summaryrefslogtreecommitdiffstats
path: root/include/linux/mmzone.h
blob: 824279c7884d557f3b2189e911d40f4c826fc08f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
#ifndef _LINUX_MMZONE_H
#define _LINUX_MMZONE_H

#ifdef __KERNEL__
#ifndef __ASSEMBLY__

#include <linux/spinlock.h>
#include <linux/list.h>
#include <linux/wait.h>
#include <linux/cache.h>
#include <linux/threads.h>
#include <linux/numa.h>
#include <linux/init.h>
#include <linux/seqlock.h>
#include <linux/nodemask.h>
#include <asm/atomic.h>
#include <asm/page.h>

/* Free memory management - zoned buddy allocator.  */
#ifndef CONFIG_FORCE_MAX_ZONEORDER
#define MAX_ORDER 11
#else
#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
#endif
#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))

struct free_area {
	struct list_head	free_list;
	unsigned long		nr_free;
};

struct pglist_data;

/*
 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
 * So add a wild amount of padding here to ensure that they fall into separate
 * cachelines.  There are very few zone structures in the machine, so space
 * consumption is not a concern here.
 */
#if defined(CONFIG_SMP)
struct zone_padding {
	char x[0];
} ____cacheline_internodealigned_in_smp;
#define ZONE_PADDING(name)	struct zone_padding name;
#else
#define ZONE_PADDING(name)
#endif

enum zone_stat_item {
	NR_FREE_PAGES,
	NR_INACTIVE,
	NR_ACTIVE,
	NR_ANON_PAGES,	/* Mapped anonymous pages */
	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
			   only modified from process context */
	NR_FILE_PAGES,
	NR_SLAB_RECLAIMABLE,
	NR_SLAB_UNRECLAIMABLE,
	NR_PAGETABLE,	/* used for pagetables */
	NR_FILE_DIRTY,
	NR_WRITEBACK,
	NR_UNSTABLE_NFS,	/* NFS unstable pages */
	NR_BOUNCE,
	NR_VMSCAN_WRITE,
#ifdef CONFIG_NUMA
	NUMA_HIT,		/* allocated in intended node */
	NUMA_MISS,		/* allocated in non intended node */
	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
	NUMA_LOCAL,		/* allocation from local node */
	NUMA_OTHER,		/* allocation from other node */
#endif
	NR_VM_ZONE_STAT_ITEMS };

struct per_cpu_pages {
	int count;		/* number of pages in the list */
	int high;		/* high watermark, emptying needed */
	int batch;		/* chunk size for buddy add/remove */
	struct list_head list;	/* the list of pages */
};

struct per_cpu_pageset {
	struct per_cpu_pages pcp[2];	/* 0: hot.  1: cold */
#ifdef CONFIG_SMP
	s8 stat_threshold;
	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
#endif
} ____cacheline_aligned_in_smp;

#ifdef CONFIG_NUMA
#define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
#else
#define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
#endif

enum zone_type {
	/*
	 * ZONE_DMA is used when there are devices that are not able
	 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
	 * carve out the portion of memory that is needed for these devices.
	 * The range is arch specific.
	 *
	 * Some examples
	 *
	 * Architecture		Limit
	 * ---------------------------
	 * parisc, ia64, sparc	<4G
	 * s390			<2G
	 * arm26		<48M
	 * arm			Various
	 * alpha		Unlimited or 0-16MB.
	 *
	 * i386, x86_64 and multiple other arches
	 * 			<16M.
	 */
	ZONE_DMA,
#ifdef CONFIG_ZONE_DMA32
	/*
	 * x86_64 needs two ZONE_DMAs because it supports devices that are
	 * only able to do DMA to the lower 16M but also 32 bit devices that
	 * can only do DMA areas below 4G.
	 */
	ZONE_DMA32,
#endif
	/*
	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
	 * performed on pages in ZONE_NORMAL if the DMA devices support
	 * transfers to all addressable memory.
	 */
	ZONE_NORMAL,
#ifdef CONFIG_HIGHMEM
	/*
	 * A memory area that is only addressable by the kernel through
	 * mapping portions into its own address space. This is for example
	 * used by i386 to allow the kernel to address the memory beyond
	 * 900MB. The kernel will set up special mappings (page
	 * table entries on i386) for each page that the kernel needs to
	 * access.
	 */
	ZONE_HIGHMEM,
#endif
	MAX_NR_ZONES
};

/*
 * When a memory allocation must conform to specific limitations (such
 * as being suitable for DMA) the caller will pass in hints to the
 * allocator in the gfp_mask, in the zone modifier bits.  These bits
 * are used to select a priority ordered list of memory zones which
 * match the requested limits. See gfp_zone() in include/linux/gfp.h
 */

