a cleaner interface to the
 * mm details, and allowing different kinds of memory mappings
 * (from shared memory to executable loading to arbitrary
 * mmap() functions).
 */

extern struct kmem_cache *vm_area_cachep;

#ifndef CONFIG_MMU
extern struct rb_root nommu_region_tree;
extern struct rw_semaphore nommu_region_sem;

extern unsigned int kobjsize(const void *objp);
#endif

/*
 * vm_flags in vm_area_struct, see mm_types.h.
 */
#define VM_NONE		0x00000000

#define VM_READ		0x00000001	/* currently active flags */
#define VM_WRITE	0x00000002
#define VM_EXEC		0x00000004
#define VM_SHARED	0x00000008

/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
#define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
#define VM_MAYWRITE	0x00000020
#define VM_MAYEXEC	0x00000040
#define VM_MAYSHARE	0x00000080

#define VM_GROWSDOWN	0x00000100	/* general info on the segment */
#define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
#define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */

#define VM_POPULATE     0x00001000
#define VM_LOCKED	0x00002000
#define VM_IO           0x00004000	/* Memory mapped I/O or similar */

					/* Used by sys_madvise() */
#define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
#define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */

#define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
#define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
#define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
#define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
#define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
#define VM_NONLINEAR	0x00800000	/* Is non-linear (remap_file_pages) */
#define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
#define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */

#define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
#define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
#define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
#define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */

#if defined(CONFIG_X86)
# define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
#elif defined(CONFIG_PPC)
# define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
#elif defined(CONFIG_PARISC)
# define VM_GROWSUP	VM_ARCH_1
#elif defined(CONFIG_IA64)
# define VM_GROWSUP	VM_ARCH_1
#elif !defined(CONFIG_MMU)
# define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
#endif

#ifndef VM_GROWSUP
# define VM_GROWSUP	VM_NONE
#endif

/* Bits set in the VMA until the stack is in its final location */
#define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)

#ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
#endif

#ifdef CONFIG_STACK_GROWSUP
#define VM_STACK_FLAGS	(VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
#else
#define VM_STACK_FLAGS	(VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
#endif

#define VM_READHINTMASK			(VM_SEQ_READ | VM_RAND_READ)
#define VM_ClearReadHint(v)		(v)->vm_flags &= ~VM_READHINTMASK
#define VM_NormalReadHint(v)		(!((v)->vm_flags & VM_READHINTMASK))
#define VM_SequentialReadHint(v)	((v)->vm_flags & VM_SEQ_READ)
#define VM_RandomReadHint(v)		((v)->vm_flags & VM_RAND_READ)

/*
 * Special vmas that are non-mergable, non-mlock()able.
 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
 */
#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)

/*
 * mapping from the currently active vm_flags protection bits (the
 * low four bits) to a page protection mask..
 */
extern pgprot_t protection_map[16];

#define FAULT_FLAG_WRITE	0x01	/* Fault was a write access */
#define FAULT_FLAG_NONLINEAR	0x02	/* Fault was via a nonlinear mapping */
#define FAULT_FLAG_MKWRITE	0x04	/* Fault was mkwrite of existing pte */
#define FAULT_FLAG_ALLOW_RETRY	0x08	/* Retry fault if blocking */
#define FAULT_FLAG_RETRY_NOWAIT	0x10	/* Don't drop mmap_sem and wait when retrying */
#define FAULT_FLAG_KILLABLE	0x20	/* The fault task is in SIGKILL killable region */
#define FAULT_FLAG_TRIED	0x40	/* second try */

/*
 * vm_fault is filled by the the pagefault handler and passed to the vma's
 * ->fault function. The vma's ->fault is responsible for returning a bitmask
 * of VM_FAULT_xxx flags that give details about how the fault was handled.
 *
 * pgoff should be used in favour of virtual_address, if possible. If pgoff
 * is used, one may implement ->remap_pages to get nonlinear mapping support.
 */
struct vm_fault {
	unsigned int flags;		/* FAULT_FLAG_xxx flags */
	pgoff_t pgoff;			/* Logical page offset based on vma */
	void __user *virtual_address;	/* Faulting virtual address */

	struct page *page;		/* ->fault handlers should return a
					 * page here, unless VM_FAULT_NOPAGE
					 * is set (which is also implied by
					 * VM_FAULT_ERROR).
					 */
};

/*
 * These are the virtual MM functions - opening of an area, closing and
 * unmapping it (needed to keep files on disk up-to-date etc), pointer
 * to the functions called when a no-page or a wp-page exception occurs. 
 */
struct vm_operations_struct {
	void (*open)(struct vm_area_struct * area);
	void (*close)(struct vm_area_struct * area);
	int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);

	/* notification that a previously read-only page is about to become
	 * writable, if an error is returned it will cause a SIGBUS */
	int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);

	/* called by access_process_vm when get_user_pages() fails, typically
	 * for use by special VMAs that can switch between memory and hardware
	 */
	int (*access)(struct vm_area_struct *vma, unsigned long addr,
		      void *buf, int len, int write);
#ifdef CONFIG_NUMA
	/*
	 * set_policy() op must add a reference to any non-NULL @new mempolicy
	 * to hold the policy upon return.  Caller should pass NULL @new to
	 * remove a policy and fall back to surrounding context--i.e. do not
	 * install a MPOL_DEFAULT policy, nor the task or system default
	 * mempolicy.
	 */
	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);

	/*
	 * get_policy() op must add reference [mpol_get()] to any policy at
	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
	 * in mm/mempolicy.c will do this automatically.
	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
	 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
	 * must return NULL--i.e., do not "fallback" to task or system default
	 * policy.
	 */
	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
					unsigned long addr);
	int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
		const nodemask_t *to, unsigned long flags);
#endif
	/* called by sys_remap_file_pages() to populate non-linear mapping */
	int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
			   unsigned long size, pgoff_t pgoff);
};

struct mmu_gather;
struct inode;

#define page_private(page)		((page)->private)
#define set_page_private(page, v)	((page)->private = (v))

