summaryrefslogtreecommitdiffstats
path: root/kernel/sched/fair.c
blob: f19772de1b1cea92ce9fa6428bd0886dc646da2c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
 */

#include <linux/latencytop.h>
#include <linux/sched.h>
#include <linux/cpumask.h>
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
#include <linux/mempolicy.h>
#include <linux/migrate.h>
#include <linux/task_work.h>

#include <trace/events/sched.h>

#include "sched.h"

/*
 * Targeted preemption latency for CPU-bound tasks:
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
 *
 * NOTE: this latency value is not the same as the concept of
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
 *
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
 */
unsigned int sysctl_sched_latency = 6000000ULL;
unsigned int normalized_sysctl_sched_latency = 6000000ULL;

/*
 * The initial- and re-scaling of tunables is configurable
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
 *
 * Options are:
 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 */
enum sched_tunable_scaling sysctl_sched_tunable_scaling
	= SCHED_TUNABLESCALING_LOG;

/*
 * Minimal preemption granularity for CPU-bound tasks:
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
 */
unsigned int sysctl_sched_min_granularity = 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;

/*
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
static unsigned int sched_nr_latency = 8;

/*
 * After fork, child runs first. If set to 0 (default) then
 * parent will (try to) run first.
 */
unsigned int sysctl_sched_child_runs_first __read_mostly;

/*
 * SCHED_OTHER wake-up granularity.
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;

const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

/*
 * The exponential sliding  window over which load is averaged for shares
 * distribution.
 * (default: 10msec)
 */
unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;

#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
 * default: 5 msec, units: microseconds
  */
unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
#endif

static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static int get_update_sysctl_factor(void)
{
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

/*
 * Shift right and round:
 */
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))

/*
 * delta *= weight / lw
 */
static unsigned long
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	/*
	 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
	 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
	 * 2^SCHED_LOAD_RESOLUTION.
	 */
	if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
		tmp = (u64)delta_exec * scale_load_down(weight);
	else
		tmp = (u64)delta_exec;

	if (!lw->inv_weight) {
		unsigned long w = scale_load_down(lw->weight);

		if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
			lw->inv_weight = 1;
		else if (unlikely(!w))
			lw->inv_weight = WMULT_CONST;
		else
			lw->inv_weight = WMULT_CONST / w;
	}

	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
	if (unlikely(tmp > WMULT_CONST))
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
			WMULT_SHIFT/2);
	else
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);

	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
}


const struct sched_class fair_sched_class;

/**************************************************************
 * CFS operations on generic schedulable entities:
 */

#ifdef CONFIG_FAIR_GROUP_SCHED

/* cpu runqueue to which this cfs_rq is attached */
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return cfs_rq->rq;
}

/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)

static inline struct task_struct *task_of(struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!entity_is_task(se));
#endif
	return container_of(se, struct task_struct, se);
}

/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
				       int force_update);

static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
		 * enqueued.  The fact that we always enqueue bottom-up
		 * reduces this to two cases.
		 */
		if (cfs_rq->tg->parent &&
		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
		} else {
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
		}

		cfs_rq->on_list = 1;
		/* We should have no load, but we need to update last_decay. */
		update_cfs_rq_blocked_load(cfs_rq, 0);
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
		return 1;

	return 0;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

/* return depth at which a sched entity is present in the hierarchy */
static inline int depth_se(struct sched_entity *se)
{
	int depth = 0;

	for_each_sched_entity(se)
		depth++;

	return depth;
}

static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
	se_depth = depth_se(*se);
	pse_depth = depth_se(*pse);

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}

static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
}

#define entity_is_task(se)	1

#define for_each_sched_entity(se) \
		for (; se; se = NULL)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return &task_rq(p)->cfs;
}

static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	return 1;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

#endif	/* CONFIG_FAIR_GROUP_SCHED */

static __always_inline
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
{
	s64 delta = (s64)(vruntime - max_vruntime);
	if (delta > 0)
		max_vruntime = vruntime;

	return max_vruntime;
}

static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

		if (!cfs_rq->curr)
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

	/* ensure we never gain time by being placed backwards. */
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
}

/*
 * Enqueue an entity into the rb-tree:
 */
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
		if (entity_before(se, entry)) {
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
	if (leftmost)
		cfs_rq->rb_leftmost = &se->run_node;

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}

	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
{
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
}

static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
{
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);

	if (!last)
		return NULL;

	return rb_entry(last, struct sched_entity, run_node);
}

/**************************************************************
 * Scheduling class statistics methods:
 */

int sched_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
	int factor = get_update_sysctl_factor();

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

	return 0;
}
#endif

/*
 * delta /= w
 */
static inline unsigned long
calc_delta_fair(unsigned long delta, struct sched_entity *se)
{
	if (unlikely(se->load.weight != NICE_0_LOAD))
		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);

	return delta;
}

/*
 * The idea is to set a period in which each task runs once.
 *
 * When there are too many tasks (sched_nr_latency) we have to stretch
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
	unsigned long nr_latency = sched_nr_latency;

	if (unlikely(nr_running > nr_latency)) {
		period = sysctl_sched_min_granularity;
		period *= nr_running;
	}

	return period;
}

/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
 * s = p*P[w/rw]
 */
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);

	for_each_sched_entity(se) {
		struct load_weight *load;
		struct load_weight lw;

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;

		if (unlikely(!se->on_rq)) {
			lw = cfs_rq->load;

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
		slice = calc_delta_mine(slice, se->load.weight, load);
	}
	return slice;
}

/*
 * We calculate the vruntime slice of a to-be-inserted task.
 *
 * vs = s/w
 */
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
}

#ifdef CONFIG_SMP
static inline void __update_task_entity_contrib(struct sched_entity *se);

/* Give new task start runnable values to heavy its load in infant time */
void init_task_runnable_average(struct task_struct *p)
{
	u32 slice;

	p->se.avg.decay_count = 0;
	slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
	p->se.avg.runnable_avg_sum = slice;
	p->se.avg.runnable_avg_period = slice;
	__update_task_entity_contrib(&p->se);
}
#else
void init_task_runnable_average(struct task_struct *p)
{
}
#endif

/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
{
	unsigned long delta_exec_weighted;

	schedstat_set(curr->statistics.exec_max,
		      max((u64)delta_exec, curr->statistics.exec_max));

	curr->sum_exec_runtime += delta_exec;
	schedstat_add(cfs_rq, exec_clock, delta_exec);
	delta_exec_weighted = calc_delta_fair(delta_exec, curr);

	curr->vruntime += delta_exec_weighted;
	update_min_vruntime(cfs_rq);
}

static void update_curr(struct cfs_rq *cfs_rq)
{
	struct sched_entity *curr = cfs_rq->curr;
	u64 now = rq_clock_task(rq_of(cfs_rq));
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
	delta_exec = (unsigned long)(now - curr->exec_start);
	if (!delta_exec)
		return;

	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;

	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
		cpuacct_charge(curtask, delta_exec);
		account_group_exec_runtime(curtask, delta_exec);
	}

	account_cfs_rq_runtime(cfs_rq, delta_exec);
}

static inline void
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
}

/*
 * Task is being enqueued - update stats:
 */
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
	if (se != cfs_rq->curr)
		update_stats_wait_start(cfs_rq, se);
}

static void
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
#ifdef CONFIG_SCHEDSTATS
	if (entity_is_task(se)) {
		trace_sched_stat_wait(task_of(se),
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
	}
#endif
	schedstat_set(se->statistics.wait_start, 0);
}

static inline void
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
	if (se != cfs_rq->curr)
		update_stats_wait_end(cfs_rq, se);
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	/*
	 * We are starting a new run period:
	 */
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
}

/**************************************************
 * Scheduling class queueing methods:
 */

#ifdef CONFIG_NUMA_BALANCING
/*
 * numa task sample period in ms
 */
unsigned int sysctl_numa_balancing_scan_period_min = 100;
unsigned int sysctl_numa_balancing_scan_period_max = 100*50;
unsigned int sysctl_numa_balancing_scan_period_reset = 100*600;

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;

/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

static void task_numa_placement(struct task_struct *p)
{
	int seq;

	if (!p->mm)	/* for example, ksmd faulting in a user's mm */
		return;
	seq = ACCESS_ONCE(p->mm->numa_scan_seq);
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;

	/* FIXME: Scheduling placement policy hints go here */
}

/*
 * Got a PROT_NONE fault for a page on @node.
 */
void task_numa_fault(int node, int pages, bool migrated)
{
	struct task_struct *p = current;

	if (!sched_feat_numa(NUMA))
		return;

	/* FIXME: Allocate task-specific structure for placement policy here */

	/*
	 * If pages are properly placed (did not migrate) then scan slower.
	 * This is reset periodically in case of phase changes
	 */
        if (!migrated)
		p->numa_scan_period = min(sysctl_numa_balancing_scan_period_max,
			p->numa_scan_period + jiffies_to_msecs(10));

	task_numa_placement(p);
}

static void reset_ptenuma_scan(struct task_struct *p)
{
	ACCESS_ONCE(p->mm->numa_scan_seq)++;
	p->mm->numa_scan_offset = 0;
}

/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
	struct vm_area_struct *vma;
	unsigned long start, end;
	long pages;

	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

	/*
	 * We do not care about task placement until a task runs on a node
	 * other than the first one used by the address space. This is
	 * largely because migrations are driven by what CPU the task
	 * is running on. If it's never scheduled on another node, it'll
	 * not migrate so why bother trapping the fault.
	 */
	if (mm->first_nid == NUMA_PTE_SCAN_INIT)
		mm->first_nid = numa_node_id();
	if (mm->first_nid != NUMA_PTE_SCAN_ACTIVE) {
		/* Are we running on a new node yet? */
		if (numa_node_id() == mm->first_nid &&
		    !sched_feat_numa(NUMA_FORCE))
			return;

		mm->first_nid = NUMA_PTE_SCAN_ACTIVE;
	}

	/*
	 * Reset the scan period if enough time has gone by. Objective is that
	 * scanning will be reduced if pages are properly placed. As tasks
	 * can enter different phases this needs to be re-examined. Lacking
	 * proper tracking of reference behaviour, this blunt hammer is used.
	 */
	migrate = mm->numa_next_reset;
	if (time_after(now, migrate)) {
		p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
		next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
		xchg(&mm->numa_next_reset, next_scan);
	}

	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

	if (p->numa_scan_period == 0)
		p->numa_scan_period = sysctl_numa_balancing_scan_period_min;

	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

	/*
	 * Do not set pte_numa if the current running node is rate-limited.
	 * This loses statistics on the fault but if we are unwilling to
	 * migrate to this node, it is less likely we can do useful work
	 */
	if (migrate_ratelimited(numa_node_id()))
		return;

	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
	if (!pages)
		return;

	down_read(&mm->mmap_sem);
	vma = find_vma(mm, start);
	if (!vma) {
		reset_ptenuma_scan(p);
		start = 0;
		vma = mm->mmap;
	}
	for (; vma; vma = vma->vm_next) {
		if (!vma_migratable(vma))
			continue;

		/* Skip small VMAs. They are not likely to be of relevance */
		if (vma->vm_end - vma->vm_start < HPAGE_SIZE)
			continue;