#if !defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_HIGHMEM)
#define ZONES_SHIFT 1
#else
#define ZONES_SHIFT 2
#endif

struct zone {
	/* Fields commonly accessed by the page allocator */
	unsigned long		pages_min, pages_low, pages_high;
	/*
	 * We don't know if the memory that we're going to allocate will be freeable
	 * or/and it will be released eventually, so to avoid totally wasting several
	 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
	 * to run OOM on the lower zones despite there's tons of freeable ram
	 * on the higher zones). This array is recalculated at runtime if the
	 * sysctl_lowmem_reserve_ratio sysctl changes.
	 */
	unsigned long		lowmem_reserve[MAX_NR_ZONES];

#ifdef CONFIG_NUMA
	int node;
	/*
	 * zone reclaim becomes active if more unmapped pages exist.
	 */
	unsigned long		min_unmapped_pages;
	unsigned long		min_slab_pages;
	struct per_cpu_pageset	*pageset[NR_CPUS];
#else
	struct per_cpu_pageset	pageset[NR_CPUS];
#endif
	/*
	 * free areas of different sizes
	 */
	spinlock_t		lock;
#ifdef CONFIG_MEMORY_HOTPLUG
	/* see spanned/present_pages for more description */
	seqlock_t		span_seqlock;
#endif
	struct free_area	free_area[MAX_ORDER];


	ZONE_PADDING(_pad1_)

	/* Fields commonly accessed by the page reclaim scanner */
	spinlock_t		lru_lock;	
	struct list_head	active_list;
	struct list_head	inactive_list;
	unsigned long		nr_scan_active;
	unsigned long		nr_scan_inactive;
	unsigned long		pages_scanned;	   /* since last reclaim */
	int			all_unreclaimable; /* All pages pinned */

	/* A count of how many reclaimers are scanning this zone */
	atomic_t		reclaim_in_progress;

	/* Zone statistics */
	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];

	/*
	 * prev_priority holds the scanning priority for this zone.  It is
	 * defined as the scanning priority at which we achieved our reclaim
	 * target at the previous try_to_free_pages() or balance_pgdat()
	 * invokation.
	 *
	 * We use prev_priority as a measure of how much stress page reclaim is
	 * under - it drives the swappiness decision: whether to unmap mapped
	 * pages.
	 *
	 * Access to both this field is quite racy even on uniprocessor.  But
	 * it is expected to average out OK.
	 */
	int prev_priority;


	ZONE_PADDING(_pad2_)
	/* Rarely used or read-mostly fields */

	/*
	 * wait_table		-- the array holding the hash table
	 * wait_table_hash_nr_entries	-- the size of the hash table array
	 * wait_table_bits	-- wait_table_size == (1 << wait_table_bits)
	 *
	 * The purpose of all these is to keep track of the people
	 * waiting for a page to become available and make them
	 * runnable again when possible. The trouble is that this
	 * consumes a lot of space, especially when so few things
	 * wait on pages at a given time. So instead of using
	 * per-page waitqueues, we use a waitqueue hash table.
	 *
	 * The bucket discipline is to sleep on the same queue when
	 * colliding and wake all in that wait queue when removing.
	 * When something wakes, it must check to be sure its page is
	 * truly available, a la thundering herd. The cost of a
	 * collision is great, but given the expected load of the
	 * table, they should be so rare as to be outweighed by the
	 * benefits from the saved space.
	 *
	 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
	 * primary users of these fields, and in mm/page_alloc.c
	 * free_area_init_core() performs the initialization of them.
	 */
	wait_queue_head_t	* wait_table;
	unsigned long		wait_table_hash_nr_entries;
	unsigned long		wait_table_bits;

	/*
	 * Discontig memory support fields.
	 */
	struct pglist_data	*zone_pgdat;
	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
	unsigned long		zone_start_pfn;

	/*
	 * zone_start_pfn, spanned_pages and present_pages are all
	 * protected by span_seqlock.  It is a seqlock because it has
	 * to be read outside of zone->lock, and it is done in the main
	 * allocator path.  But, it is written quite infrequently.
	 *
	 * The lock is declared along with zone->lock because it is
	 * frequently read in proximity to zone->lock.  It's good to
	 * give them a chance of being in the same cacheline.
	 */
	unsigned long		spanned_pages;	/* total size, including holes */
	unsigned long		present_pages;	/* amount of memory (excluding holes) */

	/*
	 * rarely used fields:
	 */
	const char		*name;
} ____cacheline_internodealigned_in_smp;

