summaryrefslogtreecommitdiffstats
path: root/mm/memory.c
blob: 016c67587ef43fe797049242888540e485c87914 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
/*
 *  linux/mm/memory.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 */

/*
 * demand-loading started 01.12.91 - seems it is high on the list of
 * things wanted, and it should be easy to implement. - Linus
 */

/*
 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
 * pages started 02.12.91, seems to work. - Linus.
 *
 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
 * would have taken more than the 6M I have free, but it worked well as
 * far as I could see.
 *
 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
 */

/*
 * Real VM (paging to/from disk) started 18.12.91. Much more work and
 * thought has to go into this. Oh, well..
 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
 *		Found it. Everything seems to work now.
 * 20.12.91  -  Ok, making the swap-device changeable like the root.
 */

/*
 * 05.04.94  -  Multi-page memory management added for v1.1.
 * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
 *
 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
 *		(Gerhard.Wichert@pdb.siemens.de)
 *
 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
 */

#include <linux/kernel_stat.h>
#include <linux/mm.h>
#include <linux/hugetlb.h>
#include <linux/mman.h>
#include <linux/swap.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>
#include <linux/ksm.h>
#include <linux/rmap.h>
#include <linux/export.h>
#include <linux/delayacct.h>
#include <linux/init.h>
#include <linux/writeback.h>
#include <linux/memcontrol.h>
#include <linux/mmu_notifier.h>
#include <linux/kallsyms.h>
#include <linux/swapops.h>
#include <linux/elf.h>
#include <linux/gfp.h>

#include <asm/io.h>
#include <asm/pgalloc.h>
#include <asm/uaccess.h>
#include <asm/tlb.h>
#include <asm/tlbflush.h>
#include <asm/pgtable.h>

#include "internal.h"

#ifndef CONFIG_NEED_MULTIPLE_NODES
/* use the per-pgdat data instead for discontigmem - mbligh */
unsigned long max_mapnr;
struct page *mem_map;

EXPORT_SYMBOL(max_mapnr);
EXPORT_SYMBOL(mem_map);
#endif

unsigned long num_physpages;
/*
 * A number of key systems in x86 including ioremap() rely on the assumption
 * that high_memory defines the upper bound on direct map memory, then end
 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
 * and ZONE_HIGHMEM.
 */
void * high_memory;

EXPORT_SYMBOL(num_physpages);
EXPORT_SYMBOL(high_memory);

/*
 * Randomize the address space (stacks, mmaps, brk, etc.).
 *
 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
 *   as ancient (libc5 based) binaries can segfault. )
 */
int randomize_va_space __read_mostly =
#ifdef CONFIG_COMPAT_BRK
					1;
#else
					2;
#endif

static int __init disable_randmaps(char *s)
{
	randomize_va_space = 0;
	return 1;
}
__setup("norandmaps", disable_randmaps);

unsigned long zero_pfn __read_mostly;
unsigned long highest_memmap_pfn __read_mostly;

/*
 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
 */
static int __init init_zero_pfn(void)
{
	zero_pfn = page_to_pfn(ZERO_PAGE(0));
	return 0;
}
core_initcall(init_zero_pfn);


#if defined(SPLIT_RSS_COUNTING)

static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
{
	int i;

	for (i = 0; i < NR_MM_COUNTERS; i++) {
		if (task->rss_stat.count[i]) {
			add_mm_counter(mm, i, task->rss_stat.count[i]);
			task->rss_stat.count[i] = 0;
		}
	}
	task->rss_stat.events = 0;
}

static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
{
	struct task_struct *task = current;

	if (likely(task->mm == mm))
		task->rss_stat.count[member] += val;
	else
		add_mm_counter(mm, member, val);
}
#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)

/* sync counter once per 64 page faults */
#define TASK_RSS_EVENTS_THRESH	(64)
static void check_sync_rss_stat(struct task_struct *task)
{
	if (unlikely(task != current))
		return;
	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
		__sync_task_rss_stat(task, task->mm);
}

unsigned long get_mm_counter(struct mm_struct *mm, int member)
{
	long val = 0;

	/*
	 * Don't use task->mm here...for avoiding to use task_get_mm()..
	 * The caller must guarantee task->mm is not invalid.
	 */
	val = atomic_long_read(&mm->rss_stat.count[member]);
	/*
	 * counter is updated in asynchronous manner and may go to minus.
	 * But it's never be expected number for users.
	 */
	if (val < 0)
		return 0;
	return (unsigned long)val;
}

void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
{
	__sync_task_rss_stat(task, mm);
}
#else /* SPLIT_RSS_COUNTING */

#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)

static void check_sync_rss_stat(struct task_struct *task)
{
}

#endif /* SPLIT_RSS_COUNTING */

#ifdef HAVE_GENERIC_MMU_GATHER

static int tlb_next_batch(struct mmu_gather *tlb)
{
	struct mmu_gather_batch *batch;

	batch = tlb->active;
	if (batch->next) {
		tlb->active = batch->next;
		return 1;
	}

	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
	if (!batch)
		return 0;

	batch->next = NULL;
	batch->nr   = 0;
	batch->max  = MAX_GATHER_BATCH;

	tlb->active->next = batch;
	tlb->active = batch;

	return 1;
}

/* tlb_gather_mmu
 *	Called to initialize an (on-stack) mmu_gather structure for page-table
 *	tear-down from @mm. The @fullmm argument is used when @mm is without
 *	users and we're going to destroy the full address space (exit/execve).
 */
void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
{
	tlb->mm = mm;

	tlb->fullmm     = fullmm;
	tlb->need_flush = 0;
	tlb->fast_mode  = (num_possible_cpus() == 1);
	tlb->local.next = NULL;
	tlb->local.nr   = 0;
	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
	tlb->active     = &tlb->local;

#ifdef CONFIG_HAVE_RCU_TABLE_FREE
	tlb->batch = NULL;
#endif
}

void tlb_flush_mmu(struct mmu_gather *tlb)
{
	struct mmu_gather_batch *batch;

	if (!tlb->need_flush)
		return;
	tlb->need_flush = 0;
	tlb_flush(tlb);
#ifdef CONFIG_HAVE_RCU_TABLE_FREE
	tlb_table_flush(tlb);
#endif

	if (tlb_fast_mode(tlb))
		return;

	for (batch = &tlb->local; batch; batch = batch->next) {
		free_pages_and_swap_cache(batch->pages, batch->nr);
		batch->nr = 0;
	}
	tlb->active = &tlb->local;
}

/* tlb_finish_mmu
 *	Called at the end of the shootdown operation to free up any resources
 *	that were required.
 */
void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
{
	struct mmu_gather_batch *batch, *next;

	tlb_flush_mmu(tlb);

	/* keep the page table cache within bounds */
	check_pgt_cache();

	for (batch = tlb->local.next; batch; batch = next) {
		next = batch->next;
		free_pages((unsigned long)batch, 0);
	}
	tlb->local.next = NULL;
}