/* It's valid only if the page is free path or free_list */
static inline void set_freepage_migratetype(struct page *page, int migratetype)
{
	page->index = migratetype;
}

/* It's valid only if the page is free path or free_list */
static inline int get_freepage_migratetype(struct page *page)
{
	return page->index;
}

/*
 * FIXME: take this include out, include page-flags.h in
 * files which need it (119 of them)
 */
#include <linux/page-flags.h>
#include <linux/huge_mm.h>

/*
 * Methods to modify the page usage count.
 *
 * What counts for a page usage:
 * - cache mapping   (page->mapping)
 * - private data    (page->private)
 * - page mapped in a task's page tables, each mapping
 *   is counted separately
 *
 * Also, many kernel routines increase the page count before a critical
 * routine so they can be sure the page doesn't go away from under them.
 */

/*
 * Drop a ref, return true if the refcount fell to zero (the page has no users)
 */
static inline int put_page_testzero(struct page *page)
{
	VM_BUG_ON(atomic_read(&page->_count) == 0);
	return atomic_dec_and_test(&page->_count);
}

/*
 * Try to grab a ref unless the page has a refcount of zero, return false if
 * that is the case.
 */
static inline int get_page_unless_zero(struct page *page)
{
	return atomic_inc_not_zero(&page->_count);
}

extern int page_is_ram(unsigned long pfn);

/* Support for virtually mapped pages */
struct page *vmalloc_to_page(const void *addr);
unsigned long vmalloc_to_pfn(const void *addr);

/*
 * Determine if an address is within the vmalloc range
 *
 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
 * is no special casing required.
 */
static inline int is_vmalloc_addr(const void *x)
{
#ifdef CONFIG_MMU
	unsigned long addr = (unsigned long)x;

	return addr >= VMALLOC_START && addr < VMALLOC_END;
#else
	return 0;
#endif
}
#ifdef CONFIG_MMU
extern int is_vmalloc_or_module_addr(const void *x);
#else
static inline int is_vmalloc_or_module_addr(const void *x)
{
	return 0;
}
#endif

static inline void compound_lock(struct page *page)
{
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	VM_BUG_ON(PageSlab(page));
	bit_spin_lock(PG_compound_lock, &page->flags);
#endif
}

static inline void compound_unlock(struct page *page)
{
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	VM_BUG_ON(PageSlab(page));
	bit_spin_unlock(PG_compound_lock, &page->flags);
#endif
}

static inline unsigned long compound_lock_irqsave(struct page *page)
{
	unsigned long uninitialized_var(flags);
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	local_irq_save(flags);
	compound_lock(page);
#endif
	return flags;
}

static inline void compound_unlock_irqrestore(struct page *page,
					      unsigned long flags)
{
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	compound_unlock(page);
	local_irq_restore(flags);
#endif
}

static inline struct page *compound_head(struct page *page)
{
	if (unlikely(PageTail(page)))
		return page->first_page;
	return page;
}

/*
 * The atomic page->_mapcount, starts from -1: so that transitions
 * both from it and to it can be tracked, using atomic_inc_and_test
 * and atomic_add_negative(-1).
 */
static inline void page_mapcount_reset(struct page *page)
{
	atomic_set(&(page)->_mapcount, -1);
}

static inline int page_mapcount(struct page *page)
{
	return atomic_read(&(page)->_mapcount) + 1;
}

static inline int page_count(struct page *page)
{
	return atomic_read(&compound_head(page)->_count);
}

static inline void get_huge_page_tail(struct page *page)
{
	/*
	 * __split_huge_page_refcount() cannot run
	 * from under us.
	 */
	VM_BUG_ON(page_mapcount(page) < 0);
	VM_BUG_ON(atomic_read(&page->_count) != 0);
	atomic_inc(&page->_mapcount);
}

extern bool __get_page_tail(struct page *page);

static inline void get_page(struct page *page)
{
	if (unlikely(PageTail(page)))
		if (likely(__get_page_tail(page)))
			return;
	/*
	 * Getting a normal page or the head of a compound page
	 * requires to already have an elevated page->_count.
	 */
	VM_BUG_ON(atomic_read(&page->_count) <= 0);
	atomic_inc(&page->_count);
}

static inline struct page *virt_to_head_page(const void *x)
{
	struct page *page = virt_to_page(x);
	return compound_head(page);
}

/*
 * Setup the page count before being freed into the page allocator for
 * the first time (boot or memory hotplug)
 */
static inline void init_page_count(struct page *page)
{
	atomic_set(&page->_count, 1);
}

/*
 * PageBuddy() indicate that the page is free and in the buddy system
 * (see mm/page_alloc.c).
 *
 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
 * -2 so that an underflow of the page_mapcount() won't be mistaken
 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
 * efficiently by most CPU architectures.
 */
#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)

static inline int PageBuddy(struct page *page)
{
	return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
}

static inline void __SetPageBuddy(struct page *page)
{
	VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
	atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
}

static inline void __ClearPageBuddy(struct page *page)
{
	VM_BUG_ON(!PageBuddy(page));
	atomic_set(&page->_mapcount, -1);
}

void put_page(struct page *page);
void put_pages_list(struct list_head *pages);

void split_page(struct page *page, unsigned int order);
int split_free_page(struct page *page);

/*
 * Compound pages have a destructor function.  Provide a
 * prototype for that function and accessor functions.
 * These are _only_ valid on the head of a PG_compound page.
 */
typedef void compound_page_dtor(struct page *);

static inline void set_compound_page_dtor(struct page *page,
						compound_page_dtor *dtor)
{
	page[1].lru.next = (void *)dtor;
}

static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
{
	return (compound_page_dtor *)page[1].lru.next;
}

static inline int compound_order(struct page *page)
{
	if (!PageHead(page))
		return 0;
	return (unsigned long)page[1].lru.prev;
}

static inline int compound_trans_order(struct page *page)
{
	int order;
	unsigned long flags;

	if (!PageHead(page))
		return 0;

	flags = compound_lock_irqsave(page);
	order = compound_order(page);
	compound_unlock_irqrestore(page, flags);
	return order;
}

static inline void set_compound_order(struct page *page, unsigned long order)
{
	page[1].lru.prev = (void *)order;
}