/*
 * The "priority" of VM scanning is how much of the queues we will scan in one
 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
 * queues ("queue_length >> 12") during an aging round.
 */
#define DEF_PRIORITY 12

/* Maximum number of zones on a zonelist */
#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)

#ifdef CONFIG_NUMA
/*
 * We cache key information from each zonelist for smaller cache
 * footprint when scanning for free pages in get_page_from_freelist().
 *
 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
 *    up short of free memory since the last time (last_fullzone_zap)
 *    we zero'd fullzones.
 * 2) The array z_to_n[] maps each zone in the zonelist to its node
 *    id, so that we can efficiently evaluate whether that node is
 *    set in the current tasks mems_allowed.
 *
 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
 * indexed by a zones offset in the zonelist zones[] array.
 *
 * The get_page_from_freelist() routine does two scans.  During the
 * first scan, we skip zones whose corresponding bit in 'fullzones'
 * is set or whose corresponding node in current->mems_allowed (which
 * comes from cpusets) is not set.  During the second scan, we bypass
 * this zonelist_cache, to ensure we look methodically at each zone.
 *
 * Once per second, we zero out (zap) fullzones, forcing us to
 * reconsider nodes that might have regained more free memory.
 * The field last_full_zap is the time we last zapped fullzones.
 *
 * This mechanism reduces the amount of time we waste repeatedly
 * reexaming zones for free memory when they just came up low on
 * memory momentarilly ago.
 *
 * The zonelist_cache struct members logically belong in struct
 * zonelist.  However, the mempolicy zonelists constructed for
 * MPOL_BIND are intentionally variable length (and usually much
 * shorter).  A general purpose mechanism for handling structs with
 * multiple variable length members is more mechanism than we want
 * here.  We resort to some special case hackery instead.
 *
 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
 * part because they are shorter), so we put the fixed length stuff
 * at the front of the zonelist struct, ending in a variable length
 * zones[], as is needed by MPOL_BIND.
 *
 * Then we put the optional zonelist cache on the end of the zonelist
 * struct.  This optional stuff is found by a 'zlcache_ptr' pointer in
 * the fixed length portion at the front of the struct.  This pointer
 * both enables us to find the zonelist cache, and in the case of
 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
 * to know that the zonelist cache is not there.
 *
 * The end result is that struct zonelists come in two flavors:
 *  1) The full, fixed length version, shown below, and
 *  2) The custom zonelists for MPOL_BIND.
 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
 *
 * Even though there may be multiple CPU cores on a node modifying
 * fullzones or last_full_zap in the same zonelist_cache at the same
 * time, we don't lock it.  This is just hint data - if it is wrong now
 * and then, the allocator will still function, perhaps a bit slower.
 */


struct zonelist_cache {
	unsigned short z_to_n[MAX_ZONES_PER_ZONELIST];		/* zone->nid */
	DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST);	/* zone full? */
	unsigned long last_full_zap;		/* when last zap'd (jiffies) */
};
#else
struct zonelist_cache;
#endif

/*
 * One allocation request operates on a zonelist. A zonelist
 * is a list of zones, the first one is the 'goal' of the
 * allocation, the other zones are fallback zones, in decreasing
 * priority.
 *
 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
 * as explained above.  If zlcache_ptr is NULL, there is no zlcache.
 */

struct zonelist {
	struct zonelist_cache *zlcache_ptr;		     // NULL or &zlcache
	struct zone *zones[MAX_ZONES_PER_ZONELIST + 1];      // NULL delimited
#ifdef CONFIG_NUMA
	struct zonelist_cache zlcache;			     // optional ...
#endif
};

#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
struct node_active_region {
	unsigned long start_pfn;
	unsigned long end_pfn;
	int nid;
};
#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */

#ifndef CONFIG_DISCONTIGMEM
/* The array of struct pages - for discontigmem use pgdat->lmem_map */
extern struct page *mem_map;
#endif