		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
			pages -= change_prot_numa(vma, start, end);

			start = end;
			if (pages <= 0)
				goto out;
		} while (end != vma->vm_end);
	}

out:
	/*
	 * It is possible to reach the end of the VMA list but the last few VMAs are
	 * not guaranteed to the vma_migratable. If they are not, we would find the
	 * !migratable VMA on the next scan but not reset the scanner to the start
	 * so check it now.
	 */
	if (vma)
		mm->numa_scan_offset = start;
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

	if (now - curr->node_stamp > period) {
		if (!curr->node_stamp)
			curr->numa_scan_period = sysctl_numa_balancing_scan_period_min;
		curr->node_stamp = now;

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
#endif /* CONFIG_NUMA_BALANCING */

static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
	if (!parent_entity(se))
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
#ifdef CONFIG_SMP
	if (entity_is_task(se))
		list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
#endif
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
	if (!parent_entity(se))
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
	if (entity_is_task(se))
		list_del_init(&se->group_node);
	cfs_rq->nr_running--;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
# ifdef CONFIG_SMP
static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
{
	long tg_weight;

	/*
	 * Use this CPU's actual weight instead of the last load_contribution
	 * to gain a more accurate current total weight. See
	 * update_cfs_rq_load_contribution().
	 */
	tg_weight = atomic64_read(&tg->load_avg);
	tg_weight -= cfs_rq->tg_load_contrib;
	tg_weight += cfs_rq->load.weight;

	return tg_weight;
}

static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
{
	long tg_weight, load, shares;

	tg_weight = calc_tg_weight(tg, cfs_rq);
	load = cfs_rq->load.weight;

	shares = (tg->shares * load);
	if (tg_weight)
		shares /= tg_weight;

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	if (shares > tg->shares)
		shares = tg->shares;

	return shares;
}
# else /* CONFIG_SMP */
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
{
	return tg->shares;
}
# endif /* CONFIG_SMP */
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight)
{
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
		account_entity_dequeue(cfs_rq, se);
	}

	update_load_set(&se->load, weight);

	if (se->on_rq)
		account_entity_enqueue(cfs_rq, se);
}

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

static void update_cfs_shares(struct cfs_rq *cfs_rq)
{
	struct task_group *tg;
	struct sched_entity *se;
	long shares;

	tg = cfs_rq->tg;
	se = tg->se[cpu_of(rq_of(cfs_rq))];
	if (!se || throttled_hierarchy(cfs_rq))
		return;
#ifndef CONFIG_SMP
	if (likely(se->load.weight == tg->shares))
		return;
#endif
	shares = calc_cfs_shares(cfs_rq, tg);

	reweight_entity(cfs_rq_of(se), se, shares);
}
#else /* CONFIG_FAIR_GROUP_SCHED */
static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

#ifdef CONFIG_SMP
/*
 * We choose a half-life close to 1 scheduling period.
 * Note: The tables below are dependent on this value.
 */
#define LOAD_AVG_PERIOD 32
#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */

/* Precomputed fixed inverse multiplies for multiplication by y^n */
static const u32 runnable_avg_yN_inv[] = {
	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
	0x85aac367, 0x82cd8698,
};

/*
 * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
 * over-estimates when re-combining.
 */
static const u32 runnable_avg_yN_sum[] = {
	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
};

/*
 * Approximate:
 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
 */
static __always_inline u64 decay_load(u64 val, u64 n)
{
	unsigned int local_n;

	if (!n)
		return val;
	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
		return 0;

	/* after bounds checking we can collapse to 32-bit */
	local_n = n;

	/*
	 * As y^PERIOD = 1/2, we can combine
	 *    y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
	 * With a look-up table which covers k^n (n<PERIOD)
	 *
	 * To achieve constant time decay_load.
	 */
	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
		val >>= local_n / LOAD_AVG_PERIOD;
		local_n %= LOAD_AVG_PERIOD;
	}

	val *= runnable_avg_yN_inv[local_n];
	/* We don't use SRR here since we always want to round down. */
	return val >> 32;
}

/*
 * For updates fully spanning n periods, the contribution to runnable
 * average will be: \Sum 1024*y^n
 *
 * We can compute this reasonably efficiently by combining:
 *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
 */
static u32 __compute_runnable_contrib(u64 n)
{
	u32 contrib = 0;

	if (likely(n <= LOAD_AVG_PERIOD))
		return runnable_avg_yN_sum[n];
	else if (unlikely(n >= LOAD_AVG_MAX_N))
		return LOAD_AVG_MAX;

	/* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
	do {
		contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
		contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];

		n -= LOAD_AVG_PERIOD;
	} while (n > LOAD_AVG_PERIOD);

	contrib = decay_load(contrib, n);
	return contrib + runnable_avg_yN_sum[n];
}

/*
 * We can represent the historical contribution to runnable average as the
 * coefficients of a geometric series.  To do this we sub-divide our runnable
 * history into segments of approximately 1ms (1024us); label the segment that
 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 *
 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 *      p0            p1           p2
 *     (now)       (~1ms ago)  (~2ms ago)
 *
 * Let u_i denote the fraction of p_i that the entity was runnable.
 *
 * We then designate the fractions u_i as our co-efficients, yielding the
 * following representation of historical load:
 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 *
 * We choose y based on the with of a reasonably scheduling period, fixing:
 *   y^32 = 0.5
 *
 * This means that the contribution to load ~32ms ago (u_32) will be weighted
 * approximately half as much as the contribution to load within the last ms
 * (u_0).
 *
 * When a period "rolls over" and we have new u_0`, multiplying the previous
 * sum again by y is sufficient to update:
 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 */
static __always_inline int __update_entity_runnable_avg(u64 now,
							struct sched_avg *sa,
							int runnable)
{
	u64 delta, periods;
	u32 runnable_contrib;
	int delta_w, decayed = 0;

	delta = now - sa->last_runnable_update;
	/*
	 * This should only happen when time goes backwards, which it
	 * unfortunately does during sched clock init when we swap over to TSC.
	 */
	if ((s64)delta < 0) {
		sa->last_runnable_update = now;
		return 0;
	}

	/*
	 * Use 1024ns as the unit of measurement since it's a reasonable
	 * approximation of 1us and fast to compute.
	 */
	delta >>= 10;
	if (!delta)
		return 0;
	sa->last_runnable_update = now;

	/* delta_w is the amount already accumulated against our next period */
	delta_w = sa->runnable_avg_period % 1024;
	if (delta + delta_w >= 1024) {
		/* period roll-over */
		decayed = 1;

		/*
		 * Now that we know we're crossing a period boundary, figure
		 * out how much from delta we need to complete the current
		 * period and accrue it.
		 */
		delta_w = 1024 - delta_w;
		if (runnable)
			sa->runnable_avg_sum += delta_w;
		sa->runnable_avg_period += delta_w;

		delta -= delta_w;

		/* Figure out how many additional periods this update spans */
		periods = delta / 1024;
		delta %= 1024;

		sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
						  periods + 1);
		sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
						     periods + 1);

		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
		runnable_contrib = __compute_runnable_contrib(periods);
		if (runnable)
			sa->runnable_avg_sum += runnable_contrib;
		sa->runnable_avg_period += runnable_contrib;
	}

	/* Remainder of delta accrued against u_0` */
	if (runnable)
		sa->runnable_avg_sum += delta;
	sa->runnable_avg_period += delta;

	return decayed;
}

/* Synchronize an entity's decay with its parenting cfs_rq.*/
static inline u64 __synchronize_entity_decay(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 decays = atomic64_read(&cfs_rq->decay_counter);

	decays -= se->avg.decay_count;
	if (!decays)
		return 0;

	se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
	se->avg.decay_count = 0;

	return decays;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
						 int force_update)
{
	struct task_group *tg = cfs_rq->tg;
	s64 tg_contrib;

	tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
	tg_contrib -= cfs_rq->tg_load_contrib;

	if (force_update || abs64(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
		atomic64_add(tg_contrib, &tg->load_avg);
		cfs_rq->tg_load_contrib += tg_contrib;
	}
}

/*
 * Aggregate cfs_rq runnable averages into an equivalent task_group
 * representation for computing load contributions.
 */
static inline void __update_tg_runnable_avg(struct sched_avg *sa,
						  struct cfs_rq *cfs_rq)
{
	struct task_group *tg = cfs_rq->tg;
	long contrib;

	/* The fraction of a cpu used by this cfs_rq */
	contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
			  sa->runnable_avg_period + 1);
	contrib -= cfs_rq->tg_runnable_contrib;

	if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
		atomic_add(contrib, &tg->runnable_avg);
		cfs_rq->tg_runnable_contrib += contrib;
	}
}

static inline void __update_group_entity_contrib(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = group_cfs_rq(se);
	struct task_group *tg = cfs_rq->tg;
	int runnable_avg;

	u64 contrib;

	contrib = cfs_rq->tg_load_contrib * tg->shares;
	se->avg.load_avg_contrib = div64_u64(contrib,
					     atomic64_read(&tg->load_avg) + 1);

	/*
	 * For group entities we need to compute a correction term in the case
	 * that they are consuming <1 cpu so that we would contribute the same
	 * load as a task of equal weight.
	 *
	 * Explicitly co-ordinating this measurement would be expensive, but
	 * fortunately the sum of each cpus contribution forms a usable
	 * lower-bound on the true value.
	 *
	 * Consider the aggregate of 2 contributions.  Either they are disjoint
	 * (and the sum represents true value) or they are disjoint and we are
	 * understating by the aggregate of their overlap.
	 *
	 * Extending this to N cpus, for a given overlap, the maximum amount we
	 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
	 * cpus that overlap for this interval and w_i is the interval width.
	 *
	 * On a small machine; the first term is well-bounded which bounds the
	 * total error since w_i is a subset of the period.  Whereas on a
	 * larger machine, while this first term can be larger, if w_i is the
	 * of consequential size guaranteed to see n_i*w_i quickly converge to
	 * our upper bound of 1-cpu.
	 */
	runnable_avg = atomic_read(&tg->runnable_avg);
	if (runnable_avg < NICE_0_LOAD) {
		se->avg.load_avg_contrib *= runnable_avg;
		se->avg.load_avg_contrib >>= NICE_0_SHIFT;
	}
}
#else
static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
						 int force_update) {}
static inline void __update_tg_runnable_avg(struct sched_avg *sa,
						  struct cfs_rq *cfs_rq) {}
static inline void __update_group_entity_contrib(struct sched_entity *se) {}
#endif

static inline void __update_task_entity_contrib(struct sched_entity *se)
{
	u32 contrib;

	/* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
	contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
	contrib /= (se->avg.runnable_avg_period + 1);
	se->avg.load_avg_contrib = scale_load(contrib);
}

/* Compute the current contribution to load_avg by se, return any delta */
static long __update_entity_load_avg_contrib(struct sched_entity *se)
{
	long old_contrib = se->avg.load_avg_contrib;

	if (entity_is_task(se)) {
		__update_task_entity_contrib(se);
	} else {
		__update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
		__update_group_entity_contrib(se);
	}

	return se->avg.load_avg_contrib - old_contrib;
}

static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
						 long load_contrib)
{
	if (likely(load_contrib < cfs_rq->blocked_load_avg))
		cfs_rq->blocked_load_avg -= load_contrib;
	else
		cfs_rq->blocked_load_avg = 0;
}

static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);

/* Update a sched_entity's runnable average */
static inline void update_entity_load_avg(struct sched_entity *se,
					  int update_cfs_rq)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	long contrib_delta;
	u64 now;