#ifdef CONFIG_MMU
/*
 * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
 * servicing faults for write access.  In the normal case, do always want
 * pte_mkwrite.  But get_user_pages can cause write faults for mappings
 * that do not have writing enabled, when used by access_process_vm.
 */
static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
{
	if (likely(vma->vm_flags & VM_WRITE))
		pte = pte_mkwrite(pte);
	return pte;
}
#endif

/*
 * Multiple processes may "see" the same page. E.g. for untouched
 * mappings of /dev/null, all processes see the same page full of
 * zeroes, and text pages of executables and shared libraries have
 * only one copy in memory, at most, normally.
 *
 * For the non-reserved pages, page_count(page) denotes a reference count.
 *   page_count() == 0 means the page is free. page->lru is then used for
 *   freelist management in the buddy allocator.
 *   page_count() > 0  means the page has been allocated.
 *
 * Pages are allocated by the slab allocator in order to provide memory
 * to kmalloc and kmem_cache_alloc. In this case, the management of the
 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
 * unless a particular usage is carefully commented. (the responsibility of
 * freeing the kmalloc memory is the caller's, of course).
 *
 * A page may be used by anyone else who does a __get_free_page().
 * In this case, page_count still tracks the references, and should only
 * be used through the normal accessor functions. The top bits of page->flags
 * and page->virtual store page management information, but all other fields
 * are unused and could be used privately, carefully. The management of this
 * page is the responsibility of the one who allocated it, and those who have
 * subsequently been given references to it.
 *
 * The other pages (we may call them "pagecache pages") are completely
 * managed by the Linux memory manager: I/O, buffers, swapping etc.
 * The following discussion applies only to them.
 *
 * A pagecache page contains an opaque `private' member, which belongs to the
 * page's address_space. Usually, this is the address of a circular list of
 * the page's disk buffers. PG_private must be set to tell the VM to call
 * into the filesystem to release these pages.
 *
 * A page may belong to an inode's memory mapping. In this case, page->mapping
 * is the pointer to the inode, and page->index is the file offset of the page,
 * in units of PAGE_CACHE_SIZE.
 *
 * If pagecache pages are not associated with an inode, they are said to be
 * anonymous pages. These may become associated with the swapcache, and in that
 * case PG_swapcache is set, and page->private is an offset into the swapcache.
 *
 * In either case (swapcache or inode backed), the pagecache itself holds one
 * reference to the page. Setting PG_private should also increment the
 * refcount. The each user mapping also has a reference to the page.
 *
 * The pagecache pages are stored in a per-mapping radix tree, which is
 * rooted at mapping->page_tree, and indexed by offset.
 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
 * lists, we instead now tag pages as dirty/writeback in the radix tree.
 *
 * All pagecache pages may be subject to I/O:
 * - inode pages may need to be read from disk,
 * - inode pages which have been modified and are MAP_SHARED may need
 *   to be written back to the inode on disk,
 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
 *   modified may need to be swapped out to swap space and (later) to be read
 *   back into memory.
 */

/*
 * The zone field is never updated after free_area_init_core()
 * sets it, so none of the operations on it need to be atomic.
 */

/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_NID] | ... | FLAGS | */
#define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
#define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
#define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
#define LAST_NID_PGOFF		(ZONES_PGOFF - LAST_NID_WIDTH)

/*
 * Define the bit shifts to access each section.  For non-existent
 * sections we define the shift as 0; that plus a 0 mask ensures
 * the compiler will optimise away reference to them.
 */
#define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
#define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
#define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
#define LAST_NID_PGSHIFT	(LAST_NID_PGOFF * (LAST_NID_WIDTH != 0))

/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
#ifdef NODE_NOT_IN_PAGE_FLAGS
#define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
#define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
						SECTIONS_PGOFF : ZONES_PGOFF)
#else
#define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
#define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
						NODES_PGOFF : ZONES_PGOFF)
#endif

#define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))

#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
#endif

#define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
#define NODES_MASK		((1UL << NODES_WIDTH) - 1)
#define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
#define LAST_NID_MASK		((1UL << LAST_NID_WIDTH) - 1)
#define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)

static inline enum zone_type page_zonenum(const struct page *page)
{
	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
}

/*
 * The identification function is only used by the buddy allocator for
 * determining if two pages could be buddies. We are not really
 * identifying a zone since we could be using a the section number
 * id if we have not node id available in page flags.
 * We guarantee only that it will return the same value for two
 * combinable pages in a zone.
 */
static inline int page_zone_id(struct page *page)
{
	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
}

static inline int zone_to_nid(struct zone *zone)
{
#ifdef CONFIG_NUMA
	return zone->node;
#else
	return 0;
#endif
}

#ifdef NODE_NOT_IN_PAGE_FLAGS
extern int page_to_nid(const struct page *page);
#else
static inline int page_to_nid(const struct page *page)
{
	return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
}
#endif

#ifdef CONFIG_NUMA_BALANCING
#ifdef LAST_NID_NOT_IN_PAGE_FLAGS
static inline int page_nid_xchg_last(struct page *page, int nid)
{
	return xchg(&page->_last_nid, nid);
}

static inline int page_nid_last(struct page *page)
{
	return page->_last_nid;
}
static inline void page_nid_reset_last(struct page *page)
{
	page->_last_nid = -1;
}
#else
static inline int page_nid_last(struct page *page)
{
	return (page->flags >> LAST_NID_PGSHIFT) & LAST_NID_MASK;
}

extern int page_nid_xchg_last(struct page *page, int nid);

static inline void page_nid_reset_last(struct page *page)
{
	int nid = (1 << LAST_NID_SHIFT) - 1;

	page->flags &= ~(LAST_NID_MASK << LAST_NID_PGSHIFT);
	page->flags |= (nid & LAST_NID_MASK) << LAST_NID_PGSHIFT;
}
#endif /* LAST_NID_NOT_IN_PAGE_FLAGS */
#else
static inline int page_nid_xchg_last(struct page *page, int nid)
{
	return page_to_nid(page);
}

static inline int page_nid_last(struct page *page)
{
	return page_to_nid(page);
}

static inline void page_nid_reset_last(struct page *page)
{
}
#endif

static inline struct zone *page_zone(const struct page *page)
{
	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
}