/* __tlb_remove_page
 *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
 *	handling the additional races in SMP caused by other CPUs caching valid
 *	mappings in their TLBs. Returns the number of free page slots left.
 *	When out of page slots we must call tlb_flush_mmu().
 */
int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
{
	struct mmu_gather_batch *batch;

	VM_BUG_ON(!tlb->need_flush);

	if (tlb_fast_mode(tlb)) {
		free_page_and_swap_cache(page);
		return 1; /* avoid calling tlb_flush_mmu() */
	}

	batch = tlb->active;
	batch->pages[batch->nr++] = page;
	if (batch->nr == batch->max) {
		if (!tlb_next_batch(tlb))
			return 0;
		batch = tlb->active;
	}
	VM_BUG_ON(batch->nr > batch->max);

	return batch->max - batch->nr;
}

#endif /* HAVE_GENERIC_MMU_GATHER */

#ifdef CONFIG_HAVE_RCU_TABLE_FREE

/*
 * See the comment near struct mmu_table_batch.
 */

static void tlb_remove_table_smp_sync(void *arg)
{
	/* Simply deliver the interrupt */
}

static void tlb_remove_table_one(void *table)
{
	/*
	 * This isn't an RCU grace period and hence the page-tables cannot be
	 * assumed to be actually RCU-freed.
	 *
	 * It is however sufficient for software page-table walkers that rely on
	 * IRQ disabling. See the comment near struct mmu_table_batch.
	 */
	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
	__tlb_remove_table(table);
}

static void tlb_remove_table_rcu(struct rcu_head *head)
{
	struct mmu_table_batch *batch;
	int i;

	batch = container_of(head, struct mmu_table_batch, rcu);

	for (i = 0; i < batch->nr; i++)
		__tlb_remove_table(batch->tables[i]);

	free_page((unsigned long)batch);
}

void tlb_table_flush(struct mmu_gather *tlb)
{
	struct mmu_table_batch **batch = &tlb->batch;

	if (*batch) {
		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
		*batch = NULL;
	}
}

void tlb_remove_table(struct mmu_gather *tlb, void *table)
{
	struct mmu_table_batch **batch = &tlb->batch;

	tlb->need_flush = 1;

	/*
	 * When there's less then two users of this mm there cannot be a
	 * concurrent page-table walk.
	 */
	if (atomic_read(&tlb->mm->mm_users) < 2) {
		__tlb_remove_table(table);
		return;
	}

	if (*batch == NULL) {
		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
		if (*batch == NULL) {
			tlb_remove_table_one(table);
			return;
		}
		(*batch)->nr = 0;
	}
	(*batch)->tables[(*batch)->nr++] = table;
	if ((*batch)->nr == MAX_TABLE_BATCH)
		tlb_table_flush(tlb);
}

#endif /* CONFIG_HAVE_RCU_TABLE_FREE */

/*
 * If a p?d_bad entry is found while walking page tables, report
 * the error, before resetting entry to p?d_none.  Usually (but
 * very seldom) called out from the p?d_none_or_clear_bad macros.
 */

void pgd_clear_bad(pgd_t *pgd)
{
	pgd_ERROR(*pgd);
	pgd_clear(pgd);
}

void pud_clear_bad(pud_t *pud)
{
	pud_ERROR(*pud);
	pud_clear(pud);
}

void pmd_clear_bad(pmd_t *pmd)
{
	pmd_ERROR(*pmd);
	pmd_clear(pmd);
}

/*
 * Note: this doesn't free the actual pages themselves. That
 * has been handled earlier when unmapping all the memory regions.
 */
static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
			   unsigned long addr)
{
	pgtable_t token = pmd_pgtable(*pmd);
	pmd_clear(pmd);
	pte_free_tlb(tlb, token, addr);
	tlb->mm->nr_ptes--;
}

static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
				unsigned long addr, unsigned long end,
				unsigned long floor, unsigned long ceiling)
{
	pmd_t *pmd;
	unsigned long next;
	unsigned long start;

	start = addr;
	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		if (pmd_none_or_clear_bad(pmd))
			continue;
		free_pte_range(tlb, pmd, addr);
	} while (pmd++, addr = next, addr != end);

	start &= PUD_MASK;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= PUD_MASK;
		if (!ceiling)
			return;
	}
	if (end - 1 > ceiling - 1)
		return;

	pmd = pmd_offset(pud, start);
	pud_clear(pud);
	pmd_free_tlb(tlb, pmd, start);
}

static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
				unsigned long addr, unsigned long end,
				unsigned long floor, unsigned long ceiling)
{
	pud_t *pud;
	unsigned long next;
	unsigned long start;

	start = addr;
	pud = pud_offset(pgd, addr);
	do {
		next = pud_addr_end(addr, end);
		if (pud_none_or_clear_bad(pud))
			continue;
		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
	} while (pud++, addr = next, addr != end);

	start &= PGDIR_MASK;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= PGDIR_MASK;
		if (!ceiling)
			return;
	}
	if (end - 1 > ceiling - 1)
		return;

	pud = pud_offset(pgd, start);
	pgd_clear(pgd);
	pud_free_tlb(tlb, pud, start);
}

/*
 * This function frees user-level page tables of a process.
 *
 * Must be called with pagetable lock held.
 */
void free_pgd_range(struct mmu_gather *tlb,
			unsigned long addr, unsigned long end,
			unsigned long floor, unsigned long ceiling)
{
	pgd_t *pgd;
	unsigned long next;

	/*
	 * The next few lines have given us lots of grief...
	 *
	 * Why are we testing PMD* at this top level?  Because often
	 * there will be no work to do at all, and we'd prefer not to
	 * go all the way down to the bottom just to discover that.
	 *
	 * Why all these "- 1"s?  Because 0 represents both the bottom
	 * of the address space and the top of it (using -1 for the
	 * top wouldn't help much: the masks would do the wrong thing).
	 * The rule is that addr 0 and floor 0 refer to the bottom of
	 * the address space, but end 0 and ceiling 0 refer to the top
	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
	 * that end 0 case should be mythical).
	 *
	 * Wherever addr is brought up or ceiling brought down, we must
	 * be careful to reject "the opposite 0" before it confuses the
	 * subsequent tests.  But what about where end is brought down
	 * by PMD_SIZE below? no, end can't go down to 0 there.
	 *
	 * Whereas we round start (addr) and ceiling down, by different
	 * masks at different levels, in order to test whether a table
	 * now has no other vmas using it, so can be freed, we don't
	 * bother to round floor or end up - the tests don't need that.
	 */

	addr &= PMD_MASK;
	if (addr < floor) {
		addr += PMD_SIZE;
		if (!addr)
			return;
	}
	if (ceiling) {
		ceiling &= PMD_MASK;
		if (!ceiling)
			return;
	}
	if (end - 1 > ceiling - 1)
		end -= PMD_SIZE;
	if (addr > end - 1)
		return;

	pgd = pgd_offset(tlb->mm, addr);
	do {
		next = pgd_addr_end(addr, end);
		if (pgd_none_or_clear_bad(pgd))
			continue;
		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
	} while (pgd++, addr = next, addr != end);
}

void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
		unsigned long floor, unsigned long ceiling)
{
	while (vma) {
		struct vm_area_struct *next = vma->vm_next;
		unsigned long addr = vma->vm_start;