/*
 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
 * (mostly NUMA machines?) to denote a higher-level memory zone than the
 * zone denotes.
 *
 * On NUMA machines, each NUMA node would have a pg_data_t to describe
 * it's memory layout.
 *
 * Memory statistics and page replacement data structures are maintained on a
 * per-zone basis.
 */
struct bootmem_data;
typedef struct pglist_data {
	struct zone node_zones[MAX_NR_ZONES];
	struct zonelist node_zonelists[MAX_NR_ZONES];
	int nr_zones;
#ifdef CONFIG_FLAT_NODE_MEM_MAP
	struct page *node_mem_map;
#endif
	struct bootmem_data *bdata;
#ifdef CONFIG_MEMORY_HOTPLUG
	/*
	 * Must be held any time you expect node_start_pfn, node_present_pages
	 * or node_spanned_pages stay constant.  Holding this will also
	 * guarantee that any pfn_valid() stays that way.
	 *
	 * Nests above zone->lock and zone->size_seqlock.
	 */
	spinlock_t node_size_lock;
#endif
	unsigned long node_start_pfn;
	unsigned long node_present_pages; /* total number of physical pages */
	unsigned long node_spanned_pages; /* total size of physical page
					     range, including holes */
	int node_id;
	wait_queue_head_t kswapd_wait;
	struct task_struct *kswapd;
	int kswapd_max_order;
} pg_data_t;

#define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
#define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
#ifdef CONFIG_FLAT_NODE_MEM_MAP
#define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
#else
#define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
#endif
#define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))

#include <linux/memory_hotplug.h>

void __get_zone_counts(unsigned long *active, unsigned long *inactive,
			unsigned long *free, struct pglist_data *pgdat);
void get_zone_counts(unsigned long *active, unsigned long *inactive,
			unsigned long *free);
void build_all_zonelists(void);
void wakeup_kswapd(struct zone *zone, int order);
int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
		int classzone_idx, int alloc_flags);
enum memmap_context {
	MEMMAP_EARLY,
	MEMMAP_HOTPLUG,
};
extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
				     unsigned long size,
				     enum memmap_context context);

#ifdef CONFIG_HAVE_MEMORY_PRESENT
void memory_present(int nid, unsigned long start, unsigned long end);
#else
static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
#endif

#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
#endif

/*
 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
 */
#define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)

static inline int populated_zone(struct zone *zone)
{
	return (!!zone->present_pages);
}

static inline int is_highmem_idx(enum zone_type idx)
{
#ifdef CONFIG_HIGHMEM
	return (idx == ZONE_HIGHMEM);
#else
	return 0;
#endif
}

static inline int is_normal_idx(enum zone_type idx)
{
	return (idx == ZONE_NORMAL);
}

/**
 * is_highmem - helper function to quickly check if a struct zone is a 
 *              highmem zone or not.  This is an attempt to keep references
 *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
 * @zone - pointer to struct zone variable
 */
static inline int is_highmem(struct zone *zone)
{
#ifdef CONFIG_HIGHMEM
	return zone == zone->zone_pgdat->node_zones + ZONE_HIGHMEM;
#else
	return 0;
#endif
}

static inline int is_normal(struct zone *zone)
{
	return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
}

static inline int is_dma32(struct zone *zone)
{
#ifdef CONFIG_ZONE_DMA32
	return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
#else
	return 0;
#endif
}

static inline int is_dma(struct zone *zone)
{
	return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
}

/* These two functions are used to setup the per zone pages min values */
struct ctl_table;
struct file;
int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *, 
					void __user *, size_t *, loff_t *);
extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
					void __user *, size_t *, loff_t *);
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
					void __user *, size_t *, loff_t *);
int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
			struct file *, void __user *, size_t *, loff_t *);
int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
			struct file *, void __user *, size_t *, loff_t *);

#include <linux/topology.h>
/* Returns the number of the current Node. */
#ifndef numa_node_id
#define numa_node_id()		(cpu_to_node(raw_smp_processor_id()))
#endif

#ifndef CONFIG_NEED_MULTIPLE_NODES

extern struct pglist_data contig_page_data;
#define NODE_DATA(nid)		(&contig_page_data)
#define NODE_MEM_MAP(nid)	mem_map
#define MAX_NODES_SHIFT		1

#else /* CONFIG_NEED_MULTIPLE_NODES */

#include <asm/mmzone.h>

#endif /* !CONFIG_NEED_MULTIPLE_NODES */

extern struct pglist_data *first_online_pgdat(void);
extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
extern struct zone *next_zone(struct zone *zone);

/**
 * for_each_pgdat - helper macro to iterate over all nodes
 * @pgdat - pointer to a pg_data_t variable
 */
#define for_each_online_pgdat(pgdat)			\
	for (pgdat = first_online_pgdat();		\
	     pgdat;					\
	     pgdat = next_online_pgdat(pgdat))
/**
 * for_each_zone - helper macro to iterate over all memory zones
 * @zone - pointer to struct zone variable
 *
 * The user only needs to declare the zone variable, for_each_zone
 * fills it in.
 */
#define for_each_zone(zone)			        \
	for (zone = (first_online_pgdat())->node_zones; \
	     zone;					\
	     zone = next_zone(zone))