#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
static inline void set_page_section(struct page *page, unsigned long section)
{
	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
}

static inline unsigned long page_to_section(const struct page *page)
{
	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
}
#endif

static inline void set_page_zone(struct page *page, enum zone_type zone)
{
	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
}

static inline void set_page_node(struct page *page, unsigned long node)
{
	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
}

static inline void set_page_links(struct page *page, enum zone_type zone,
	unsigned long node, unsigned long pfn)
{
	set_page_zone(page, zone);
	set_page_node(page, node);
#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
	set_page_section(page, pfn_to_section_nr(pfn));
#endif
}

/*
 * Some inline functions in vmstat.h depend on page_zone()
 */
#include <linux/vmstat.h>

static __always_inline void *lowmem_page_address(const struct page *page)
{
	return __va(PFN_PHYS(page_to_pfn(page)));
}

#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
#define HASHED_PAGE_VIRTUAL
#endif

#if defined(WANT_PAGE_VIRTUAL)
#define page_address(page) ((page)->virtual)
#define set_page_address(page, address)			\
	do {						\
		(page)->virtual = (address);		\
	} while(0)
#define page_address_init()  do { } while(0)
#endif

#if defined(HASHED_PAGE_VIRTUAL)
void *page_address(const struct page *page);
void set_page_address(struct page *page, void *virtual);
void page_address_init(void);
#endif

#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
#define page_address(page) lowmem_page_address(page)
#define set_page_address(page, address)  do { } while(0)
#define page_address_init()  do { } while(0)
#endif

/*
 * On an anonymous page mapped into a user virtual memory area,
 * page->mapping points to its anon_vma, not to a struct address_space;
 * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
 *
 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
 * and then page->mapping points, not to an anon_vma, but to a private
 * structure which KSM associates with that merged page.  See ksm.h.
 *
 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
 *
 * Please note that, confusingly, "page_mapping" refers to the inode
 * address_space which maps the page from disk; whereas "page_mapped"
 * refers to user virtual address space into which the page is mapped.
 */
#define PAGE_MAPPING_ANON	1
#define PAGE_MAPPING_KSM	2
#define PAGE_MAPPING_FLAGS	(PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)

extern struct address_space *page_mapping(struct page *page);

/* Neutral page->mapping pointer to address_space or anon_vma or other */
static inline void *page_rmapping(struct page *page)
{
	return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
}

extern struct address_space *__page_file_mapping(struct page *);

static inline
struct address_space *page_file_mapping(struct page *page)
{
	if (unlikely(PageSwapCache(page)))
		return __page_file_mapping(page);

	return page->mapping;
}

static inline int PageAnon(struct page *page)
{
	return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
}

/*
 * Return the pagecache index of the passed page.  Regular pagecache pages
 * use ->index whereas swapcache pages use ->private
 */
static inline pgoff_t page_index(struct page *page)
{
	if (unlikely(PageSwapCache(page)))
		return page_private(page);
	return page->index;
}

extern pgoff_t __page_file_index(struct page *page);

/*
 * Return the file index of the page. Regular pagecache pages use ->index
 * whereas swapcache pages use swp_offset(->private)
 */
static inline pgoff_t page_file_index(struct page *page)
{
	if (unlikely(PageSwapCache(page)))
		return __page_file_index(page);

	return page->index;
}

/*
 * Return true if this page is mapped into pagetables.
 */
static inline int page_mapped(struct page *page)
{
	return atomic_read(&(page)->_mapcount) >= 0;
}

/*
 * Different kinds of faults, as returned by handle_mm_fault().
 * Used to decide whether a process gets delivered SIGBUS or
 * just gets major/minor fault counters bumped up.
 */

#define VM_FAULT_MINOR	0 /* For backwards compat. Remove me quickly. */

#define VM_FAULT_OOM	0x0001
#define VM_FAULT_SIGBUS	0x0002
#define VM_FAULT_MAJOR	0x0004
#define VM_FAULT_WRITE	0x0008	/* Special case for get_user_pages */
#define VM_FAULT_HWPOISON 0x0010	/* Hit poisoned small page */
#define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */

#define VM_FAULT_NOPAGE	0x0100	/* ->fault installed the pte, not return page */
#define VM_FAULT_LOCKED	0x0200	/* ->fault locked the returned page */
#define VM_FAULT_RETRY	0x0400	/* ->fault blocked, must retry */

#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */

#define VM_FAULT_ERROR	(VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
			 VM_FAULT_HWPOISON_LARGE)

/* Encode hstate index for a hwpoisoned large page */
#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)

/*
 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
 */
extern void pagefault_out_of_memory(void);

#define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)

/*
 * Flags passed to show_mem() and show_free_areas() to suppress output in
 * various contexts.
 */
#define SHOW_MEM_FILTER_NODES	(0x0001u)	/* filter disallowed nodes */

extern void show_free_areas(unsigned int flags);
extern bool skip_free_areas_node(unsigned int flags, int nid);

int shmem_zero_setup(struct vm_area_struct *);

extern int can_do_mlock(void);
extern int user_shm_lock(size_t, struct user_struct *);
extern void user_shm_unlock(size_t, struct user_struct *);

/*
 * Parameter block passed down to zap_pte_range in exceptional cases.
 */
struct zap_details {
	struct vm_area_struct *nonlinear_vma;	/* Check page->index if set */
	struct address_space *check_mapping;	/* Check page->mapping if set */
	pgoff_t	first_index;			/* Lowest page->index to unmap */
	pgoff_t last_index;			/* Highest page->index to unmap */
};

struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
		pte_t pte);

int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
		unsigned long size);
void zap_page_range(struct vm_area_struct *vma, unsigned long address,
		unsigned long size, struct zap_details *);
void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
		unsigned long start, unsigned long end);