		/*
		 * Hide vma from rmap and truncate_pagecache before freeing
		 * pgtables
		 */
		unlink_anon_vmas(vma);
		unlink_file_vma(vma);

		if (is_vm_hugetlb_page(vma)) {
			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
				floor, next? next->vm_start: ceiling);
		} else {
			/*
			 * Optimization: gather nearby vmas into one call down
			 */
			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
			       && !is_vm_hugetlb_page(next)) {
				vma = next;
				next = vma->vm_next;
				unlink_anon_vmas(vma);
				unlink_file_vma(vma);
			}
			free_pgd_range(tlb, addr, vma->vm_end,
				floor, next? next->vm_start: ceiling);
		}
		vma = next;
	}
}

int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
		pmd_t *pmd, unsigned long address)
{
	pgtable_t new = pte_alloc_one(mm, address);
	int wait_split_huge_page;
	if (!new)
		return -ENOMEM;

	/*
	 * Ensure all pte setup (eg. pte page lock and page clearing) are
	 * visible before the pte is made visible to other CPUs by being
	 * put into page tables.
	 *
	 * The other side of the story is the pointer chasing in the page
	 * table walking code (when walking the page table without locking;
	 * ie. most of the time). Fortunately, these data accesses consist
	 * of a chain of data-dependent loads, meaning most CPUs (alpha
	 * being the notable exception) will already guarantee loads are
	 * seen in-order. See the alpha page table accessors for the
	 * smp_read_barrier_depends() barriers in page table walking code.
	 */
	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */

	spin_lock(&mm->page_table_lock);
	wait_split_huge_page = 0;
	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
		mm->nr_ptes++;
		pmd_populate(mm, pmd, new);
		new = NULL;
	} else if (unlikely(pmd_trans_splitting(*pmd)))
		wait_split_huge_page = 1;
	spin_unlock(&mm->page_table_lock);
	if (new)
		pte_free(mm, new);
	if (wait_split_huge_page)
		wait_split_huge_page(vma->anon_vma, pmd);
	return 0;
}

int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
{
	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
	if (!new)
		return -ENOMEM;

	smp_wmb(); /* See comment in __pte_alloc */

	spin_lock(&init_mm.page_table_lock);
	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
		pmd_populate_kernel(&init_mm, pmd, new);
		new = NULL;
	} else
		VM_BUG_ON(pmd_trans_splitting(*pmd));
	spin_unlock(&init_mm.page_table_lock);
	if (new)
		pte_free_kernel(&init_mm, new);
	return 0;
}

static inline void init_rss_vec(int *rss)
{
	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
}

static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
{
	int i;

	if (current->mm == mm)
		sync_mm_rss(current, mm);
	for (i = 0; i < NR_MM_COUNTERS; i++)
		if (rss[i])
			add_mm_counter(mm, i, rss[i]);
}

/*
 * This function is called to print an error when a bad pte
 * is found. For example, we might have a PFN-mapped pte in
 * a region that doesn't allow it.
 *
 * The calling function must still handle the error.
 */
static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
			  pte_t pte, struct page *page)
{
	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
	pud_t *pud = pud_offset(pgd, addr);
	pmd_t *pmd = pmd_offset(pud, addr);
	struct address_space *mapping;
	pgoff_t index;
	static unsigned long resume;
	static unsigned long nr_shown;
	static unsigned long nr_unshown;

	/*
	 * Allow a burst of 60 reports, then keep quiet for that minute;
	 * or allow a steady drip of one report per second.
	 */
	if (nr_shown == 60) {
		if (time_before(jiffies, resume)) {
			nr_unshown++;
			return;
		}
		if (nr_unshown) {
			printk(KERN_ALERT
				"BUG: Bad page map: %lu messages suppressed\n",
				nr_unshown);
			nr_unshown = 0;
		}
		nr_shown = 0;
	}
	if (nr_shown++ == 0)
		resume = jiffies + 60 * HZ;

	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
	index = linear_page_index(vma, addr);

	printk(KERN_ALERT
		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
		current->comm,
		(long long)pte_val(pte), (long long)pmd_val(*pmd));
	if (page)
		dump_page(page);
	printk(KERN_ALERT
		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
	/*
	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
	 */
	if (vma->vm_ops)
		print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
				(unsigned long)vma->vm_ops->fault);
	if (vma->vm_file && vma->vm_file->f_op)
		print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
				(unsigned long)vma->vm_file->f_op->mmap);
	dump_stack();
	add_taint(TAINT_BAD_PAGE);
}

static inline int is_cow_mapping(vm_flags_t flags)
{
	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
}

#ifndef is_zero_pfn
static inline int is_zero_pfn(unsigned long pfn)
{
	return pfn == zero_pfn;
}
#endif

#ifndef my_zero_pfn
static inline unsigned long my_zero_pfn(unsigned long addr)
{
	return zero_pfn;
}
#endif

/*
 * vm_normal_page -- This function gets the "struct page" associated with a pte.
 *
 * "Special" mappings do not wish to be associated with a "struct page" (either
 * it doesn't exist, or it exists but they don't want to touch it). In this
 * case, NULL is returned here. "Normal" mappings do have a struct page.
 *
 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
 * pte bit, in which case this function is trivial. Secondly, an architecture
 * may not have a spare pte bit, which requires a more complicated scheme,
 * described below.
 *
 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
 * special mapping (even if there are underlying and valid "struct pages").
 * COWed pages of a VM_PFNMAP are always normal.
 *
 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
 * mapping will always honor the rule
 *
 *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
 *
 * And for normal mappings this is false.
 *
 * This restricts such mappings to be a linear translation from virtual address
 * to pfn. To get around this restriction, we allow arbitrary mappings so long
 * as the vma is not a COW mapping; in that case, we know that all ptes are
 * special (because none can have been COWed).
 *
 *
 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
 *
 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
 * page" backing, however the difference is that _all_ pages with a struct
 * page (that is, those where pfn_valid is true) are refcounted and considered
 * normal pages by the VM. The disadvantage is that pages are refcounted
 * (which can be slower and simply not an option for some PFNMAP users). The
 * advantage is that we don't have to follow the strict linearity rule of
 * PFNMAP mappings in order to support COWable mappings.
 *
 */
#ifdef __HAVE_ARCH_PTE_SPECIAL
# define HAVE_PTE_SPECIAL 1
#else
# define HAVE_PTE_SPECIAL 0
#endif
struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
				pte_t pte)
{
	unsigned long pfn = pte_pfn(pte);

	if (HAVE_PTE_SPECIAL) {
		if (likely(!pte_special(pte)))
			goto check_pfn;
		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
			return NULL;
		if (!is_zero_pfn(pfn))
			print_bad_pte(vma, addr, pte, NULL);
		return NULL;
	}