	/*
	 * For a group entity we need to use their owned cfs_rq_clock_task() in
	 * case they are the parent of a throttled hierarchy.
	 */
	if (entity_is_task(se))
		now = cfs_rq_clock_task(cfs_rq);
	else
		now = cfs_rq_clock_task(group_cfs_rq(se));

	if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
		return;

	contrib_delta = __update_entity_load_avg_contrib(se);

	if (!update_cfs_rq)
		return;

	if (se->on_rq)
		cfs_rq->runnable_load_avg += contrib_delta;
	else
		subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
}

/*
 * Decay the load contributed by all blocked children and account this so that
 * their contribution may appropriately discounted when they wake up.
 */
static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
{
	u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
	u64 decays;

	decays = now - cfs_rq->last_decay;
	if (!decays && !force_update)
		return;

	if (atomic64_read(&cfs_rq->removed_load)) {
		u64 removed_load = atomic64_xchg(&cfs_rq->removed_load, 0);
		subtract_blocked_load_contrib(cfs_rq, removed_load);
	}

	if (decays) {
		cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
						      decays);
		atomic64_add(decays, &cfs_rq->decay_counter);
		cfs_rq->last_decay = now;
	}

	__update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
}

static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
{
	__update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
	__update_tg_runnable_avg(&rq->avg, &rq->cfs);
}

/* Add the load generated by se into cfs_rq's child load-average */
static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
						  struct sched_entity *se,
						  int wakeup)
{
	/*
	 * We track migrations using entity decay_count <= 0, on a wake-up
	 * migration we use a negative decay count to track the remote decays
	 * accumulated while sleeping.
	 *
	 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
	 * are seen by enqueue_entity_load_avg() as a migration with an already
	 * constructed load_avg_contrib.
	 */
	if (unlikely(se->avg.decay_count <= 0)) {
		se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
		if (se->avg.decay_count) {
			/*
			 * In a wake-up migration we have to approximate the
			 * time sleeping.  This is because we can't synchronize
			 * clock_task between the two cpus, and it is not
			 * guaranteed to be read-safe.  Instead, we can
			 * approximate this using our carried decays, which are
			 * explicitly atomically readable.
			 */
			se->avg.last_runnable_update -= (-se->avg.decay_count)
							<< 20;
			update_entity_load_avg(se, 0);
			/* Indicate that we're now synchronized and on-rq */
			se->avg.decay_count = 0;
		}
		wakeup = 0;
	} else {
		/*
		 * Task re-woke on same cpu (or else migrate_task_rq_fair()
		 * would have made count negative); we must be careful to avoid
		 * double-accounting blocked time after synchronizing decays.
		 */
		se->avg.last_runnable_update += __synchronize_entity_decay(se)
							<< 20;
	}

	/* migrated tasks did not contribute to our blocked load */
	if (wakeup) {
		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
		update_entity_load_avg(se, 0);
	}

	cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
	/* we force update consideration on load-balancer moves */
	update_cfs_rq_blocked_load(cfs_rq, !wakeup);
}

/*
 * Remove se's load from this cfs_rq child load-average, if the entity is
 * transitioning to a blocked state we track its projected decay using
 * blocked_load_avg.
 */
static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
						  struct sched_entity *se,
						  int sleep)
{
	update_entity_load_avg(se, 1);
	/* we force update consideration on load-balancer moves */
	update_cfs_rq_blocked_load(cfs_rq, !sleep);

	cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
	if (sleep) {
		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
	} /* migrations, e.g. sleep=0 leave decay_count == 0 */
}

/*
 * Update the rq's load with the elapsed running time before entering
 * idle. if the last scheduled task is not a CFS task, idle_enter will
 * be the only way to update the runnable statistic.
 */
void idle_enter_fair(struct rq *this_rq)
{
	update_rq_runnable_avg(this_rq, 1);
}

/*
 * Update the rq's load with the elapsed idle time before a task is
 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
 * be the only way to update the runnable statistic.
 */
void idle_exit_fair(struct rq *this_rq)
{
	update_rq_runnable_avg(this_rq, 0);
}

#else
static inline void update_entity_load_avg(struct sched_entity *se,
					  int update_cfs_rq) {}
static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
					   struct sched_entity *se,
					   int wakeup) {}
static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
					   struct sched_entity *se,
					   int sleep) {}
static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
					      int force_update) {}
#endif

static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHEDSTATS
	struct task_struct *tsk = NULL;

	if (entity_is_task(se))
		tsk = task_of(se);

	if (se->statistics.sleep_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->statistics.sleep_max))
			se->statistics.sleep_max = delta;

		se->statistics.sleep_start = 0;
		se->statistics.sum_sleep_runtime += delta;

		if (tsk) {
			account_scheduler_latency(tsk, delta >> 10, 1);
			trace_sched_stat_sleep(tsk, delta);
		}
	}
	if (se->statistics.block_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->statistics.block_max))
			se->statistics.block_max = delta;

		se->statistics.block_start = 0;
		se->statistics.sum_sleep_runtime += delta;

		if (tsk) {
			if (tsk->in_iowait) {
				se->statistics.iowait_sum += delta;
				se->statistics.iowait_count++;
				trace_sched_stat_iowait(tsk, delta);
			}

			trace_sched_stat_blocked(tsk, delta);

			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
		}
	}
#endif
}

static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
	u64 vruntime = cfs_rq->min_vruntime;

	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
	if (initial && sched_feat(START_DEBIT))
		vruntime += sched_vslice(cfs_rq, se);

	/* sleeps up to a single latency don't count. */
	if (!initial) {
		unsigned long thresh = sysctl_sched_latency;

		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;

		vruntime -= thresh;
	}

	/* ensure we never gain time by being placed backwards. */
	se->vruntime = max_vruntime(se->vruntime, vruntime);
}

static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

static void
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
{
	/*
	 * Update the normalized vruntime before updating min_vruntime
	 * through callig update_curr().
	 */
	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
		se->vruntime += cfs_rq->min_vruntime;

	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
	enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
	account_entity_enqueue(cfs_rq, se);
	update_cfs_shares(cfs_rq);

	if (flags & ENQUEUE_WAKEUP) {
		place_entity(cfs_rq, se, 0);
		enqueue_sleeper(cfs_rq, se);
	}

	update_stats_enqueue(cfs_rq, se);
	check_spread(cfs_rq, se);
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
	se->on_rq = 1;

	if (cfs_rq->nr_running == 1) {
		list_add_leaf_cfs_rq(cfs_rq);
		check_enqueue_throttle(cfs_rq);
	}
}

static void __clear_buddies_last(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		if (cfs_rq->last == se)
			cfs_rq->last = NULL;
		else
			break;
	}
}

static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		if (cfs_rq->next == se)
			cfs_rq->next = NULL;
		else
			break;
	}
}

static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		if (cfs_rq->skip == se)
			cfs_rq->skip = NULL;
		else
			break;
	}
}

static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);

static void
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
{
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
	dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);

	update_stats_dequeue(cfs_rq, se);
	if (flags & DEQUEUE_SLEEP) {
#ifdef CONFIG_SCHEDSTATS
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
			if (tsk->state & TASK_UNINTERRUPTIBLE)
				se->statistics.block_start = rq_clock(rq_of(cfs_rq));
		}
#endif
	}

	clear_buddies(cfs_rq, se);

	if (se != cfs_rq->curr)
		__dequeue_entity(cfs_rq, se);
	se->on_rq = 0;
	account_entity_dequeue(cfs_rq, se);

	/*
	 * Normalize the entity after updating the min_vruntime because the
	 * update can refer to the ->curr item and we need to reflect this
	 * movement in our normalized position.
	 */
	if (!(flags & DEQUEUE_SLEEP))
		se->vruntime -= cfs_rq->min_vruntime;

	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

	update_min_vruntime(cfs_rq);
	update_cfs_shares(cfs_rq);
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
static void
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
{
	unsigned long ideal_runtime, delta_exec;
	struct sched_entity *se;
	s64 delta;

	ideal_runtime = sched_slice(cfs_rq, curr);
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
	if (delta_exec > ideal_runtime) {
		resched_task(rq_of(cfs_rq)->curr);
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;

	if (delta < 0)
		return;

	if (delta > ideal_runtime)
		resched_task(rq_of(cfs_rq)->curr);
}

static void
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

	update_stats_curr_start(cfs_rq, se);
	cfs_rq->curr = se;
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
		se->statistics.slice_max = max(se->statistics.slice_max,
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
}

static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
{
	struct sched_entity *se = __pick_first_entity(cfs_rq);
	struct sched_entity *left = se;

	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
		struct sched_entity *second = __pick_next_entity(se);
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}

	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

	clear_buddies(cfs_rq, se);

	return se;
}

static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);

static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
		update_curr(cfs_rq);

	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

	check_spread(cfs_rq, prev);
	if (prev->on_rq) {
		update_stats_wait_start(cfs_rq, prev);
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
		/* in !on_rq case, update occurred at dequeue */
		update_entity_load_avg(prev, 1);
	}
	cfs_rq->curr = NULL;
}

static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
{
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);

	/*
	 * Ensure that runnable average is periodically updated.
	 */
	update_entity_load_avg(curr, 1);
	update_cfs_rq_blocked_load(cfs_rq, 1);

#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
	if (queued) {
		resched_task(rq_of(cfs_rq)->curr);
		return;
	}
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

	if (cfs_rq->nr_running > 1)
		check_preempt_tick(cfs_rq, curr);
}


/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH

#ifdef HAVE_JUMP_LABEL
static struct static_key __cfs_bandwidth_used;

static inline bool cfs_bandwidth_used(void)
{
	return static_key_false(&__cfs_bandwidth_used);
}

void account_cfs_bandwidth_used(int enabled, int was_enabled)
{
	/* only need to count groups transitioning between enabled/!enabled */
	if (enabled && !was_enabled)
		static_key_slow_inc(&__cfs_bandwidth_used);
	else if (!enabled && was_enabled)
		static_key_slow_dec(&__cfs_bandwidth_used);
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
#endif /* HAVE_JUMP_LABEL */

/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
		return cfs_rq->throttled_clock_task;

	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
}

/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
	u64 amount = 0, min_amount, expires;

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
	else {
		/*
		 * If the bandwidth pool has become inactive, then at least one
		 * period must have elapsed since the last consumption.
		 * Refresh the global state and ensure bandwidth timer becomes
		 * active.
		 */
		if (!cfs_b->timer_active) {
			__refill_cfs_bandwidth_runtime(cfs_b);
			__start_cfs_bandwidth(cfs_b);
		}

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
	}
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;

	return cfs_rq->runtime_remaining > 0;
}

/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
		return;

	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
	 * whether the global deadline has advanced.
	 */

	if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
				     unsigned long delta_exec)
{
	/* dock delta_exec before expiring quota (as it could span periods) */
	cfs_rq->runtime_remaining -= delta_exec;
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
		return;

	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
		resched_task(rq_of(cfs_rq)->curr);
}

static __always_inline
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
{
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return cfs_bandwidth_used() && cfs_rq->throttled;
}

/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
#ifdef CONFIG_SMP
	if (!cfs_rq->throttle_count) {
		/* adjust cfs_rq_clock_task() */
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
					     cfs_rq->throttled_clock_task;
	}
#endif