/**
 * mm_walk - callbacks for walk_page_range
 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
 *	       this handler is required to be able to handle
 *	       pmd_trans_huge() pmds.  They may simply choose to
 *	       split_huge_page() instead of handling it explicitly.
 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
 * @pte_hole: if set, called for each hole at all levels
 * @hugetlb_entry: if set, called for each hugetlb entry
 *		   *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
 * 			      is used.
 *
 * (see walk_page_range for more details)
 */
struct mm_walk {
	int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
	int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
	int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
	int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
	int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
	int (*hugetlb_entry)(pte_t *, unsigned long,
			     unsigned long, unsigned long, struct mm_walk *);
	struct mm_struct *mm;
	void *private;
};

int walk_page_range(unsigned long addr, unsigned long end,
		struct mm_walk *walk);
void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
		unsigned long end, unsigned long floor, unsigned long ceiling);
int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
			struct vm_area_struct *vma);
void unmap_mapping_range(struct address_space *mapping,
		loff_t const holebegin, loff_t const holelen, int even_cows);
int follow_pfn(struct vm_area_struct *vma, unsigned long address,
	unsigned long *pfn);
int follow_phys(struct vm_area_struct *vma, unsigned long address,
		unsigned int flags, unsigned long *prot, resource_size_t *phys);
int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
			void *buf, int len, int write);

static inline void unmap_shared_mapping_range(struct address_space *mapping,
		loff_t const holebegin, loff_t const holelen)
{
	unmap_mapping_range(mapping, holebegin, holelen, 0);
}

extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
extern void truncate_setsize(struct inode *inode, loff_t newsize);
void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
int truncate_inode_page(struct address_space *mapping, struct page *page);
int generic_error_remove_page(struct address_space *mapping, struct page *page);
int invalidate_inode_page(struct page *page);

#ifdef CONFIG_MMU
extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
			unsigned long address, unsigned int flags);
extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
			    unsigned long address, unsigned int fault_flags);
#else
static inline int handle_mm_fault(struct mm_struct *mm,
			struct vm_area_struct *vma, unsigned long address,
			unsigned int flags)
{
	/* should never happen if there's no MMU */
	BUG();
	return VM_FAULT_SIGBUS;
}
static inline int fixup_user_fault(struct task_struct *tsk,
		struct mm_struct *mm, unsigned long address,
		unsigned int fault_flags)
{
	/* should never happen if there's no MMU */
	BUG();
	return -EFAULT;
}
#endif

extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
		void *buf, int len, int write);

int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
		     unsigned long start, int len, unsigned int foll_flags,
		     struct page **pages, struct vm_area_struct **vmas,
		     int *nonblocking);
int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
			unsigned long start, int nr_pages, int write, int force,
			struct page **pages, struct vm_area_struct **vmas);
int get_user_pages_fast(unsigned long start, int nr_pages, int write,
			struct page **pages);
struct kvec;
int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
			struct page **pages);
int get_kernel_page(unsigned long start, int write, struct page **pages);
struct page *get_dump_page(unsigned long addr);

extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
extern void do_invalidatepage(struct page *page, unsigned long offset);

int __set_page_dirty_nobuffers(struct page *page);
int __set_page_dirty_no_writeback(struct page *page);
int redirty_page_for_writepage(struct writeback_control *wbc,
				struct page *page);
void account_page_dirtied(struct page *page, struct address_space *mapping);
void account_page_writeback(struct page *page);
int set_page_dirty(struct page *page);
int set_page_dirty_lock(struct page *page);
int clear_page_dirty_for_io(struct page *page);

/* Is the vma a continuation of the stack vma above it? */
static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
{
	return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
}

static inline int stack_guard_page_start(struct vm_area_struct *vma,
					     unsigned long addr)
{
	return (vma->vm_flags & VM_GROWSDOWN) &&
		(vma->vm_start == addr) &&
		!vma_growsdown(vma->vm_prev, addr);
}

/* Is the vma a continuation of the stack vma below it? */
static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
{
	return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
}

static inline int stack_guard_page_end(struct vm_area_struct *vma,
					   unsigned long addr)
{
	return (vma->vm_flags & VM_GROWSUP) &&
		(vma->vm_end == addr) &&
		!vma_growsup(vma->vm_next, addr);
}

extern pid_t
vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);

extern unsigned long move_page_tables(struct vm_area_struct *vma,
		unsigned long old_addr, struct vm_area_struct *new_vma,
		unsigned long new_addr, unsigned long len,
		bool need_rmap_locks);
extern unsigned long do_mremap(unsigned long addr,
			       unsigned long old_len, unsigned long new_len,
			       unsigned long flags, unsigned long new_addr);
extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
			      unsigned long end, pgprot_t newprot,
			      int dirty_accountable, int prot_numa);
extern int mprotect_fixup(struct vm_area_struct *vma,
			  struct vm_area_struct **pprev, unsigned long start,
			  unsigned long end, unsigned long newflags);

/*
 * doesn't attempt to fault and will return short.
 */
int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
			  struct page **pages);
/*
 * per-process(per-mm_struct) statistics.
 */
static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
{
	long val = atomic_long_read(&mm->rss_stat.count[member]);