	/* !HAVE_PTE_SPECIAL case follows: */

	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
		if (vma->vm_flags & VM_MIXEDMAP) {
			if (!pfn_valid(pfn))
				return NULL;
			goto out;
		} else {
			unsigned long off;
			off = (addr - vma->vm_start) >> PAGE_SHIFT;
			if (pfn == vma->vm_pgoff + off)
				return NULL;
			if (!is_cow_mapping(vma->vm_flags))
				return NULL;
		}
	}

	if (is_zero_pfn(pfn))
		return NULL;
check_pfn:
	if (unlikely(pfn > highest_memmap_pfn)) {
		print_bad_pte(vma, addr, pte, NULL);
		return NULL;
	}

	/*
	 * NOTE! We still have PageReserved() pages in the page tables.
	 * eg. VDSO mappings can cause them to exist.
	 */
out:
	return pfn_to_page(pfn);
}

/*
 * copy one vm_area from one task to the other. Assumes the page tables
 * already present in the new task to be cleared in the whole range
 * covered by this vma.
 */

static inline unsigned long
copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
		unsigned long addr, int *rss)
{
	unsigned long vm_flags = vma->vm_flags;
	pte_t pte = *src_pte;
	struct page *page;

	/* pte contains position in swap or file, so copy. */
	if (unlikely(!pte_present(pte))) {
		if (!pte_file(pte)) {
			swp_entry_t entry = pte_to_swp_entry(pte);

			if (swap_duplicate(entry) < 0)
				return entry.val;

			/* make sure dst_mm is on swapoff's mmlist. */
			if (unlikely(list_empty(&dst_mm->mmlist))) {
				spin_lock(&mmlist_lock);
				if (list_empty(&dst_mm->mmlist))
					list_add(&dst_mm->mmlist,
						 &src_mm->mmlist);
				spin_unlock(&mmlist_lock);
			}
			if (likely(!non_swap_entry(entry)))
				rss[MM_SWAPENTS]++;
			else if (is_migration_entry(entry)) {
				page = migration_entry_to_page(entry);

				if (PageAnon(page))
					rss[MM_ANONPAGES]++;
				else
					rss[MM_FILEPAGES]++;

				if (is_write_migration_entry(entry) &&
				    is_cow_mapping(vm_flags)) {
					/*
					 * COW mappings require pages in both
					 * parent and child to be set to read.
					 */
					make_migration_entry_read(&entry);
					pte = swp_entry_to_pte(entry);
					set_pte_at(src_mm, addr, src_pte, pte);
				}
			}
		}
		goto out_set_pte;
	}

	/*
	 * If it's a COW mapping, write protect it both
	 * in the parent and the child
	 */
	if (is_cow_mapping(vm_flags)) {
		ptep_set_wrprotect(src_mm, addr, src_pte);
		pte = pte_wrprotect(pte);
	}

	/*
	 * If it's a shared mapping, mark it clean in
	 * the child
	 */
	if (vm_flags & VM_SHARED)
		pte = pte_mkclean(pte);
	pte = pte_mkold(pte);

	page = vm_normal_page(vma, addr, pte);
	if (page) {
		get_page(page);
		page_dup_rmap(page);
		if (PageAnon(page))
			rss[MM_ANONPAGES]++;
		else
			rss[MM_FILEPAGES]++;
	}

out_set_pte:
	set_pte_at(dst_mm, addr, dst_pte, pte);
	return 0;
}

int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
		   unsigned long addr, unsigned long end)
{
	pte_t *orig_src_pte, *orig_dst_pte;
	pte_t *src_pte, *dst_pte;
	spinlock_t *src_ptl, *dst_ptl;
	int progress = 0;
	int rss[NR_MM_COUNTERS];
	swp_entry_t entry = (swp_entry_t){0};

again:
	init_rss_vec(rss);

	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
	if (!dst_pte)
		return -ENOMEM;
	src_pte = pte_offset_map(src_pmd, addr);
	src_ptl = pte_lockptr(src_mm, src_pmd);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
	orig_src_pte = src_pte;
	orig_dst_pte = dst_pte;
	arch_enter_lazy_mmu_mode();

	do {
		/*
		 * We are holding two locks at this point - either of them
		 * could generate latencies in another task on another CPU.
		 */
		if (progress >= 32) {
			progress = 0;
			if (need_resched() ||
			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
				break;
		}
		if (pte_none(*src_pte)) {
			progress++;
			continue;
		}
		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
							vma, addr, rss);
		if (entry.val)
			break;
		progress += 8;
	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);

	arch_leave_lazy_mmu_mode();
	spin_unlock(src_ptl);
	pte_unmap(orig_src_pte);
	add_mm_rss_vec(dst_mm, rss);
	pte_unmap_unlock(orig_dst_pte, dst_ptl);
	cond_resched();

	if (entry.val) {
		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
			return -ENOMEM;
		progress = 0;
	}
	if (addr != end)
		goto again;
	return 0;
}

static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
		unsigned long addr, unsigned long end)
{
	pmd_t *src_pmd, *dst_pmd;
	unsigned long next;

	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
	if (!dst_pmd)
		return -ENOMEM;
	src_pmd = pmd_offset(src_pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		if (pmd_trans_huge(*src_pmd)) {
			int err;
			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
			err = copy_huge_pmd(dst_mm, src_mm,
					    dst_pmd, src_pmd, addr, vma);
			if (err == -ENOMEM)
				return -ENOMEM;
			if (!err)
				continue;
			/* fall through */
		}
		if (pmd_none_or_clear_bad(src_pmd))
			continue;
		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
						vma, addr, next))
			return -ENOMEM;
	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
	return 0;
}

static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
		unsigned long addr, unsigned long end)
{
	pud_t *src_pud, *dst_pud;
	unsigned long next;

	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
	if (!dst_pud)
		return -ENOMEM;
	src_pud = pud_offset(src_pgd, addr);
	do {
		next = pud_addr_end(addr, end);
		if (pud_none_or_clear_bad(src_pud))
			continue;
		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
						vma, addr, next))
			return -ENOMEM;
	} while (dst_pud++, src_pud++, addr = next, addr != end);
	return 0;
}

int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		struct vm_area_struct *vma)
{
	pgd_t *src_pgd, *dst_pgd;
	unsigned long next;
	unsigned long addr = vma->vm_start;
	unsigned long end = vma->vm_end;
	int ret;