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
	cfs_rq->throttle_count++;

	return 0;
}

static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

	/* freeze hierarchy runnable averages while throttled */
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
		rq->nr_running -= task_delta;

	cfs_rq->throttled = 1;
	cfs_rq->throttled_clock = rq_clock(rq);
	raw_spin_lock(&cfs_b->lock);
	list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
	raw_spin_unlock(&cfs_b->lock);
}

void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

	se = cfs_rq->tg->se[cpu_of(rq)];

	cfs_rq->throttled = 0;

	update_rq_clock(rq);

	raw_spin_lock(&cfs_b->lock);
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
		rq->nr_running += task_delta;

	/* determine whether we need to wake up potentially idle cpu */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
		resched_task(rq->curr);
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
	u64 runtime = remaining;

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);

		raw_spin_lock(&rq->lock);
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
		raw_spin_unlock(&rq->lock);

		if (!remaining)
			break;
	}
	rcu_read_unlock();

	return remaining;
}

/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
	u64 runtime, runtime_expires;
	int idle = 1, throttled;

	raw_spin_lock(&cfs_b->lock);
	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
		goto out_unlock;

	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
	/* idle depends on !throttled (for the case of a large deficit) */
	idle = cfs_b->idle && !throttled;
	cfs_b->nr_periods += overrun;

	/* if we're going inactive then everything else can be deferred */
	if (idle)
		goto out_unlock;

	__refill_cfs_bandwidth_runtime(cfs_b);

	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
		goto out_unlock;
	}

	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

	/*
	 * There are throttled entities so we must first use the new bandwidth
	 * to unthrottle them before making it generally available.  This
	 * ensures that all existing debts will be paid before a new cfs_rq is
	 * allowed to run.
	 */
	runtime = cfs_b->runtime;
	runtime_expires = cfs_b->runtime_expires;
	cfs_b->runtime = 0;

	/*
	 * This check is repeated as we are holding onto the new bandwidth
	 * while we unthrottle.  This can potentially race with an unthrottled
	 * group trying to acquire new bandwidth from the global pool.
	 */
	while (throttled && runtime > 0) {
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
	}

	/* return (any) remaining runtime */
	cfs_b->runtime = runtime;
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
out_unlock:
	if (idle)
		cfs_b->timer_active = 0;
	raw_spin_unlock(&cfs_b->lock);

	return idle;
}

/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

/* are we near the end of the current quota period? */
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

	start_bandwidth_timer(&cfs_b->slack_timer,
				ns_to_ktime(cfs_bandwidth_slack_period));
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	if (!cfs_bandwidth_used())
		return;

	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
		runtime = cfs_b->runtime;
		cfs_b->runtime = 0;
	}
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
		cfs_b->runtime = runtime;
	raw_spin_unlock(&cfs_b->lock);
}

/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
	if (!cfs_bandwidth_used())
		return;

	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

/* conditionally throttle active cfs_rq's from put_prev_entity() */
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	if (!cfs_bandwidth_used())
		return;

	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
		return;

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
		return;

	throttle_cfs_rq(cfs_rq);
}

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, cfs_b->period);

		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

/* requires cfs_b->lock, may release to reprogram timer */
void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	/*
	 * The timer may be active because we're trying to set a new bandwidth
	 * period or because we're racing with the tear-down path
	 * (timer_active==0 becomes visible before the hrtimer call-back
	 * terminates).  In either case we ensure that it's re-programmed
	 */
	while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
		raw_spin_unlock(&cfs_b->lock);
		/* ensure cfs_b->lock is available while we wait */
		hrtimer_cancel(&cfs_b->period_timer);

		raw_spin_lock(&cfs_b->lock);
		/* if someone else restarted the timer then we're done */
		if (cfs_b->timer_active)
			return;
	}

	cfs_b->timer_active = 1;
	start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
		cfs_rq->runtime_remaining = cfs_b->quota;
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
}

#else /* CONFIG_CFS_BANDWIDTH */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	return rq_clock_task(rq_of(cfs_rq));
}

static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
				     unsigned long delta_exec) {}
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
#endif

static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}

#endif /* CONFIG_CFS_BANDWIDTH */

/**************************************************
 * CFS operations on tasks:
 */

#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

	if (cfs_rq->nr_running > 1) {
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
		if (rq->curr != p)
			delta = max_t(s64, 10000LL, delta);

		hrtick_start(rq, delta);
	}
}

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
#else /* !CONFIG_SCHED_HRTICK */
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}

static inline void hrtick_update(struct rq *rq)
{
}
#endif

/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
static void
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se;

	for_each_sched_entity(se) {
		if (se->on_rq)
			break;
		cfs_rq = cfs_rq_of(se);
		enqueue_entity(cfs_rq, se, flags);

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
		cfs_rq->h_nr_running++;

		flags = ENQUEUE_WAKEUP;
	}

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_nr_running++;

		if (cfs_rq_throttled(cfs_rq))
			break;

		update_cfs_shares(cfs_rq);
		update_entity_load_avg(se, 1);
	}

	if (!se) {
		update_rq_runnable_avg(rq, rq->nr_running);
		inc_nr_running(rq);
	}
	hrtick_update(rq);
}

static void set_next_buddy(struct sched_entity *se);

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se;
	int task_sleep = flags & DEQUEUE_SLEEP;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		dequeue_entity(cfs_rq, se, flags);

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
		cfs_rq->h_nr_running--;

		/* Don't dequeue parent if it has other entities besides us */
		if (cfs_rq->load.weight) {
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
			if (task_sleep && parent_entity(se))
				set_next_buddy(parent_entity(se));

			/* avoid re-evaluating load for this entity */
			se = parent_entity(se);
			break;
		}
		flags |= DEQUEUE_SLEEP;
	}

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_nr_running--;

		if (cfs_rq_throttled(cfs_rq))
			break;

		update_cfs_shares(cfs_rq);
		update_entity_load_avg(se, 1);
	}

	if (!se) {
		dec_nr_running(rq);
		update_rq_runnable_avg(rq, 1);
	}
	hrtick_update(rq);
}

#ifdef CONFIG_SMP
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->cfs.runnable_load_avg;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

static unsigned long power_of(int cpu)
{
	return cpu_rq(cpu)->cpu_power;
}

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
	unsigned long load_avg = rq->cfs.runnable_load_avg;

	if (nr_running)
		return load_avg / nr_running;

	return 0;
}


static void task_waking_fair(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 min_vruntime;

#ifndef CONFIG_64BIT
	u64 min_vruntime_copy;

	do {
		min_vruntime_copy = cfs_rq->min_vruntime_copy;
		smp_rmb();
		min_vruntime = cfs_rq->min_vruntime;
	} while (min_vruntime != min_vruntime_copy);
#else
	min_vruntime = cfs_rq->min_vruntime;
#endif

	se->vruntime -= min_vruntime;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
 *
 * Calculate the effective load difference if @wl is added (subtracted) to @tg
 * on this @cpu and results in a total addition (subtraction) of @wg to the
 * total group weight.
 *
 * Given a runqueue weight distribution (rw_i) we can compute a shares
 * distribution (s_i) using:
 *
 *   s_i = rw_i / \Sum rw_j						(1)
 *
 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
 * shares distribution (s_i):
 *
 *   rw_i = {   2,   4,   1,   0 }
 *   s_i  = { 2/7, 4/7, 1/7,   0 }
 *
 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
 * task used to run on and the CPU the waker is running on), we need to
 * compute the effect of waking a task on either CPU and, in case of a sync
 * wakeup, compute the effect of the current task going to sleep.
 *
 * So for a change of @wl to the local @cpu with an overall group weight change
 * of @wl we can compute the new shares distribution (s'_i) using:
 *
 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
 *
 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
 * differences in waking a task to CPU 0. The additional task changes the
 * weight and shares distributions like:
 *
 *   rw'_i = {   3,   4,   1,   0 }
 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
 *
 * We can then compute the difference in effective weight by using:
 *
 *   dw_i = S * (s'_i - s_i)						(3)
 *
 * Where 'S' is the group weight as seen by its parent.
 *
 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
 * 4/7) times the weight of the group.
 */
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
{
	struct sched_entity *se = tg->se[cpu];

	if (!tg->parent)	/* the trivial, non-cgroup case */
		return wl;

	for_each_sched_entity(se) {
		long w, W;

		tg = se->my_q->tg;

		/*
		 * W = @wg + \Sum rw_j
		 */
		W = wg + calc_tg_weight(tg, se->my_q);

		/*
		 * w = rw_i + @wl
		 */
		w = se->my_q->load.weight + wl;

		/*
		 * wl = S * s'_i; see (2)
		 */
		if (W > 0 && w < W)
			wl = (w * tg->shares) / W;
		else
			wl = tg->shares;

		/*
		 * Per the above, wl is the new se->load.weight value; since
		 * those are clipped to [MIN_SHARES, ...) do so now. See
		 * calc_cfs_shares().
		 */
		if (wl < MIN_SHARES)
			wl = MIN_SHARES;

		/*
		 * wl = dw_i = S * (s'_i - s_i); see (3)
		 */
		wl -= se->load.weight;

		/*
		 * Recursively apply this logic to all parent groups to compute
		 * the final effective load change on the root group. Since
		 * only the @tg group gets extra weight, all parent groups can
		 * only redistribute existing shares. @wl is the shift in shares
		 * resulting from this level per the above.
		 */
		wg = 0;
	}

	return wl;
}
#else

static inline unsigned long effective_load(struct task_group *tg, int cpu,
		unsigned long wl, unsigned long wg)
{
	return wl;
}

#endif

static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
{
	s64 this_load, load;
	int idx, this_cpu, prev_cpu;
	unsigned long tl_per_task;
	struct task_group *tg;
	unsigned long weight;
	int balanced;

	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	prev_cpu  = task_cpu(p);
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);

	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
	if (sync) {
		tg = task_group(current);
		weight = current->se.load.weight;

		this_load += effective_load(tg, this_cpu, -weight, -weight);
		load += effective_load(tg, prev_cpu, 0, -weight);
	}

	tg = task_group(p);
	weight = p->se.load.weight;

	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
	if (this_load > 0) {
		s64 this_eff_load, prev_eff_load;

		this_eff_load = 100;
		this_eff_load *= power_of(prev_cpu);
		this_eff_load *= this_load +
			effective_load(tg, this_cpu, weight, weight);

		prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
		prev_eff_load *= power_of(this_cpu);
		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);

		balanced = this_eff_load <= prev_eff_load;
	} else
		balanced = true;

	/*
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
	 */
	if (sync && balanced)
		return 1;

	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
	tl_per_task = cpu_avg_load_per_task(this_cpu);

	if (balanced ||
	    (this_load <= load &&
	     this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
		schedstat_inc(sd, ttwu_move_affine);
		schedstat_inc(p, se.statistics.nr_wakeups_affine);

		return 1;
	}
	return 0;
}

/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
		  int this_cpu, int load_idx)
{
	struct sched_group *idlest = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
					tsk_cpus_allowed(p)))
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
		avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;

		if (local_group) {
			this_load = avg_load;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
	} while (group = group->next, group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

	/* Traverse only the allowed CPUs */
	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
		load = weighted_cpuload(i);

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

/*
 * Try and locate an idle CPU in the sched_domain.
 */
static int select_idle_sibling(struct task_struct *p, int target)
{
	struct sched_domain *sd;
	struct sched_group *sg;
	int i = task_cpu(p);

	if (idle_cpu(target))
		return target;

	/*
	 * If the prevous cpu is cache affine and idle, don't be stupid.
	 */
	if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
		return i;