#ifdef SPLIT_RSS_COUNTING
	/*
	 * counter is updated in asynchronous manner and may go to minus.
	 * But it's never be expected number for users.
	 */
	if (val < 0)
		val = 0;
#endif
	return (unsigned long)val;
}

static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
{
	atomic_long_add(value, &mm->rss_stat.count[member]);
}

static inline void inc_mm_counter(struct mm_struct *mm, int member)
{
	atomic_long_inc(&mm->rss_stat.count[member]);
}

static inline void dec_mm_counter(struct mm_struct *mm, int member)
{
	atomic_long_dec(&mm->rss_stat.count[member]);
}

static inline unsigned long get_mm_rss(struct mm_struct *mm)
{
	return get_mm_counter(mm, MM_FILEPAGES) +
		get_mm_counter(mm, MM_ANONPAGES);
}

static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
{
	return max(mm->hiwater_rss, get_mm_rss(mm));
}

static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
{
	return max(mm->hiwater_vm, mm->total_vm);
}

static inline void update_hiwater_rss(struct mm_struct *mm)
{
	unsigned long _rss = get_mm_rss(mm);

	if ((mm)->hiwater_rss < _rss)
		(mm)->hiwater_rss = _rss;
}

static inline void update_hiwater_vm(struct mm_struct *mm)
{
	if (mm->hiwater_vm < mm->total_vm)
		mm->hiwater_vm = mm->total_vm;
}

static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
					 struct mm_struct *mm)
{
	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);

	if (*maxrss < hiwater_rss)
		*maxrss = hiwater_rss;
}

#if defined(SPLIT_RSS_COUNTING)
void sync_mm_rss(struct mm_struct *mm);
#else
static inline void sync_mm_rss(struct mm_struct *mm)
{
}
#endif

int vma_wants_writenotify(struct vm_area_struct *vma);

extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
			       spinlock_t **ptl);
static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
				    spinlock_t **ptl)
{
	pte_t *ptep;
	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
	return ptep;
}

#ifdef __PAGETABLE_PUD_FOLDED
static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
						unsigned long address)
{
	return 0;
}
#else
int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
#endif

#ifdef __PAGETABLE_PMD_FOLDED
static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
						unsigned long address)
{
	return 0;
}
#else
int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
#endif

int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
		pmd_t *pmd, unsigned long address);
int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);

/*
 * The following ifdef needed to get the 4level-fixup.h header to work.
 * Remove it when 4level-fixup.h has been removed.
 */
#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
{
	return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
		NULL: pud_offset(pgd, address);
}

static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
{
	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
		NULL: pmd_offset(pud, address);
}
#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */

#if USE_SPLIT_PTLOCKS
/*
 * We tuck a spinlock to guard each pagetable page into its struct page,
 * at page->private, with BUILD_BUG_ON to make sure that this will not
 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
 * When freeing, reset page->mapping so free_pages_check won't complain.
 */
#define __pte_lockptr(page)	&((page)->ptl)
#define pte_lock_init(_page)	do {					\
	spin_lock_init(__pte_lockptr(_page));				\
} while (0)
#define pte_lock_deinit(page)	((page)->mapping = NULL)
#define pte_lockptr(mm, pmd)	({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
#else	/* !USE_SPLIT_PTLOCKS */
/*
 * We use mm->page_table_lock to guard all pagetable pages of the mm.
 */
#define pte_lock_init(page)	do {} while (0)
#define pte_lock_deinit(page)	do {} while (0)
#define pte_lockptr(mm, pmd)	({(void)(pmd); &(mm)->page_table_lock;})
#endif /* USE_SPLIT_PTLOCKS */

static inline void pgtable_page_ctor(struct page *page)
{
	pte_lock_init(page);
	inc_zone_page_state(page, NR_PAGETABLE);
}

static inline void pgtable_page_dtor(struct page *page)
{
	pte_lock_deinit(page);
	dec_zone_page_state(page, NR_PAGETABLE);
}

#define pte_offset_map_lock(mm, pmd, address, ptlp)	\
({							\
	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
	pte_t *__pte = pte_offset_map(pmd, address);	\
	*(ptlp) = __ptl;				\
	spin_lock(__ptl);				\
	__pte;						\
})

#define pte_unmap_unlock(pte, ptl)	do {		\
	spin_unlock(ptl);				\
	pte_unmap(pte);					\
} while (0)

#define pte_alloc_map(mm, vma, pmd, address)				\
	((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma,	\
							pmd, address))?	\
	 NULL: pte_offset_map(pmd, address))

#define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
	((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL,	\
							pmd, address))?	\
		NULL: pte_offset_map_lock(mm, pmd, address, ptlp))

#define pte_alloc_kernel(pmd, address)			\
	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
		NULL: pte_offset_kernel(pmd, address))

extern void free_area_init(unsigned long * zones_size);
extern void free_area_init_node(int nid, unsigned long * zones_size,
		unsigned long zone_start_pfn, unsigned long *zholes_size);
extern void free_initmem(void);

#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
/*
 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
 * zones, allocate the backing mem_map and account for memory holes in a more
 * architecture independent manner. This is a substitute for creating the
 * zone_sizes[] and zholes_size[] arrays and passing them to
 * free_area_init_node()
 *
 * An architecture is expected to register range of page frames backed by
 * physical memory with memblock_add[_node]() before calling
 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
 * usage, an architecture is expected to do something like
 *
 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
 * 							 max_highmem_pfn};
 * for_each_valid_physical_page_range()
 * 	memblock_add_node(base, size, nid)
 * free_area_init_nodes(max_zone_pfns);
 *
 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
 * registered physical page range.  Similarly
 * sparse_memory_present_with_active_regions() calls memory_present() for
 * each range when SPARSEMEM is enabled.
 *
 * See mm/page_alloc.c for more information on each function exposed by
 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
 */
extern void free_area_init_nodes(unsigned long *max_zone_pfn);
unsigned long node_map_pfn_alignment(void);
unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
						unsigned long end_pfn);
extern unsigned long absent_pages_in_range(unsigned long start_pfn,
						unsigned long end_pfn);
extern void get_pfn_range_for_nid(unsigned int nid,
			unsigned long *start_pfn, unsigned long *end_pfn);
extern unsigned long find_min_pfn_with_active_regions(void);
extern void free_bootmem_with_active_regions(int nid,
						unsigned long max_low_pfn);
extern void sparse_memory_present_with_active_regions(int nid);

#define MOVABLEMEM_MAP_MAX MAX_NUMNODES
struct movablemem_entry {
	unsigned long start_pfn;    /* start pfn of memory segment */
	unsigned long end_pfn;      /* end pfn of memory segment (exclusive) */
};

struct movablemem_map {
	bool acpi;	/* true if using SRAT info */
	int nr_map;
	struct movablemem_entry map[MOVABLEMEM_MAP_MAX];
	nodemask_t numa_nodes_hotplug;	/* on which nodes we specify memory */
	nodemask_t numa_nodes_kernel;	/* on which nodes kernel resides in */
};

extern void __init insert_movablemem_map(unsigned long start_pfn,
					 unsigned long end_pfn);
extern int __init movablemem_map_overlap(unsigned long start_pfn,
					 unsigned long end_pfn);
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */

#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
    !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
static inline int __early_pfn_to_nid(unsigned long pfn)
{
	return 0;
}
#else
/* please see mm/page_alloc.c */
extern int __meminit early_pfn_to_nid(unsigned long pfn);
#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
/* there is a per-arch backend function. */
extern int __meminit __early_pfn_to_nid(unsigned long pfn);
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
#endif

extern void set_dma_reserve(unsigned long new_dma_reserve);
extern void memmap_init_zone(unsigned long, int, unsigned long,
				unsigned long, enum memmap_context);
extern void setup_per_zone_wmarks(void);
extern int __meminit init_per_zone_wmark_min(void);
extern void mem_init(void);
extern void __init mmap_init(void);
extern void show_mem(unsigned int flags);
extern void si_meminfo(struct sysinfo * val);
extern void si_meminfo_node(struct sysinfo *val, int nid);

extern __printf(3, 4)
void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);

extern void setup_per_cpu_pageset(void);

extern void zone_pcp_update(struct zone *zone);
extern void zone_pcp_reset(struct zone *zone);

/* page_alloc.c */
extern int min_free_kbytes;

/* nommu.c */
extern atomic_long_t mmap_pages_allocated;
extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);

/* interval_tree.c */
void vma_interval_tree_insert(struct vm_area_struct *node,
			      struct rb_root *root);
void vma_interval_tree_insert_after(struct vm_area_struct *node,
				    struct vm_area_struct *prev,
				    struct rb_root *root);
void vma_interval_tree_remove(struct vm_area_struct *node,
			      struct rb_root *root);
struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
				unsigned long start, unsigned long last);
struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
				unsigned long start, unsigned long last);

#define vma_interval_tree_foreach(vma, root, start, last)		\
	for (vma = vma_interval_tree_iter_first(root, start, last);	\
	     vma; vma = vma_interval_tree_iter_next(vma, start, last))

static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
					struct list_head *list)
{
	list_add_tail(&vma->shared.nonlinear, list);
}

void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
				   struct rb_root *root);
void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
				   struct rb_root *root);
struct anon_vma_chain *anon_vma_interval_tree_iter_first(
	struct rb_root *root, unsigned long start, unsigned long last);
struct anon_vma_chain *anon_vma_interval_tree_iter_next(
	struct anon_vma_chain *node, unsigned long start, unsigned long last);
#ifdef CONFIG_DEBUG_VM_RB
void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
#endif

#define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))

/* mmap.c */
extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
extern struct vm_area_struct *vma_merge(struct mm_struct *,
	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
	struct mempolicy *);
extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
extern int split_vma(struct mm_struct *,
	struct vm_area_struct *, unsigned long addr, int new_below);
extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
	struct rb_node **, struct rb_node *);
extern void unlink_file_vma(struct vm_area_struct *);
extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
	unsigned long addr, unsigned long len, pgoff_t pgoff,
	bool *need_rmap_locks);
extern void exit_mmap(struct mm_struct *);

extern int mm_take_all_locks(struct mm_struct *mm);
extern void mm_drop_all_locks(struct mm_struct *mm);

extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
extern struct file *get_mm_exe_file(struct mm_struct *mm);

extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
extern int install_special_mapping(struct mm_struct *mm,
				   unsigned long addr, unsigned long len,
				   unsigned long flags, struct page **pages);

extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);

extern unsigned long mmap_region(struct file *file, unsigned long addr,
	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
	unsigned long len, unsigned long prot, unsigned long flags,
	unsigned long pgoff, unsigned long *populate);
extern int do_munmap(struct mm_struct *, unsigned long, size_t);

#ifdef CONFIG_MMU
extern int __mm_populate(unsigned long addr, unsigned long len,
			 int ignore_errors);
static inline void mm_populate(unsigned long addr, unsigned long len)
{
	/* Ignore errors */
	(void) __mm_populate(addr, len, 1);
}
#else
static inline void mm_populate(unsigned long addr, unsigned long len) {}
#endif

/* These take the mm semaphore themselves */
extern unsigned long vm_brk(unsigned long, unsigned long);
extern int vm_munmap(unsigned long, size_t);
extern unsigned long vm_mmap(struct file *, unsigned long,
        unsigned long, unsigned long,
        unsigned long, unsigned long);

struct vm_unmapped_area_info {
#define VM_UNMAPPED_AREA_TOPDOWN 1
	unsigned long flags;
	unsigned long length;
	unsigned long low_limit;
	unsigned long high_limit;
	unsigned long align_mask;
	unsigned long align_offset;
};

extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);

/*
 * Search for an unmapped address range.
 *
 * We are looking for a range that:
 * - does not intersect with any VMA;
 * - is contained within the [low_limit, high_limit) interval;
 * - is at least the desired size.
 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
 */
static inline unsigned long
vm_unmapped_area(struct vm_unmapped_area_info *info)
{
	if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
		return unmapped_area(info);
	else
		return unmapped_area_topdown(info);
}

/* truncate.c */
extern void truncate_inode_pages(struct address_space *, loff_t);
extern void truncate_inode_pages_range(struct address_space *,
				       loff_t lstart, loff_t lend);

/* generic vm_area_ops exported for stackable file systems */
extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);

/* mm/page-writeback.c */
int write_one_page(struct page *page, int wait);
void task_dirty_inc(struct task_struct *tsk);

/* readahead.c */
#define VM_MAX_READAHEAD	128	/* kbytes */
#define VM_MIN_READAHEAD	16	/* kbytes (includes current page) */

int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
			pgoff_t offset, unsigned long nr_to_read);

void page_cache_sync_readahead(struct address_space *mapping,
			       struct file_ra_state *ra,
			       struct file *filp,
			       pgoff_t offset,
			       unsigned long size);

void page_cache_async_readahead(struct address_space *mapping,
				struct file_ra_state *ra,
				struct file *filp,
				struct page *pg,
				pgoff_t offset,
				unsigned long size);

unsigned long max_sane_readahead(unsigned long nr);
unsigned long ra_submit(struct file_ra_state *ra,
			struct address_space *mapping,
			struct file *filp);