	/*
	 * Don't copy ptes where a page fault will fill them correctly.
	 * Fork becomes much lighter when there are big shared or private
	 * readonly mappings. The tradeoff is that copy_page_range is more
	 * efficient than faulting.
	 */
	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
		if (!vma->anon_vma)
			return 0;
	}

	if (is_vm_hugetlb_page(vma))
		return copy_hugetlb_page_range(dst_mm, src_mm, vma);

	if (unlikely(is_pfn_mapping(vma))) {
		/*
		 * We do not free on error cases below as remove_vma
		 * gets called on error from higher level routine
		 */
		ret = track_pfn_vma_copy(vma);
		if (ret)
			return ret;
	}

	/*
	 * We need to invalidate the secondary MMU mappings only when
	 * there could be a permission downgrade on the ptes of the
	 * parent mm. And a permission downgrade will only happen if
	 * is_cow_mapping() returns true.
	 */
	if (is_cow_mapping(vma->vm_flags))
		mmu_notifier_invalidate_range_start(src_mm, addr, end);

	ret = 0;
	dst_pgd = pgd_offset(dst_mm, addr);
	src_pgd = pgd_offset(src_mm, addr);
	do {
		next = pgd_addr_end(addr, end);
		if (pgd_none_or_clear_bad(src_pgd))
			continue;
		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
					    vma, addr, next))) {
			ret = -ENOMEM;
			break;
		}
	} while (dst_pgd++, src_pgd++, addr = next, addr != end);

	if (is_cow_mapping(vma->vm_flags))
		mmu_notifier_invalidate_range_end(src_mm,
						  vma->vm_start, end);
	return ret;
}

static unsigned long zap_pte_range(struct mmu_gather *tlb,
				struct vm_area_struct *vma, pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct zap_details *details)
{
	struct mm_struct *mm = tlb->mm;
	int force_flush = 0;
	int rss[NR_MM_COUNTERS];
	spinlock_t *ptl;
	pte_t *start_pte;
	pte_t *pte;

again:
	init_rss_vec(rss);
	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
	pte = start_pte;
	arch_enter_lazy_mmu_mode();
	do {
		pte_t ptent = *pte;
		if (pte_none(ptent)) {
			continue;
		}

		if (pte_present(ptent)) {
			struct page *page;

			page = vm_normal_page(vma, addr, ptent);
			if (unlikely(details) && page) {
				/*
				 * unmap_shared_mapping_pages() wants to
				 * invalidate cache without truncating:
				 * unmap shared but keep private pages.
				 */
				if (details->check_mapping &&
				    details->check_mapping != page->mapping)
					continue;
				/*
				 * Each page->index must be checked when
				 * invalidating or truncating nonlinear.
				 */
				if (details->nonlinear_vma &&
				    (page->index < details->first_index ||
				     page->index > details->last_index))
					continue;
			}
			ptent = ptep_get_and_clear_full(mm, addr, pte,
							tlb->fullmm);
			tlb_remove_tlb_entry(tlb, pte, addr);
			if (unlikely(!page))
				continue;
			if (unlikely(details) && details->nonlinear_vma
			    && linear_page_index(details->nonlinear_vma,
						addr) != page->index)
				set_pte_at(mm, addr, pte,
					   pgoff_to_pte(page->index));
			if (PageAnon(page))
				rss[MM_ANONPAGES]--;
			else {
				if (pte_dirty(ptent))
					set_page_dirty(page);
				if (pte_young(ptent) &&
				    likely(!VM_SequentialReadHint(vma)))
					mark_page_accessed(page);
				rss[MM_FILEPAGES]--;
			}
			page_remove_rmap(page);
			if (unlikely(page_mapcount(page) < 0))
				print_bad_pte(vma, addr, ptent, page);
			force_flush = !__tlb_remove_page(tlb, page);
			if (force_flush)
				break;
			continue;
		}
		/*
		 * If details->check_mapping, we leave swap entries;
		 * if details->nonlinear_vma, we leave file entries.
		 */
		if (unlikely(details))
			continue;
		if (pte_file(ptent)) {
			if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
				print_bad_pte(vma, addr, ptent, NULL);
		} else {
			swp_entry_t entry = pte_to_swp_entry(ptent);

			if (!non_swap_entry(entry))
				rss[MM_SWAPENTS]--;
			else if (is_migration_entry(entry)) {
				struct page *page;

				page = migration_entry_to_page(entry);

				if (PageAnon(page))
					rss[MM_ANONPAGES]--;
				else
					rss[MM_FILEPAGES]--;
			}
			if (unlikely(!free_swap_and_cache(entry)))
				print_bad_pte(vma, addr, ptent, NULL);
		}
		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
	} while (pte++, addr += PAGE_SIZE, addr != end);

	add_mm_rss_vec(mm, rss);
	arch_leave_lazy_mmu_mode();
	pte_unmap_unlock(start_pte, ptl);

	/*
	 * mmu_gather ran out of room to batch pages, we break out of
	 * the PTE lock to avoid doing the potential expensive TLB invalidate
	 * and page-free while holding it.
	 */
	if (force_flush) {
		force_flush = 0;
		tlb_flush_mmu(tlb);
		if (addr != end)
			goto again;
	}

	return addr;
}

static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
				struct vm_area_struct *vma, pud_t *pud,
				unsigned long addr, unsigned long end,
				struct zap_details *details)
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		if (pmd_trans_huge(*pmd)) {
			if (next-addr != HPAGE_PMD_SIZE) {
				VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
				split_huge_page_pmd(vma->vm_mm, pmd);
			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
				continue;
			/* fall through */
		}
		if (pmd_none_or_clear_bad(pmd))
			continue;
		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
		cond_resched();
	} while (pmd++, addr = next, addr != end);

	return addr;
}

static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
				struct vm_area_struct *vma, pgd_t *pgd,
				unsigned long addr, unsigned long end,
				struct zap_details *details)
{
	pud_t *pud;
	unsigned long next;

	pud = pud_offset(pgd, addr);
	do {
		next = pud_addr_end(addr, end);
		if (pud_none_or_clear_bad(pud))
			continue;
		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
	} while (pud++, addr = next, addr != end);

	return addr;
}

static void unmap_page_range(struct mmu_gather *tlb,
			     struct vm_area_struct *vma,
			     unsigned long addr, unsigned long end,
			     struct zap_details *details)
{
	pgd_t *pgd;
	unsigned long next;

	if (details && !details->check_mapping && !details->nonlinear_vma)
		details = NULL;

	BUG_ON(addr >= end);
	mem_cgroup_uncharge_start();
	tlb_start_vma(tlb, vma);
	pgd = pgd_offset(vma->vm_mm, addr);
	do {
		next = pgd_addr_end(addr, end);
		if (pgd_none_or_clear_bad(pgd))
			continue;
		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
	} while (pgd++, addr = next, addr != end);
	tlb_end_vma(tlb, vma);
	mem_cgroup_uncharge_end();
}