	/*
	 * Otherwise, iterate the domains and find an elegible idle cpu.
	 */
	sd = rcu_dereference(per_cpu(sd_llc, target));
	for_each_lower_domain(sd) {
		sg = sd->groups;
		do {
			if (!cpumask_intersects(sched_group_cpus(sg),
						tsk_cpus_allowed(p)))
				goto next;

			for_each_cpu(i, sched_group_cpus(sg)) {
				if (i == target || !idle_cpu(i))
					goto next;
			}

			target = cpumask_first_and(sched_group_cpus(sg),
					tsk_cpus_allowed(p));
			goto done;
next:
			sg = sg->next;
		} while (sg != sd->groups);
	}
done:
	return target;
}

/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int
select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
{
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
	int cpu = smp_processor_id();
	int prev_cpu = task_cpu(p);
	int new_cpu = cpu;
	int want_affine = 0;
	int sync = wake_flags & WF_SYNC;

	if (p->nr_cpus_allowed == 1)
		return prev_cpu;

	if (sd_flag & SD_BALANCE_WAKE) {
		if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
			want_affine = 1;
		new_cpu = prev_cpu;
	}

	rcu_read_lock();
	for_each_domain(cpu, tmp) {
		if (!(tmp->flags & SD_LOAD_BALANCE))
			continue;

		/*
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
		 */
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
			break;
		}

		if (tmp->flags & sd_flag)
			sd = tmp;
	}

	if (affine_sd) {
		if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
			prev_cpu = cpu;

		new_cpu = select_idle_sibling(p, prev_cpu);
		goto unlock;
	}

	while (sd) {
		int load_idx = sd->forkexec_idx;
		struct sched_group *group;
		int weight;

		if (!(sd->flags & sd_flag)) {
			sd = sd->child;
			continue;
		}

		if (sd_flag & SD_BALANCE_WAKE)
			load_idx = sd->wake_idx;

		group = find_idlest_group(sd, p, cpu, load_idx);
		if (!group) {
			sd = sd->child;
			continue;
		}

		new_cpu = find_idlest_cpu(group, p, cpu);
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
		weight = sd->span_weight;
		sd = NULL;
		for_each_domain(cpu, tmp) {
			if (weight <= tmp->span_weight)
				break;
			if (tmp->flags & sd_flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}
unlock:
	rcu_read_unlock();

	return new_cpu;
}

/*
 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
 * cfs_rq_of(p) references at time of call are still valid and identify the
 * previous cpu.  However, the caller only guarantees p->pi_lock is held; no
 * other assumptions, including the state of rq->lock, should be made.
 */
static void
migrate_task_rq_fair(struct task_struct *p, int next_cpu)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
	 * Load tracking: accumulate removed load so that it can be processed
	 * when we next update owning cfs_rq under rq->lock.  Tasks contribute
	 * to blocked load iff they have a positive decay-count.  It can never
	 * be negative here since on-rq tasks have decay-count == 0.
	 */
	if (se->avg.decay_count) {
		se->avg.decay_count = -__synchronize_entity_decay(se);
		atomic64_add(se->avg.load_avg_contrib, &cfs_rq->removed_load);
	}
}
#endif /* CONFIG_SMP */

static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
	 */
	return calc_delta_fair(gran, se);
}

/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

	gran = wakeup_gran(curr, se);
	if (vdiff > gran)
		return 1;

	return 0;
}

static void set_last_buddy(struct sched_entity *se)
{
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->last = se;
}

static void set_next_buddy(struct sched_entity *se)
{
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->next = se;
}

static void set_skip_buddy(struct sched_entity *se)
{
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
{
	struct task_struct *curr = rq->curr;
	struct sched_entity *se = &curr->se, *pse = &p->se;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	int scale = cfs_rq->nr_running >= sched_nr_latency;
	int next_buddy_marked = 0;

	if (unlikely(se == pse))
		return;

	/*
	 * This is possible from callers such as move_task(), in which we
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
		set_next_buddy(pse);
		next_buddy_marked = 1;
	}

	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
	 */
	if (test_tsk_need_resched(curr))
		return;

	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

	/*
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
	 */
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
		return;

	find_matching_se(&se, &pse);
	update_curr(cfs_rq_of(se));
	BUG_ON(!pse);
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
		goto preempt;
	}

	return;

preempt:
	resched_task(curr);
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
}

static struct task_struct *pick_next_task_fair(struct rq *rq)
{
	struct task_struct *p;
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

	if (!cfs_rq->nr_running)
		return NULL;

	do {
		se = pick_next_entity(cfs_rq);
		set_next_entity(cfs_rq, se);
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	p = task_of(se);
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);

	return p;
}

/*
 * Account for a descheduled task:
 */
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		put_prev_entity(cfs_rq, se);
	}
}

/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
		 rq->skip_clock_update = 1;
	}

	set_skip_buddy(se);
}

static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

#ifdef CONFIG_SMP
/**************************************************
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
 * per-cpu scheduler provides, namely provide a proportional amount of compute
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
 * is derived from the nice value as per prio_to_weight[].
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
 *   imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j }    (4)
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
 * for all i,j solution, we create a tree of cpus that follows the hardware
 * topology where each level pairs two lower groups (or better). This results
 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
 * tree to only the first of the previous level and we decrease the frequency
 * of load-balance at each level inv. proportional to the number of cpus in
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
 *         |         |     `- number of cpus doing load-balance
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
 * to every other cpu in at most O(log n) steps:
 *
 * The adjacency matrix of the resulting graph is given by:
 *
 *             log_2 n     
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
 * Showing there's indeed a path between every cpu in at most O(log n) steps.
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
 * balancing is more aggressive and has the newly idle cpu iterate up the domain
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
 */ 

static unsigned long __read_mostly max_load_balance_interval = HZ/10;

#define LBF_ALL_PINNED	0x01
#define LBF_NEED_BREAK	0x02
#define LBF_SOME_PINNED 0x04

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
	int			src_cpu;

	int			dst_cpu;
	struct rq		*dst_rq;

	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
	enum cpu_idle_type	idle;
	long			imbalance;
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

	unsigned int		flags;

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
};

/*
 * move_task - move a task from one runqueue to another runqueue.
 * Both runqueues must be locked.
 */
static void move_task(struct task_struct *p, struct lb_env *env)
{
	deactivate_task(env->src_rq, p, 0);
	set_task_cpu(p, env->dst_cpu);
	activate_task(env->dst_rq, p, 0);
	check_preempt_curr(env->dst_rq, p, 0);
}

/*
 * Is this task likely cache-hot:
 */
static int
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
int can_migrate_task(struct task_struct *p, struct lb_env *env)
{
	int tsk_cache_hot = 0;
	/*
	 * We do not migrate tasks that are:
	 * 1) throttled_lb_pair, or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
	 */
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
		int cpu;

		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);

		/*
		 * Remember if this task can be migrated to any other cpu in
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
		 * Also avoid computing new_dst_cpu if we have already computed
		 * one in current iteration.
		 */
		if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED))
			return 0;

		/* Prevent to re-select dst_cpu via env's cpus */
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
				env->flags |= LBF_SOME_PINNED;
				env->new_dst_cpu = cpu;
				break;
			}
		}

		return 0;
	}

	/* Record that we found atleast one task that could run on dst_cpu */
	env->flags &= ~LBF_ALL_PINNED;

	if (task_running(env->src_rq, p)) {
		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
		return 0;
	}

	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

	tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
	if (!tsk_cache_hot ||
		env->sd->nr_balance_failed > env->sd->cache_nice_tries) {

		if (tsk_cache_hot) {
			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
			schedstat_inc(p, se.statistics.nr_forced_migrations);
		}

		return 1;
	}

	schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
	return 0;
}

/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct lb_env *env)
{
	struct task_struct *p, *n;

	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
		if (!can_migrate_task(p, env))
			continue;

		move_task(p, env);
		/*
		 * Right now, this is only the second place move_task()
		 * is called, so we can safely collect move_task()
		 * stats here rather than inside move_task().
		 */
		schedstat_inc(env->sd, lb_gained[env->idle]);
		return 1;
	}
	return 0;
}

static unsigned long task_h_load(struct task_struct *p);

static const unsigned int sched_nr_migrate_break = 32;

/*
 * move_tasks tries to move up to imbalance weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct lb_env *env)
{
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
	unsigned long load;
	int pulled = 0;

	if (env->imbalance <= 0)
		return 0;

	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);

		env->loop++;
		/* We've more or less seen every task there is, call it quits */
		if (env->loop > env->loop_max)
			break;

		/* take a breather every nr_migrate tasks */
		if (env->loop > env->loop_break) {
			env->loop_break += sched_nr_migrate_break;
			env->flags |= LBF_NEED_BREAK;
			break;
		}

		if (!can_migrate_task(p, env))
			goto next;

		load = task_h_load(p);

		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
			goto next;

		if ((load / 2) > env->imbalance)
			goto next;

		move_task(p, env);
		pulled++;
		env->imbalance -= load;

#ifdef CONFIG_PREEMPT
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
		if (env->idle == CPU_NEWLY_IDLE)
			break;
#endif

		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
		if (env->imbalance <= 0)
			break;

		continue;
next:
		list_move_tail(&p->se.group_node, tasks);
	}

	/*
	 * Right now, this is one of only two places move_task() is called,
	 * so we can safely collect move_task() stats here rather than
	 * inside move_task().
	 */
	schedstat_add(env->sd, lb_gained[env->idle], pulled);

	return pulled;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
/*
 * update tg->load_weight by folding this cpu's load_avg
 */
static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
{
	struct sched_entity *se = tg->se[cpu];
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];

	/* throttled entities do not contribute to load */
	if (throttled_hierarchy(cfs_rq))
		return;

	update_cfs_rq_blocked_load(cfs_rq, 1);

	if (se) {
		update_entity_load_avg(se, 1);
		/*
		 * We pivot on our runnable average having decayed to zero for
		 * list removal.  This generally implies that all our children
		 * have also been removed (modulo rounding error or bandwidth
		 * control); however, such cases are rare and we can fix these
		 * at enqueue.
		 *
		 * TODO: fix up out-of-order children on enqueue.
		 */
		if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
			list_del_leaf_cfs_rq(cfs_rq);
	} else {
		struct rq *rq = rq_of(cfs_rq);
		update_rq_runnable_avg(rq, rq->nr_running);
	}
}

static void update_blocked_averages(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	struct cfs_rq *cfs_rq;
	unsigned long flags;

	raw_spin_lock_irqsave(&rq->lock, flags);
	update_rq_clock(rq);
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
	for_each_leaf_cfs_rq(rq, cfs_rq) {
		/*
		 * Note: We may want to consider periodically releasing
		 * rq->lock about these updates so that creating many task
		 * groups does not result in continually extending hold time.
		 */
		__update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
	}

	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

/*
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
static int tg_load_down(struct task_group *tg, void *data)
{
	unsigned long load;
	long cpu = (long)data;

	if (!tg->parent) {
		load = cpu_rq(cpu)->avg.load_avg_contrib;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load = div64_ul(load * tg->se[cpu]->avg.load_avg_contrib,
				tg->parent->cfs_rq[cpu]->runnable_load_avg + 1);
	}

	tg->cfs_rq[cpu]->h_load = load;

	return 0;
}

static void update_h_load(long cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long now = jiffies;

	if (rq->h_load_throttle == now)
		return;

	rq->h_load_throttle = now;

	rcu_read_lock();
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
	rcu_read_unlock();
}

static unsigned long task_h_load(struct task_struct *p)
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);

	return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
			cfs_rq->runnable_load_avg + 1);
}
#else
static inline void update_blocked_averages(int cpu)
{
}

static inline void update_h_load(long cpu)
{
}

static unsigned long task_h_load(struct task_struct *p)
{
	return p->se.avg.load_avg_contrib;
}
#endif