/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
extern int expand_stack(struct vm_area_struct *vma, unsigned long address);

/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
extern int expand_downwards(struct vm_area_struct *vma,
		unsigned long address);
#if VM_GROWSUP
extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
#else
  #define expand_upwards(vma, address) do { } while (0)
#endif

/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
					     struct vm_area_struct **pprev);

/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
   NULL if none.  Assume start_addr < end_addr. */
static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
{
	struct vm_area_struct * vma = find_vma(mm,start_addr);

	if (vma && end_addr <= vma->vm_start)
		vma = NULL;
	return vma;
}

static inline unsigned long vma_pages(struct vm_area_struct *vma)
{
	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
}

/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
				unsigned long vm_start, unsigned long vm_end)
{
	struct vm_area_struct *vma = find_vma(mm, vm_start);

	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
		vma = NULL;

	return vma;
}

#ifdef CONFIG_MMU
pgprot_t vm_get_page_prot(unsigned long vm_flags);
#else
static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
{
	return __pgprot(0);
}
#endif

#ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
unsigned long change_prot_numa(struct vm_area_struct *vma,
			unsigned long start, unsigned long end);
#endif

struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
			unsigned long pfn, unsigned long size, pgprot_t);
int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
			unsigned long pfn);
int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
			unsigned long pfn);

struct page *follow_page(struct vm_area_struct *, unsigned long address,
			unsigned int foll_flags);
#define FOLL_WRITE	0x01	/* check pte is writable */
#define FOLL_TOUCH	0x02	/* mark page accessed */
#define FOLL_GET	0x04	/* do get_page on page */
#define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
#define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
#define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
				 * and return without waiting upon it */
#define FOLL_MLOCK	0x40	/* mark page as mlocked */
#define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
#define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
#define FOLL_NUMA	0x200	/* force NUMA hinting page fault */

typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
			void *data);
extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
			       unsigned long size, pte_fn_t fn, void *data);

#ifdef CONFIG_PROC_FS
void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
#else
static inline void vm_stat_account(struct mm_struct *mm,
			unsigned long flags, struct file *file, long pages)
{
	mm->total_vm += pages;
}
#endif /* CONFIG_PROC_FS */

#ifdef CONFIG_DEBUG_PAGEALLOC
extern void kernel_map_pages(struct page *page, int numpages, int enable);
#ifdef CONFIG_HIBERNATION
extern bool kernel_page_present(struct page *page);
#endif /* CONFIG_HIBERNATION */
#else
static inline void
kernel_map_pages(struct page *page, int numpages, int enable) {}
#ifdef CONFIG_HIBERNATION
static inline bool kernel_page_present(struct page *page) { return true; }
#endif /* CONFIG_HIBERNATION */
#endif

extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
#ifdef	__HAVE_ARCH_GATE_AREA
int in_gate_area_no_mm(unsigned long addr);
int in_gate_area(struct mm_struct *mm, unsigned long addr);
#else
int in_gate_area_no_mm(unsigned long addr);
#define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
#endif	/* __HAVE_ARCH_GATE_AREA */

int drop_caches_sysctl_handler(struct ctl_table *, int,
					void __user *, size_t *, loff_t *);
unsigned long shrink_slab(struct shrink_control *shrink,
			  unsigned long nr_pages_scanned,
			  unsigned long lru_pages);

#ifndef CONFIG_MMU
#define randomize_va_space 0
#else
extern int randomize_va_space;
#endif

const char * arch_vma_name(struct vm_area_struct *vma);
void print_vma_addr(char *prefix, unsigned long rip);

void sparse_mem_maps_populate_node(struct page **map_map,
				   unsigned long pnum_begin,
				   unsigned long pnum_end,
				   unsigned long map_count,
				   int nodeid);

struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
void *vmemmap_alloc_block(unsigned long size, int node);
void *vmemmap_alloc_block_buf(unsigned long size, int node);
void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
int vmemmap_populate_basepages(struct page *start_page,
						unsigned long pages, int node);
int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
void vmemmap_populate_print_last(void);
#ifdef CONFIG_MEMORY_HOTPLUG
void vmemmap_free(struct page *memmap, unsigned long nr_pages);
#endif
void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
				  unsigned long size);

enum mf_flags {
	MF_COUNT_INCREASED = 1 << 0,
	MF_ACTION_REQUIRED = 1 << 1,
	MF_MUST_KILL = 1 << 2,
};
extern int memory_failure(unsigned long pfn, int trapno, int flags);
extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
extern int unpoison_memory(unsigned long pfn);
extern int sysctl_memory_failure_early_kill;
extern int sysctl_memory_failure_recovery;
extern void shake_page(struct page *p, int access);
extern atomic_long_t num_poisoned_pages;
extern int soft_offline_page(struct page *page, int flags);

extern void dump_page(struct page *page);

#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
extern void clear_huge_page(struct page *page,
			    unsigned long addr,
			    unsigned int pages_per_huge_page);
extern void copy_user_huge_page(struct page *dst, struct page *src,
				unsigned long addr, struct vm_area_struct *vma,
				unsigned int pages_per_huge_page);
#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */

#ifdef CONFIG_DEBUG_PAGEALLOC
extern unsigned int _debug_guardpage_minorder;

static inline unsigned int debug_guardpage_minorder(void)
{
	return _debug_guardpage_minorder;
}

static inline bool page_is_guard(struct page *page)
{
	return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
}
#else
static inline unsigned int debug_guardpage_minorder(void) { return 0; }
static inline bool page_is_guard(struct page *page) { return false; }
#endif /* CONFIG_DEBUG_PAGEALLOC */

#endif /* __KERNEL__ */
#endif /* _LINUX_MM_H */