/**
 * unmap_vmas - unmap a range of memory covered by a list of vma's
 * @tlb: address of the caller's struct mmu_gather
 * @vma: the starting vma
 * @start_addr: virtual address at which to start unmapping
 * @end_addr: virtual address at which to end unmapping
 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
 * @details: details of nonlinear truncation or shared cache invalidation
 *
 * Unmap all pages in the vma list.
 *
 * Only addresses between `start' and `end' will be unmapped.
 *
 * The VMA list must be sorted in ascending virtual address order.
 *
 * unmap_vmas() assumes that the caller will flush the whole unmapped address
 * range after unmap_vmas() returns.  So the only responsibility here is to
 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
 * drops the lock and schedules.
 */
void unmap_vmas(struct mmu_gather *tlb,
		struct vm_area_struct *vma, unsigned long start_addr,
		unsigned long end_addr, unsigned long *nr_accounted,
		struct zap_details *details)
{
	unsigned long start = start_addr;
	struct mm_struct *mm = vma->vm_mm;

	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
		unsigned long end;

		start = max(vma->vm_start, start_addr);
		if (start >= vma->vm_end)
			continue;
		end = min(vma->vm_end, end_addr);
		if (end <= vma->vm_start)
			continue;

		if (vma->vm_flags & VM_ACCOUNT)
			*nr_accounted += (end - start) >> PAGE_SHIFT;

		if (unlikely(is_pfn_mapping(vma)))
			untrack_pfn_vma(vma, 0, 0);

		if (start != end) {
			if (unlikely(is_vm_hugetlb_page(vma))) {
				/*
				 * It is undesirable to test vma->vm_file as it
				 * should be non-null for valid hugetlb area.
				 * However, vm_file will be NULL in the error
				 * cleanup path of do_mmap_pgoff. When
				 * hugetlbfs ->mmap method fails,
				 * do_mmap_pgoff() nullifies vma->vm_file
				 * before calling this function to clean up.
				 * Since no pte has actually been setup, it is
				 * safe to do nothing in this case.
				 */
				if (vma->vm_file)
					unmap_hugepage_range(vma, start, end, NULL);
			} else
				unmap_page_range(tlb, vma, start, end, details);
		}
	}

	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
}

/**
 * zap_page_range - remove user pages in a given range
 * @vma: vm_area_struct holding the applicable pages
 * @address: starting address of pages to zap
 * @size: number of bytes to zap
 * @details: details of nonlinear truncation or shared cache invalidation
 */
void zap_page_range(struct vm_area_struct *vma, unsigned long address,
		unsigned long size, struct zap_details *details)
{
	struct mm_struct *mm = vma->vm_mm;
	struct mmu_gather tlb;
	unsigned long end = address + size;
	unsigned long nr_accounted = 0;

	lru_add_drain();
	tlb_gather_mmu(&tlb, mm, 0);
	update_hiwater_rss(mm);
	unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
	tlb_finish_mmu(&tlb, address, end);
}

/**
 * zap_vma_ptes - remove ptes mapping the vma
 * @vma: vm_area_struct holding ptes to be zapped
 * @address: starting address of pages to zap
 * @size: number of bytes to zap
 *
 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
 *
 * The entire address range must be fully contained within the vma.
 *
 * Returns 0 if successful.
 */
int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
		unsigned long size)
{
	if (address < vma->vm_start || address + size > vma->vm_end ||
	    		!(vma->vm_flags & VM_PFNMAP))
		return -1;
	zap_page_range(vma, address, size, NULL);
	return 0;
}
EXPORT_SYMBOL_GPL(zap_vma_ptes);

/**
 * follow_page - look up a page descriptor from a user-virtual address
 * @vma: vm_area_struct mapping @address
 * @address: virtual address to look up
 * @flags: flags modifying lookup behaviour
 *
 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
 *
 * Returns the mapped (struct page *), %NULL if no mapping exists, or
 * an error pointer if there is a mapping to something not represented
 * by a page descriptor (see also vm_normal_page()).
 */
struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
			unsigned int flags)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *ptep, pte;
	spinlock_t *ptl;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
	if (!IS_ERR(page)) {
		BUG_ON(flags & FOLL_GET);
		goto out;
	}

	page = NULL;
	pgd = pgd_offset(mm, address);
	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
		goto no_page_table;

	pud = pud_offset(pgd, address);
	if (pud_none(*pud))
		goto no_page_table;
	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
		BUG_ON(flags & FOLL_GET);
		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
		goto out;
	}
	if (unlikely(pud_bad(*pud)))
		goto no_page_table;

	pmd = pmd_offset(pud, address);
	if (pmd_none(*pmd))
		goto no_page_table;
	if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
		BUG_ON(flags & FOLL_GET);
		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
		goto out;
	}
	if (pmd_trans_huge(*pmd)) {
		if (flags & FOLL_SPLIT) {
			split_huge_page_pmd(mm, pmd);
			goto split_fallthrough;
		}
		spin_lock(&mm->page_table_lock);
		if (likely(pmd_trans_huge(*pmd))) {
			if (unlikely(pmd_trans_splitting(*pmd))) {
				spin_unlock(&mm->page_table_lock);
				wait_split_huge_page(vma->anon_vma, pmd);
			} else {
				page = follow_trans_huge_pmd(mm, address,
							     pmd, flags);
				spin_unlock(&mm->page_table_lock);
				goto out;
			}
		} else
			spin_unlock(&mm->page_table_lock);
		/* fall through */
	}
split_fallthrough:
	if (unlikely(pmd_bad(*pmd)))
		goto no_page_table;

	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);

	pte = *ptep;
	if (!pte_present(pte))
		goto no_page;
	if ((flags & FOLL_WRITE) && !pte_write(pte))
		goto unlock;

	page = vm_normal_page(vma, address, pte);
	if (unlikely(!page)) {
		if ((flags & FOLL_DUMP) ||
		    !is_zero_pfn(pte_pfn(pte)))
			goto bad_page;
		page = pte_page(pte);
	}

	if (flags & FOLL_GET)
		get_page_foll(page);
	if (flags & FOLL_TOUCH) {
		if ((flags & FOLL_WRITE) &&
		    !pte_dirty(pte) && !PageDirty(page))
			set_page_dirty(page);
		/*
		 * pte_mkyoung() would be more correct here, but atomic care
		 * is needed to avoid losing the dirty bit: it is easier to use
		 * mark_page_accessed().
		 */
		mark_page_accessed(page);
	}
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
		/*
		 * The preliminary mapping check is mainly to avoid the
		 * pointless overhead of lock_page on the ZERO_PAGE
		 * which might bounce very badly if there is contention.
		 *
		 * If the page is already locked, we don't need to
		 * handle it now - vmscan will handle it later if and
		 * when it attempts to reclaim the page.
		 */
		if (page->mapping && trylock_page(page)) {
			lru_add_drain();  /* push cached pages to LRU */
			/*
			 * Because we lock page here and migration is
			 * blocked by the pte's page reference, we need
			 * only check for file-cache page truncation.
			 */
			if (page->mapping)
				mlock_vma_page(page);
			unlock_page(page);
		}
	}
unlock:
	pte_unmap_unlock(ptep, ptl);
out:
	return page;

bad_page:
	pte_unmap_unlock(ptep, ptl);
	return ERR_PTR(-EFAULT);

no_page:
	pte_unmap_unlock(ptep, ptl);
	if (!pte_none(pte))
		return page;

no_page_table:
	/*
	 * When core dumping an enormous anonymous area that nobody
	 * has touched so far, we don't want to allocate unnecessary pages or
	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
	 * then get_dump_page() will return NULL to leave a hole in the dump.
	 * But we can only make this optimization where a hole would surely
	 * be zero-filled if handle_mm_fault() actually did handle it.
	 */
	if ((flags & FOLL_DUMP) &&
	    (!vma->vm_ops || !vma->vm_ops->fault))
		return ERR_PTR(-EFAULT);
	return page;
}

static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
{
	return stack_guard_page_start(vma, addr) ||
	       stack_guard_page_end(vma, addr+PAGE_SIZE);
}