/********** Helpers for find_busiest_group ************************/
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 * 		during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest; /* Busiest group in this sd */
	struct sched_group *this;  /* Local group in this sd */
	unsigned long total_load;  /* Total load of all groups in sd */
	unsigned long total_pwr;   /*	Total power of all groups in sd */
	unsigned long avg_load;	   /* Average load across all groups in sd */

	/** Statistics of this group */
	unsigned long this_load;
	unsigned long this_load_per_task;
	unsigned long this_nr_running;
	unsigned long this_has_capacity;
	unsigned int  this_idle_cpus;

	/* Statistics of the busiest group */
	unsigned int  busiest_idle_cpus;
	unsigned long max_load;
	unsigned long busiest_load_per_task;
	unsigned long busiest_nr_running;
	unsigned long busiest_group_capacity;
	unsigned long busiest_has_capacity;
	unsigned int  busiest_group_weight;

	int group_imb; /* Is there imbalance in this sd */
};

/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_nr_running; /* Nr tasks running in the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
	unsigned long group_capacity;
	unsigned long idle_cpus;
	unsigned long group_weight;
	int group_imb; /* Is there an imbalance in the group ? */
	int group_has_capacity; /* Is there extra capacity in the group? */
};

/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return SCHED_POWER_SCALE;
}

unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return default_scale_freq_power(sd, cpu);
}

static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
{
	unsigned long weight = sd->span_weight;
	unsigned long smt_gain = sd->smt_gain;

	smt_gain /= weight;

	return smt_gain;
}

unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
{
	return default_scale_smt_power(sd, cpu);
}

static unsigned long scale_rt_power(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	u64 total, available, age_stamp, avg;

	/*
	 * Since we're reading these variables without serialization make sure
	 * we read them once before doing sanity checks on them.
	 */
	age_stamp = ACCESS_ONCE(rq->age_stamp);
	avg = ACCESS_ONCE(rq->rt_avg);

	total = sched_avg_period() + (rq_clock(rq) - age_stamp);

	if (unlikely(total < avg)) {
		/* Ensures that power won't end up being negative */
		available = 0;
	} else {
		available = total - avg;
	}

	if (unlikely((s64)total < SCHED_POWER_SCALE))
		total = SCHED_POWER_SCALE;

	total >>= SCHED_POWER_SHIFT;

	return div_u64(available, total);
}

static void update_cpu_power(struct sched_domain *sd, int cpu)
{
	unsigned long weight = sd->span_weight;
	unsigned long power = SCHED_POWER_SCALE;
	struct sched_group *sdg = sd->groups;

	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
		if (sched_feat(ARCH_POWER))
			power *= arch_scale_smt_power(sd, cpu);
		else
			power *= default_scale_smt_power(sd, cpu);

		power >>= SCHED_POWER_SHIFT;
	}

	sdg->sgp->power_orig = power;

	if (sched_feat(ARCH_POWER))
		power *= arch_scale_freq_power(sd, cpu);
	else
		power *= default_scale_freq_power(sd, cpu);

	power >>= SCHED_POWER_SHIFT;

	power *= scale_rt_power(cpu);
	power >>= SCHED_POWER_SHIFT;

	if (!power)
		power = 1;

	cpu_rq(cpu)->cpu_power = power;
	sdg->sgp->power = power;
}

void update_group_power(struct sched_domain *sd, int cpu)
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
	unsigned long power;
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
	sdg->sgp->next_update = jiffies + interval;

	if (!child) {
		update_cpu_power(sd, cpu);
		return;
	}

	power = 0;

	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

		for_each_cpu(cpu, sched_group_cpus(sdg))
			power += power_of(cpu);
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
		 */ 

		group = child->groups;
		do {
			power += group->sgp->power;
			group = group->next;
		} while (group != child->groups);
	}

	sdg->sgp->power_orig = sdg->sgp->power = power;
}

/*
 * Try and fix up capacity for tiny siblings, this is needed when
 * things like SD_ASYM_PACKING need f_b_g to select another sibling
 * which on its own isn't powerful enough.
 *
 * See update_sd_pick_busiest() and check_asym_packing().
 */
static inline int
fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
{
	/*
	 * Only siblings can have significantly less than SCHED_POWER_SCALE
	 */
	if (!(sd->flags & SD_SHARE_CPUPOWER))
		return 0;

	/*
	 * If ~90% of the cpu_power is still there, we're good.
	 */
	if (group->sgp->power * 32 > group->sgp->power_orig * 29)
		return 1;

	return 0;
}

/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
 * @env: The load balancing environment.
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @balance: Should we balance.
 * @sgs: variable to hold the statistics for this group.
 */
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
			int local_group, int *balance, struct sg_lb_stats *sgs)
{
	unsigned long nr_running, max_nr_running, min_nr_running;
	unsigned long load, max_cpu_load, min_cpu_load;
	unsigned int balance_cpu = -1, first_idle_cpu = 0;
	unsigned long avg_load_per_task = 0;
	int i;

	if (local_group)
		balance_cpu = group_balance_cpu(group);

	/* Tally up the load of all CPUs in the group */
	max_cpu_load = 0;
	min_cpu_load = ~0UL;
	max_nr_running = 0;
	min_nr_running = ~0UL;

	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
		struct rq *rq = cpu_rq(i);

		nr_running = rq->nr_running;

		/* Bias balancing toward cpus of our domain */
		if (local_group) {
			if (idle_cpu(i) && !first_idle_cpu &&
					cpumask_test_cpu(i, sched_group_mask(group))) {
				first_idle_cpu = 1;
				balance_cpu = i;
			}

			load = target_load(i, load_idx);
		} else {
			load = source_load(i, load_idx);
			if (load > max_cpu_load)
				max_cpu_load = load;
			if (min_cpu_load > load)
				min_cpu_load = load;

			if (nr_running > max_nr_running)
				max_nr_running = nr_running;
			if (min_nr_running > nr_running)
				min_nr_running = nr_running;
		}

		sgs->group_load += load;
		sgs->sum_nr_running += nr_running;
		sgs->sum_weighted_load += weighted_cpuload(i);
		if (idle_cpu(i))
			sgs->idle_cpus++;
	}

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above
	 * domains. In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (local_group) {
		if (env->idle != CPU_NEWLY_IDLE) {
			if (balance_cpu != env->dst_cpu) {
				*balance = 0;
				return;
			}
			update_group_power(env->sd, env->dst_cpu);
		} else if (time_after_eq(jiffies, group->sgp->next_update))
			update_group_power(env->sd, env->dst_cpu);
	}

	/* Adjust by relative CPU power of the group */
	sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;

	/*
	 * Consider the group unbalanced when the imbalance is larger
	 * than the average weight of a task.
	 *
	 * APZ: with cgroup the avg task weight can vary wildly and
	 *      might not be a suitable number - should we keep a
	 *      normalized nr_running number somewhere that negates
	 *      the hierarchy?
	 */
	if (sgs->sum_nr_running)
		avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;

	if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
	    (max_nr_running - min_nr_running) > 1)
		sgs->group_imb = 1;

	sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
						SCHED_POWER_SCALE);
	if (!sgs->group_capacity)
		sgs->group_capacity = fix_small_capacity(env->sd, group);
	sgs->group_weight = group->group_weight;

	if (sgs->group_capacity > sgs->sum_nr_running)
		sgs->group_has_capacity = 1;
}

/**
 * update_sd_pick_busiest - return 1 on busiest group
 * @env: The load balancing environment.
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
 * @sgs: sched_group statistics
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
 */
static bool update_sd_pick_busiest(struct lb_env *env,
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
				   struct sg_lb_stats *sgs)
{
	if (sgs->avg_load <= sds->max_load)
		return false;

	if (sgs->sum_nr_running > sgs->group_capacity)
		return true;

	if (sgs->group_imb)
		return true;

	/*
	 * ASYM_PACKING needs to move all the work to the lowest
	 * numbered CPUs in the group, therefore mark all groups
	 * higher than ourself as busy.
	 */
	if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
	    env->dst_cpu < group_first_cpu(sg)) {
		if (!sds->busiest)
			return true;

		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
			return true;
	}

	return false;
}

/**
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
 * @env: The load balancing environment.
 * @balance: Should we balance.
 * @sds: variable to hold the statistics for this sched_domain.
 */
static inline void update_sd_lb_stats(struct lb_env *env,
					int *balance, struct sd_lb_stats *sds)
{
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
	struct sg_lb_stats sgs;
	int load_idx, prefer_sibling = 0;

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

	load_idx = get_sd_load_idx(env->sd, env->idle);

	do {
		int local_group;

		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
		memset(&sgs, 0, sizeof(sgs));
		update_sg_lb_stats(env, sg, load_idx, local_group, balance, &sgs);

		if (local_group && !(*balance))
			return;

		sds->total_load += sgs.group_load;
		sds->total_pwr += sg->sgp->power;

		/*
		 * In case the child domain prefers tasks go to siblings
		 * first, lower the sg capacity to one so that we'll try
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
		 * these excess tasks, i.e. nr_running < group_capacity. The
		 * extra check prevents the case where you always pull from the
		 * heaviest group when it is already under-utilized (possible
		 * with a large weight task outweighs the tasks on the system).
		 */
		if (prefer_sibling && !local_group && sds->this_has_capacity)
			sgs.group_capacity = min(sgs.group_capacity, 1UL);

		if (local_group) {
			sds->this_load = sgs.avg_load;
			sds->this = sg;
			sds->this_nr_running = sgs.sum_nr_running;
			sds->this_load_per_task = sgs.sum_weighted_load;
			sds->this_has_capacity = sgs.group_has_capacity;
			sds->this_idle_cpus = sgs.idle_cpus;
		} else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
			sds->max_load = sgs.avg_load;
			sds->busiest = sg;
			sds->busiest_nr_running = sgs.sum_nr_running;
			sds->busiest_idle_cpus = sgs.idle_cpus;
			sds->busiest_group_capacity = sgs.group_capacity;
			sds->busiest_load_per_task = sgs.sum_weighted_load;
			sds->busiest_has_capacity = sgs.group_has_capacity;
			sds->busiest_group_weight = sgs.group_weight;
			sds->group_imb = sgs.group_imb;
		}

		sg = sg->next;
	} while (sg != env->sd->groups);
}

/**
 * check_asym_packing - Check to see if the group is packed into the
 *			sched doman.
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
 * Returns 1 when packing is required and a task should be moved to
 * this CPU.  The amount of the imbalance is returned in *imbalance.
 *
 * @env: The load balancing environment.
 * @sds: Statistics of the sched_domain which is to be packed
 */
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
{
	int busiest_cpu;

	if (!(env->sd->flags & SD_ASYM_PACKING))
		return 0;

	if (!sds->busiest)
		return 0;

	busiest_cpu = group_first_cpu(sds->busiest);
	if (env->dst_cpu > busiest_cpu)
		return 0;

	env->imbalance = DIV_ROUND_CLOSEST(
		sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);

	return 1;
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
 * @env: The load balancing environment.
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;
	unsigned long scaled_busy_load_per_task;

	if (sds->this_nr_running) {
		sds->this_load_per_task /= sds->this_nr_running;
		if (sds->busiest_load_per_task >
				sds->this_load_per_task)
			imbn = 1;
	} else {
		sds->this_load_per_task =
			cpu_avg_load_per_task(env->dst_cpu);
	}

	scaled_busy_load_per_task = sds->busiest_load_per_task
					 * SCHED_POWER_SCALE;
	scaled_busy_load_per_task /= sds->busiest->sgp->power;

	if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
			(scaled_busy_load_per_task * imbn)) {
		env->imbalance = sds->busiest_load_per_task;
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
	 */

	pwr_now += sds->busiest->sgp->power *
			min(sds->busiest_load_per_task, sds->max_load);
	pwr_now += sds->this->sgp->power *
			min(sds->this_load_per_task, sds->this_load);
	pwr_now /= SCHED_POWER_SCALE;