#ifdef CONFIG_SPARSEMEM
#include <asm/sparsemem.h>
#endif

#if BITS_PER_LONG == 32
/*
 * with 32 bit page->flags field, we reserve 9 bits for node/zone info.
 * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
 */
#define FLAGS_RESERVED		9

#elif BITS_PER_LONG == 64
/*
 * with 64 bit flags field, there's plenty of room.
 */
#define FLAGS_RESERVED		32

#else

#error BITS_PER_LONG not defined

#endif

#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
	!defined(CONFIG_ARCH_POPULATES_NODE_MAP)
#define early_pfn_to_nid(nid)  (0UL)
#endif

#ifdef CONFIG_FLATMEM
#define pfn_to_nid(pfn)		(0)
#endif

#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)

#ifdef CONFIG_SPARSEMEM

/*
 * SECTION_SHIFT    		#bits space required to store a section #
 *
 * PA_SECTION_SHIFT		physical address to/from section number
 * PFN_SECTION_SHIFT		pfn to/from section number
 */
#define SECTIONS_SHIFT		(MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)

#define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
#define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)

#define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)

#define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
#define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))

#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
#error Allocator MAX_ORDER exceeds SECTION_SIZE
#endif

struct page;
struct mem_section {
	/*
	 * This is, logically, a pointer to an array of struct
	 * pages.  However, it is stored with some other magic.
	 * (see sparse.c::sparse_init_one_section())
	 *
	 * Additionally during early boot we encode node id of
	 * the location of the section here to guide allocation.
	 * (see sparse.c::memory_present())
	 *
	 * Making it a UL at least makes someone do a cast
	 * before using it wrong.
	 */
	unsigned long section_mem_map;
};

#ifdef CONFIG_SPARSEMEM_EXTREME
#define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
#else
#define SECTIONS_PER_ROOT	1
#endif

#define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
#define NR_SECTION_ROOTS	(NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
#define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)

#ifdef CONFIG_SPARSEMEM_EXTREME
extern struct mem_section *mem_section[NR_SECTION_ROOTS];
#else
extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
#endif

static inline struct mem_section *__nr_to_section(unsigned long nr)
{
	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
		return NULL;
	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
}
extern int __section_nr(struct mem_section* ms);

/*
 * We use the lower bits of the mem_map pointer to store
 * a little bit of information.  There should be at least
 * 3 bits here due to 32-bit alignment.
 */
#define	SECTION_MARKED_PRESENT	(1UL<<0)
#define SECTION_HAS_MEM_MAP	(1UL<<1)
#define SECTION_MAP_LAST_BIT	(1UL<<2)
#define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
#define SECTION_NID_SHIFT	2

static inline struct page *__section_mem_map_addr(struct mem_section *section)
{
	unsigned long map = section->section_mem_map;
	map &= SECTION_MAP_MASK;
	return (struct page *)map;
}

static inline int valid_section(struct mem_section *section)
{
	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
}

static inline int section_has_mem_map(struct mem_section *section)
{
	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
}

static inline int valid_section_nr(unsigned long nr)
{
	return valid_section(__nr_to_section(nr));
}

static inline struct mem_section *__pfn_to_section(unsigned long pfn)
{
	return __nr_to_section(pfn_to_section_nr(pfn));
}

static inline int pfn_valid(unsigned long pfn)
{
	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
		return 0;
	return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
}

/*
 * These are _only_ used during initialisation, therefore they
 * can use __initdata ...  They could have names to indicate
 * this restriction.
 */
#ifdef CONFIG_NUMA
#define pfn_to_nid(pfn)							\
({									\
	unsigned long __pfn_to_nid_pfn = (pfn);				\
	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
})
#else
#define pfn_to_nid(pfn)		(0)
#endif

#define early_pfn_valid(pfn)	pfn_valid(pfn)
void sparse_init(void);
#else
#define sparse_init()	do {} while (0)
#define sparse_index_init(_sec, _nid)  do {} while (0)
#endif /* CONFIG_SPARSEMEM */

#ifdef CONFIG_NODES_SPAN_OTHER_NODES
#define early_pfn_in_nid(pfn, nid)	(early_pfn_to_nid(pfn) == (nid))
#else
#define early_pfn_in_nid(pfn, nid)	(1)
#endif

#ifndef early_pfn_valid
#define early_pfn_valid(pfn)	(1)
#endif

void memory_present(int nid, unsigned long start, unsigned long end);
unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);

#endif /* !__ASSEMBLY__ */
#endif /* __KERNEL__ */
#endif /* _LINUX_MMZONE_H */