/**
 * __get_user_pages() - pin user pages in memory
 * @tsk:	task_struct of target task
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying pin behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
 * @nonblocking: whether waiting for disk IO or mmap_sem contention
 *
 * Returns number of pages pinned. This may be fewer than the number
 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 * were pinned, returns -errno. Each page returned must be released
 * with a put_page() call when it is finished with. vmas will only
 * remain valid while mmap_sem is held.
 *
 * Must be called with mmap_sem held for read or write.
 *
 * __get_user_pages walks a process's page tables and takes a reference to
 * each struct page that each user address corresponds to at a given
 * instant. That is, it takes the page that would be accessed if a user
 * thread accesses the given user virtual address at that instant.
 *
 * This does not guarantee that the page exists in the user mappings when
 * __get_user_pages returns, and there may even be a completely different
 * page there in some cases (eg. if mmapped pagecache has been invalidated
 * and subsequently re faulted). However it does guarantee that the page
 * won't be freed completely. And mostly callers simply care that the page
 * contains data that was valid *at some point in time*. Typically, an IO
 * or similar operation cannot guarantee anything stronger anyway because
 * locks can't be held over the syscall boundary.
 *
 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
 * appropriate) must be called after the page is finished with, and
 * before put_page is called.
 *
 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
 * or mmap_sem contention, and if waiting is needed to pin all pages,
 * *@nonblocking will be set to 0.
 *
 * In most cases, get_user_pages or get_user_pages_fast should be used
 * instead of __get_user_pages. __get_user_pages should be used only if
 * you need some special @gup_flags.
 */
int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
		     unsigned long start, int nr_pages, unsigned int gup_flags,
		     struct page **pages, struct vm_area_struct **vmas,
		     int *nonblocking)
{
	int i;
	unsigned long vm_flags;

	if (nr_pages <= 0)
		return 0;

	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));

	/* 
	 * Require read or write permissions.
	 * If FOLL_FORCE is set, we only require the "MAY" flags.
	 */
	vm_flags  = (gup_flags & FOLL_WRITE) ?
			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
	vm_flags &= (gup_flags & FOLL_FORCE) ?
			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
	i = 0;

	do {
		struct vm_area_struct *vma;

		vma = find_extend_vma(mm, start);
		if (!vma && in_gate_area(mm, start)) {
			unsigned long pg = start & PAGE_MASK;
			pgd_t *pgd;
			pud_t *pud;
			pmd_t *pmd;
			pte_t *pte;

			/* user gate pages are read-only */
			if (gup_flags & FOLL_WRITE)
				return i ? : -EFAULT;
			if (pg > TASK_SIZE)
				pgd = pgd_offset_k(pg);
			else
				pgd = pgd_offset_gate(mm, pg);
			BUG_ON(pgd_none(*pgd));
			pud = pud_offset(pgd, pg);
			BUG_ON(pud_none(*pud));
			pmd = pmd_offset(pud, pg);
			if (pmd_none(*pmd))
				return i ? : -EFAULT;
			VM_BUG_ON(pmd_trans_huge(*pmd));
			pte = pte_offset_map(pmd, pg);
			if (pte_none(*pte)) {
				pte_unmap(pte);
				return i ? : -EFAULT;
			}
			vma = get_gate_vma(mm);
			if (pages) {
				struct page *page;

				page = vm_normal_page(vma, start, *pte);
				if (!page) {
					if (!(gup_flags & FOLL_DUMP) &&
					     is_zero_pfn(pte_pfn(*pte)))
						page = pte_page(*pte);
					else {
						pte_unmap(pte);
						return i ? : -EFAULT;
					}
				}
				pages[i] = page;
				get_page(page);
			}
			pte_unmap(pte);
			goto next_page;
		}

		if (!vma ||
		    (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
		    !(vm_flags & vma->vm_flags))
			return i ? : -EFAULT;

		if (is_vm_hugetlb_page(vma)) {
			i = follow_hugetlb_page(mm, vma, pages, vmas,
					&start, &nr_pages, i, gup_flags);
			continue;
		}

		do {
			struct page *page;
			unsigned int foll_flags = gup_flags;

			/*
			 * If we have a pending SIGKILL, don't keep faulting
			 * pages and potentially allocating memory.
			 */
			if (unlikely(fatal_signal_pending(current)))
				return i ? i : -ERESTARTSYS;

			cond_resched();
			while (!(page = follow_page(vma, start, foll_flags))) {
				int ret;
				unsigned int fault_flags = 0;

				/* For mlock, just skip the stack guard page. */
				if (foll_flags & FOLL_MLOCK) {
					if (stack_guard_page(vma, start))
						goto next_page;
				}
				if (foll_flags & FOLL_WRITE)
					fault_flags |= FAULT_FLAG_WRITE;
				if (nonblocking)
					fault_flags |= FAULT_FLAG_ALLOW_RETRY;
				if (foll_flags & FOLL_NOWAIT)
					fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);

				ret = handle_mm_fault(mm, vma, start,
							fault_flags);

				if (ret & VM_FAULT_ERROR) {
					if (ret & VM_FAULT_OOM)
						return i ? i : -ENOMEM;
					if (ret & (VM_FAULT_HWPOISON |
						   VM_FAULT_HWPOISON_LARGE)) {
						if (i)
							return i;
						else if (gup_flags & FOLL_HWPOISON)
							return -EHWPOISON;
						else
							return -EFAULT;
					}
					if (ret & VM_FAULT_SIGBUS)
						return i ? i : -EFAULT;
					BUG();
				}

				if (tsk) {
					if (ret & VM_FAULT_MAJOR)
						tsk->maj_flt++;
					else
						tsk->min_flt++;
				}

				if (ret & VM_FAULT_RETRY) {
					if (nonblocking)
						*nonblocking = 0;
					return i;
				}