	/* Amount of load we'd subtract */
	tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
		sds->busiest->sgp->power;
	if (sds->max_load > tmp)
		pwr_move += sds->busiest->sgp->power *
			min(sds->busiest_load_per_task, sds->max_load - tmp);

	/* Amount of load we'd add */
	if (sds->max_load * sds->busiest->sgp->power <
		sds->busiest_load_per_task * SCHED_POWER_SCALE)
		tmp = (sds->max_load * sds->busiest->sgp->power) /
			sds->this->sgp->power;
	else
		tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
			sds->this->sgp->power;
	pwr_move += sds->this->sgp->power *
			min(sds->this_load_per_task, sds->this_load + tmp);
	pwr_move /= SCHED_POWER_SCALE;

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
		env->imbalance = sds->busiest_load_per_task;
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
 * @env: load balance environment
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
{
	unsigned long max_pull, load_above_capacity = ~0UL;

	sds->busiest_load_per_task /= sds->busiest_nr_running;
	if (sds->group_imb) {
		sds->busiest_load_per_task =
			min(sds->busiest_load_per_task, sds->avg_load);
	}

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (sds->max_load < sds->avg_load) {
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
	}

	if (!sds->group_imb) {
		/*
		 * Don't want to pull so many tasks that a group would go idle.
		 */
		load_above_capacity = (sds->busiest_nr_running -
						sds->busiest_group_capacity);

		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);

		load_above_capacity /= sds->busiest->sgp->power;
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
	 * we also don't want to reduce the group load below the group capacity
	 * (so that we can implement power-savings policies etc). Thus we look
	 * for the minimum possible imbalance.
	 * Be careful of negative numbers as they'll appear as very large values
	 * with unsigned longs.
	 */
	max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);

	/* How much load to actually move to equalise the imbalance */
	env->imbalance = min(max_pull * sds->busiest->sgp->power,
		(sds->avg_load - sds->this_load) * sds->this->sgp->power)
			/ SCHED_POWER_SCALE;

	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no guarantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
	if (env->imbalance < sds->busiest_load_per_task)
		return fix_small_imbalance(env, sds);

}

/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
 * @env: The load balancing environment.
 * @balance: Pointer to a variable indicating if this_cpu
 *	is the appropriate cpu to perform load balancing at this_level.
 *
 * Returns:	- the busiest group if imbalance exists.
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
 */
static struct sched_group *
find_busiest_group(struct lb_env *env, int *balance)
{
	struct sd_lb_stats sds;

	memset(&sds, 0, sizeof(sds));

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
	update_sd_lb_stats(env, balance, &sds);

	/*
	 * this_cpu is not the appropriate cpu to perform load balancing at
	 * this level.
	 */
	if (!(*balance))
		goto ret;

	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
	    check_asym_packing(env, &sds))
		return sds.busiest;

	/* There is no busy sibling group to pull tasks from */
	if (!sds.busiest || sds.busiest_nr_running == 0)
		goto out_balanced;

	sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;

	/*
	 * If the busiest group is imbalanced the below checks don't
	 * work because they assumes all things are equal, which typically
	 * isn't true due to cpus_allowed constraints and the like.
	 */
	if (sds.group_imb)
		goto force_balance;

	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
	if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
			!sds.busiest_has_capacity)
		goto force_balance;

	/*
	 * If the local group is more busy than the selected busiest group
	 * don't try and pull any tasks.
	 */
	if (sds.this_load >= sds.max_load)
		goto out_balanced;

	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
	if (sds.this_load >= sds.avg_load)
		goto out_balanced;

	if (env->idle == CPU_IDLE) {
		/*
		 * This cpu is idle. If the busiest group load doesn't
		 * have more tasks than the number of available cpu's and
		 * there is no imbalance between this and busiest group
		 * wrt to idle cpu's, it is balanced.
		 */
		if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
		    sds.busiest_nr_running <= sds.busiest_group_weight)
			goto out_balanced;
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
		if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
			goto out_balanced;
	}

force_balance:
	/* Looks like there is an imbalance. Compute it */
	calculate_imbalance(env, &sds);
	return sds.busiest;

out_balanced:
ret:
	env->imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
static struct rq *find_busiest_queue(struct lb_env *env,
				     struct sched_group *group)
{
	struct rq *busiest = NULL, *rq;
	unsigned long max_load = 0;
	int i;

	for_each_cpu(i, sched_group_cpus(group)) {
		unsigned long power = power_of(i);
		unsigned long capacity = DIV_ROUND_CLOSEST(power,
							   SCHED_POWER_SCALE);
		unsigned long wl;

		if (!capacity)
			capacity = fix_small_capacity(env->sd, group);

		if (!cpumask_test_cpu(i, env->cpus))
			continue;

		rq = cpu_rq(i);
		wl = weighted_cpuload(i);

		/*
		 * When comparing with imbalance, use weighted_cpuload()
		 * which is not scaled with the cpu power.
		 */
		if (capacity && rq->nr_running == 1 && wl > env->imbalance)
			continue;

		/*
		 * For the load comparisons with the other cpu's, consider
		 * the weighted_cpuload() scaled with the cpu power, so that
		 * the load can be moved away from the cpu that is potentially
		 * running at a lower capacity.
		 */
		wl = (wl * SCHED_POWER_SCALE) / power;

		if (wl > max_load) {
			max_load = wl;
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

/* Working cpumask for load_balance and load_balance_newidle. */
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);

static int need_active_balance(struct lb_env *env)
{
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
		 * higher numbered CPUs in order to pack all tasks in the
		 * lowest numbered CPUs.
		 */
		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
			return 1;
	}

	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

static int active_load_balance_cpu_stop(void *data);

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
			int *balance)
{
	int ld_moved, cur_ld_moved, active_balance = 0;
	struct sched_group *group;
	struct rq *busiest;
	unsigned long flags;
	struct cpumask *cpus = __get_cpu_var(load_balance_mask);

	struct lb_env env = {
		.sd		= sd,
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
		.dst_grpmask    = sched_group_cpus(sd->groups),
		.idle		= idle,
		.loop_break	= sched_nr_migrate_break,
		.cpus		= cpus,
	};

	/*
	 * For NEWLY_IDLE load_balancing, we don't need to consider
	 * other cpus in our group
	 */
	if (idle == CPU_NEWLY_IDLE)
		env.dst_grpmask = NULL;

	cpumask_copy(cpus, cpu_active_mask);

	schedstat_inc(sd, lb_count[idle]);

redo:
	group = find_busiest_group(&env, balance);

	if (*balance == 0)
		goto out_balanced;

	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

	busiest = find_busiest_queue(&env, group);
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

	BUG_ON(busiest == env.dst_rq);

	schedstat_add(sd, lb_imbalance[idle], env.imbalance);

	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
		env.flags |= LBF_ALL_PINNED;
		env.src_cpu   = busiest->cpu;
		env.src_rq    = busiest;
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);

		update_h_load(env.src_cpu);
more_balance:
		local_irq_save(flags);
		double_rq_lock(env.dst_rq, busiest);

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
		cur_ld_moved = move_tasks(&env);
		ld_moved += cur_ld_moved;
		double_rq_unlock(env.dst_rq, busiest);
		local_irq_restore(flags);

		/*
		 * some other cpu did the load balance for us.
		 */
		if (cur_ld_moved && env.dst_cpu != smp_processor_id())
			resched_cpu(env.dst_cpu);

		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
		 * iterate on same src_cpu is dependent on number of cpus in our
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
		if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {

			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
			env.dst_cpu	 = env.new_dst_cpu;
			env.flags	&= ~LBF_SOME_PINNED;
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;

			/* Prevent to re-select dst_cpu via env's cpus */
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}

		/* All tasks on this runqueue were pinned by CPU affinity */
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus)) {
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
				goto redo;
			}
			goto out_balanced;
		}
	}

	if (!ld_moved) {
		schedstat_inc(sd, lb_failed[idle]);
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;

		if (need_active_balance(&env)) {
			raw_spin_lock_irqsave(&busiest->lock, flags);

			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
			 */
			if (!cpumask_test_cpu(this_cpu,
					tsk_cpus_allowed(busiest->curr))) {
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
				env.flags |= LBF_ALL_PINNED;
				goto out_one_pinned;
			}

			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);

			if (active_balance) {
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
			}

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
	if (((env.flags & LBF_ALL_PINNED) &&
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

	ld_moved = 0;
out:
	return ld_moved;
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
void idle_balance(int this_cpu, struct rq *this_rq)
{
	struct sched_domain *sd;
	int pulled_task = 0;
	unsigned long next_balance = jiffies + HZ;

	this_rq->idle_stamp = rq_clock(this_rq);

	if (this_rq->avg_idle < sysctl_sched_migration_cost)
		return;

	/*
	 * Drop the rq->lock, but keep IRQ/preempt disabled.
	 */
	raw_spin_unlock(&this_rq->lock);

	update_blocked_averages(this_cpu);
	rcu_read_lock();
	for_each_domain(this_cpu, sd) {
		unsigned long interval;
		int balance = 1;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE) {
			/* If we've pulled tasks over stop searching: */
			pulled_task = load_balance(this_cpu, this_rq,
						   sd, CPU_NEWLY_IDLE, &balance);
		}

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task) {
			this_rq->idle_stamp = 0;
			break;
		}
	}
	rcu_read_unlock();

	raw_spin_lock(&this_rq->lock);

	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
	}
}

/*
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
 */
static int active_load_balance_cpu_stop(void *data)
{
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
	int target_cpu = busiest_rq->push_cpu;
	struct rq *target_rq = cpu_rq(target_cpu);
	struct sched_domain *sd;

	raw_spin_lock_irq(&busiest_rq->lock);

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
		goto out_unlock;

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);

	/* Search for an sd spanning us and the target CPU. */
	rcu_read_lock();
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
		struct lb_env env = {
			.sd		= sd,
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
			.idle		= CPU_IDLE,
		};

		schedstat_inc(sd, alb_count);

		if (move_one_task(&env))
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
	rcu_read_unlock();
	double_unlock_balance(busiest_rq, target_rq);
out_unlock:
	busiest_rq->active_balance = 0;
	raw_spin_unlock_irq(&busiest_rq->lock);
	return 0;
}

#ifdef CONFIG_NO_HZ_COMMON
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
static struct {
	cpumask_var_t idle_cpus_mask;
	atomic_t nr_cpus;
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;

static inline int find_new_ilb(int call_cpu)
{
	int ilb = cpumask_first(nohz.idle_cpus_mask);

	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
}

/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
static void nohz_balancer_kick(int cpu)
{
	int ilb_cpu;

	nohz.next_balance++;

	ilb_cpu = find_new_ilb(cpu);

	if (ilb_cpu >= nr_cpu_ids)
		return;

	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
		return;
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
	 * This way we generate a sched IPI on the target cpu which
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
	return;
}

static inline void nohz_balance_exit_idle(int cpu)
{
	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
		cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
		atomic_dec(&nohz.nr_cpus);
		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
	}
}

static inline void set_cpu_sd_state_busy(void)
{
	struct sched_domain *sd;

	rcu_read_lock();
	sd = rcu_dereference_check_sched_domain(this_rq()->sd);

	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

	for (; sd; sd = sd->parent)
		atomic_inc(&sd->groups->sgp->nr_busy_cpus);
unlock:
	rcu_read_unlock();
}

void set_cpu_sd_state_idle(void)
{
	struct sched_domain *sd;

	rcu_read_lock();
	sd = rcu_dereference_check_sched_domain(this_rq()->sd);

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

	for (; sd; sd = sd->parent)
		atomic_dec(&sd->groups->sgp->nr_busy_cpus);
unlock:
	rcu_read_unlock();
}

/*
 * This routine will record that the cpu is going idle with tick stopped.
 * This info will be used in performing idle load balancing in the future.
 */
void nohz_balance_enter_idle(int cpu)
{
	/*
	 * If this cpu is going down, then nothing needs to be done.
	 */
	if (!cpu_active(cpu))
		return;

	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
		return;

	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
}

static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DYING:
		nohz_balance_exit_idle(smp_processor_id());
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
void update_max_interval(void)
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in init_sched_domains.
 */
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
{
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
	unsigned long interval;
	struct sched_domain *sd;
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
	int need_serialize;

	update_blocked_averages(cpu);

	rcu_read_lock();
	for_each_domain(cpu, sd) {
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
		if (idle != CPU_IDLE)
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		interval = clamp(interval, 1UL, max_load_balance_interval);

		need_serialize = sd->flags & SD_SERIALIZE;

		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
			if (load_balance(cpu, rq, sd, idle, &balance)) {
				/*
				 * The LBF_SOME_PINNED logic could have changed
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
				 */
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
			}
			sd->last_balance = jiffies;
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
	}
	rcu_read_unlock();

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
}

#ifdef CONFIG_NO_HZ_COMMON
/*
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
{
	struct rq *this_rq = cpu_rq(this_cpu);
	struct rq *rq;
	int balance_cpu;

	if (idle != CPU_IDLE ||
	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
		goto end;

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
		if (need_resched())
			break;

		rq = cpu_rq(balance_cpu);

		raw_spin_lock_irq(&rq->lock);
		update_rq_clock(rq);
		update_idle_cpu_load(rq);
		raw_spin_unlock_irq(&rq->lock);

		rebalance_domains(balance_cpu, CPU_IDLE);

		if (time_after(this_rq->next_balance, rq->next_balance))
			this_rq->next_balance = rq->next_balance;
	}
	nohz.next_balance = this_rq->next_balance;
end:
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
}

/*
 * Current heuristic for kicking the idle load balancer in the presence
 * of an idle cpu is the system.
 *   - This rq has more than one task.
 *   - At any scheduler domain level, this cpu's scheduler group has multiple
 *     busy cpu's exceeding the group's power.
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
 */
static inline int nohz_kick_needed(struct rq *rq, int cpu)
{
	unsigned long now = jiffies;
	struct sched_domain *sd;

	if (unlikely(idle_cpu(cpu)))
		return 0;

       /*
	* We may be recently in ticked or tickless idle mode. At the first
	* busy tick after returning from idle, we will update the busy stats.
	*/
	set_cpu_sd_state_busy();
	nohz_balance_exit_idle(cpu);

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
		return 0;

	if (time_before(now, nohz.next_balance))
		return 0;

	if (rq->nr_running >= 2)
		goto need_kick;

	rcu_read_lock();
	for_each_domain(cpu, sd) {
		struct sched_group *sg = sd->groups;
		struct sched_group_power *sgp = sg->sgp;
		int nr_busy = atomic_read(&sgp->nr_busy_cpus);

		if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
			goto need_kick_unlock;

		if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
		    && (cpumask_first_and(nohz.idle_cpus_mask,
					  sched_domain_span(sd)) < cpu))
			goto need_kick_unlock;

		if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
			break;
	}
	rcu_read_unlock();
	return 0;

need_kick_unlock:
	rcu_read_unlock();
need_kick:
	return 1;
}
#else
static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
static void run_rebalance_domains(struct softirq_action *h)
{
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_balance ?
						CPU_IDLE : CPU_NOT_IDLE;

	rebalance_domains(this_cpu, idle);

	/*
	 * If this cpu has a pending nohz_balance_kick, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
	nohz_idle_balance(this_cpu, idle);
}

static inline int on_null_domain(int cpu)
{
	return !rcu_dereference_sched(cpu_rq(cpu)->sd);
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
void trigger_load_balance(struct rq *rq, int cpu)
{
	/* Don't need to rebalance while attached to NULL domain */
	if (time_after_eq(jiffies, rq->next_balance) &&
	    likely(!on_null_domain(cpu)))
		raise_softirq(SCHED_SOFTIRQ);
#ifdef CONFIG_NO_HZ_COMMON
	if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
		nohz_balancer_kick(cpu);
#endif
}

static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
}

#endif /* CONFIG_SMP */

/*
 * scheduler tick hitting a task of our scheduling class:
 */
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		entity_tick(cfs_rq, se, queued);
	}

	if (sched_feat_numa(NUMA))
		task_tick_numa(rq, curr);

	update_rq_runnable_avg(rq, 1);
}

/*
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
 */
static void task_fork_fair(struct task_struct *p)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
	int this_cpu = smp_processor_id();
	struct rq *rq = this_rq();
	unsigned long flags;

	raw_spin_lock_irqsave(&rq->lock, flags);

	update_rq_clock(rq);

	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;

	if (unlikely(task_cpu(p) != this_cpu)) {
		rcu_read_lock();
		__set_task_cpu(p, this_cpu);
		rcu_read_unlock();
	}

	update_curr(cfs_rq);

	if (curr)
		se->vruntime = curr->vruntime;
	place_entity(cfs_rq, se, 1);

	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
		/*
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
		swap(curr->vruntime, se->vruntime);
		resched_task(rq->curr);
	}

	se->vruntime -= cfs_rq->min_vruntime;

	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
{
	if (!p->se.on_rq)
		return;

	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
	if (rq->curr == p) {
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
		check_preempt_curr(rq, p, 0);
}

static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
	 * Ensure the task's vruntime is normalized, so that when its
	 * switched back to the fair class the enqueue_entity(.flags=0) will
	 * do the right thing.
	 *
	 * If it was on_rq, then the dequeue_entity(.flags=0) will already
	 * have normalized the vruntime, if it was !on_rq, then only when
	 * the task is sleeping will it still have non-normalized vruntime.
	 */
	if (!se->on_rq && p->state != TASK_RUNNING) {
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}

#ifdef CONFIG_SMP
	/*
	* Remove our load from contribution when we leave sched_fair
	* and ensure we don't carry in an old decay_count if we
	* switch back.
	*/
	if (p->se.avg.decay_count) {
		struct cfs_rq *cfs_rq = cfs_rq_of(&p->se);
		__synchronize_entity_decay(&p->se);
		subtract_blocked_load_contrib(cfs_rq,
				p->se.avg.load_avg_contrib);
	}
#endif
}

/*
 * We switched to the sched_fair class.
 */
static void switched_to_fair(struct rq *rq, struct task_struct *p)
{
	if (!p->se.on_rq)
		return;

	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
	if (rq->curr == p)
		resched_task(rq->curr);
	else
		check_preempt_curr(rq, p, 0);
}

/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
}

void init_cfs_rq(struct cfs_rq *cfs_rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
#ifdef CONFIG_SMP
	atomic64_set(&cfs_rq->decay_counter, 1);
	atomic64_set(&cfs_rq->removed_load, 0);
#endif
}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void task_move_group_fair(struct task_struct *p, int on_rq)
{
	struct cfs_rq *cfs_rq;
	/*
	 * If the task was not on the rq at the time of this cgroup movement
	 * it must have been asleep, sleeping tasks keep their ->vruntime
	 * absolute on their old rq until wakeup (needed for the fair sleeper
	 * bonus in place_entity()).
	 *
	 * If it was on the rq, we've just 'preempted' it, which does convert
	 * ->vruntime to a relative base.
	 *
	 * Make sure both cases convert their relative position when migrating
	 * to another cgroup's rq. This does somewhat interfere with the
	 * fair sleeper stuff for the first placement, but who cares.
	 */
	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
	 *
	 * - Moving a forked child which is waiting for being woken up by
	 *   wake_up_new_task().
	 * - Moving a task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
	 *
	 * To prevent boost or penalty in the new cfs_rq caused by delta
	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
	 */
	if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
		on_rq = 1;

	if (!on_rq)
		p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
	set_task_rq(p, task_cpu(p));
	if (!on_rq) {
		cfs_rq = cfs_rq_of(&p->se);
		p->se.vruntime += cfs_rq->min_vruntime;
#ifdef CONFIG_SMP
		/*
		 * migrate_task_rq_fair() will have removed our previous
		 * contribution, but we must synchronize for ongoing future
		 * decay.
		 */
		p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
		cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
#endif
	}
}

void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
	int i;

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/*
	* Only empty task groups can be destroyed; so we can speculatively
	* check on_list without danger of it being re-added.
	*/
	if (!tg->cfs_rq[cpu]->on_list)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

	se->my_q = cfs_rq;
	update_load_set(&se->load, 0);
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;
	unsigned long flags;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);

		/* Possible calls to update_curr() need rq clock */
		update_rq_clock(rq);
		for_each_sched_entity(se)
			update_cfs_shares(group_cfs_rq(se));
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu) { }

#endif /* CONFIG_FAIR_GROUP_SCHED */


static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));

	return rr_interval;
}

/*
 * All the scheduling class methods:
 */
const struct sched_class fair_sched_class = {
	.next			= &idle_sched_class,
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
	.yield_to_task		= yield_to_task_fair,

	.check_preempt_curr	= check_preempt_wakeup,

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

#ifdef CONFIG_SMP
	.select_task_rq		= select_task_rq_fair,
	.migrate_task_rq	= migrate_task_rq_fair,

	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,

	.task_waking		= task_waking_fair,
#endif

	.set_curr_task          = set_curr_task_fair,
	.task_tick		= task_tick_fair,
	.task_fork		= task_fork_fair,

	.prio_changed		= prio_changed_fair,
	.switched_from		= switched_from_fair,
	.switched_to		= switched_to_fair,

	.get_rr_interval	= get_rr_interval_fair,

#ifdef CONFIG_FAIR_GROUP_SCHED
	.task_move_group	= task_move_group_fair,
#endif
};

#ifdef CONFIG_SCHED_DEBUG
void print_cfs_stats(struct seq_file *m, int cpu)
{
	struct cfs_rq *cfs_rq;

	rcu_read_lock();
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
		print_cfs_rq(m, cpu, cfs_rq);
	rcu_read_unlock();
}
#endif

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

#ifdef CONFIG_NO_HZ_COMMON
	nohz.next_balance = jiffies;
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
	cpu_notifier(sched_ilb_notifier, 0);
#endif
#endif /* SMP */

}