				/*
				 * The VM_FAULT_WRITE bit tells us that
				 * do_wp_page has broken COW when necessary,
				 * even if maybe_mkwrite decided not to set
				 * pte_write. We can thus safely do subsequent
				 * page lookups as if they were reads. But only
				 * do so when looping for pte_write is futile:
				 * in some cases userspace may also be wanting
				 * to write to the gotten user page, which a
				 * read fault here might prevent (a readonly
				 * page might get reCOWed by userspace write).
				 */
				if ((ret & VM_FAULT_WRITE) &&
				    !(vma->vm_flags & VM_WRITE))
					foll_flags &= ~FOLL_WRITE;

				cond_resched();
			}
			if (IS_ERR(page))
				return i ? i : PTR_ERR(page);
			if (pages) {
				pages[i] = page;

				flush_anon_page(vma, page, start);
				flush_dcache_page(page);
			}
next_page:
			if (vmas)
				vmas[i] = vma;
			i++;
			start += PAGE_SIZE;
			nr_pages--;
		} while (nr_pages && start < vma->vm_end);
	} while (nr_pages);
	return i;
}
EXPORT_SYMBOL(__get_user_pages);

/*
 * fixup_user_fault() - manually resolve a user page fault
 * @tsk:	the task_struct to use for page fault accounting, or
 *		NULL if faults are not to be recorded.
 * @mm:		mm_struct of target mm
 * @address:	user address
 * @fault_flags:flags to pass down to handle_mm_fault()
 *
 * This is meant to be called in the specific scenario where for locking reasons
 * we try to access user memory in atomic context (within a pagefault_disable()
 * section), this returns -EFAULT, and we want to resolve the user fault before
 * trying again.
 *
 * Typically this is meant to be used by the futex code.
 *
 * The main difference with get_user_pages() is that this function will
 * unconditionally call handle_mm_fault() which will in turn perform all the
 * necessary SW fixup of the dirty and young bits in the PTE, while
 * handle_mm_fault() only guarantees to update these in the struct page.
 *
 * This is important for some architectures where those bits also gate the
 * access permission to the page because they are maintained in software.  On
 * such architectures, gup() will not be enough to make a subsequent access
 * succeed.
 *
 * This should be called with the mm_sem held for read.
 */
int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
		     unsigned long address, unsigned int fault_flags)
{
	struct vm_area_struct *vma;
	int ret;

	vma = find_extend_vma(mm, address);
	if (!vma || address < vma->vm_start)
		return -EFAULT;

	ret = handle_mm_fault(mm, vma, address, fault_flags);
	if (ret & VM_FAULT_ERROR) {
		if (ret & VM_FAULT_OOM)
			return -ENOMEM;
		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
			return -EHWPOISON;
		if (ret & VM_FAULT_SIGBUS)
			return -EFAULT;
		BUG();
	}
	if (tsk) {
		if (ret & VM_FAULT_MAJOR)
			tsk->maj_flt++;
		else
			tsk->min_flt++;
	}
	return 0;
}

/*
 * get_user_pages() - pin user pages in memory
 * @tsk:	the task_struct to use for page fault accounting, or
 *		NULL if faults are not to be recorded.
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @write:	whether pages will be written to by the caller
 * @force:	whether to force write access even if user mapping is
 *		readonly. This will result in the page being COWed even
 *		in MAP_SHARED mappings. You do not want this.
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
 *
 * Returns number of pages pinned. This may be fewer than the number
 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 * were pinned, returns -errno. Each page returned must be released
 * with a put_page() call when it is finished with. vmas will only
 * remain valid while mmap_sem is held.
 *
 * Must be called with mmap_sem held for read or write.
 *
 * get_user_pages walks a process's page tables and takes a reference to
 * each struct page that each user address corresponds to at a given
 * instant. That is, it takes the page that would be accessed if a user
 * thread accesses the given user virtual address at that instant.
 *
 * This does not guarantee that the page exists in the user mappings when
 * get_user_pages returns, and there may even be a completely different
 * page there in some cases (eg. if mmapped pagecache has been invalidated
 * and subsequently re faulted). However it does guarantee that the page
 * won't be freed completely. And mostly callers simply care that the page
 * contains data that was valid *at some point in time*. Typically, an IO
 * or similar operation cannot guarantee anything stronger anyway because
 * locks can't be held over the syscall boundary.
 *
 * If write=0, the page must not be written to. If the page is written to,
 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
 * after the page is finished with, and before put_page is called.
 *
 * get_user_pages is typically used for fewer-copy IO operations, to get a
 * handle on the memory by some means other than accesses via the user virtual
 * addresses. The pages may be submitted for DMA to devices or accessed via
 * their kernel linear mapping (via the kmap APIs). Care should be taken to
 * use the correct cache flushing APIs.
 *
 * See also get_user_pages_fast, for performance critical applications.
 */
int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
		unsigned long start, int nr_pages, int write, int force,
		struct page **pages, struct vm_area_struct **vmas)
{
	int flags = FOLL_TOUCH;

	if (pages)
		flags |= FOLL_GET;
	if (write)
		flags |= FOLL_WRITE;
	if (force)
		flags |= FOLL_FORCE;

	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
				NULL);
}
EXPORT_SYMBOL(get_user_pages);

/**
 * get_dump_page() - pin user page in memory while writing it to core dump
 * @addr: user address
 *
 * Returns struct page pointer of user page pinned for dump,
 * to be freed afterwards by page_cache_release() or put_page().
 *
 * Returns NULL on any kind of failure - a hole must then be inserted into
 * the corefile, to preserve alignment with its headers; and also returns
 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
 * allowing a hole to be left in the corefile to save diskspace.
 *
 * Called without mmap_sem, but after all other threads have been killed.
 */
#ifdef CONFIG_ELF_CORE
struct page *get_dump_page(unsigned long addr)
{
	struct vm_area_struct *vma;
	struct page *page;

	if (__get_user_pages(current, current->mm, addr, 1,
			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
			     NULL) < 1)
		return NULL;
	flush_cache_page(vma, addr, page_to_pfn(page));
	return page;
}
#endif /* CONFIG_ELF_CORE */

pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
			spinlock_t **ptl)
{
	pgd_t * pgd = pgd_offset(mm, addr);
	pud_t * pud = pud_alloc(mm, pgd, addr);
	if (pud) {
		pmd_t * pmd = pmd_alloc(mm, pud, addr);
		if (pmd) {
			VM_BUG_ON(pmd_trans_huge(*pmd));
			return pte_alloc_map_lock(mm, pmd, addr, ptl);
		}
	}
	return NULL;
}

/*
 * This is the old fallback for page remapping.
 *
 * For historical reasons, it only allows reserved pages. Only
 * old drivers should use this, and they needed to mark their
 * pages reserved for the old functions anyway.
 */
static int insert_page(struct vm_area_struct *vma, unsigned long addr,
			struct page *page, pgprot_t prot)
{
	struct mm_struct *mm = vma->vm_mm;
	int retval;
	pte_t *pte;
	spinlock_t *ptl;

	retval = -EINVAL;
	if (PageAnon(page))
		goto out;
	retval = -ENOMEM;
	flush_dcache_page(page);
	pte = get_locked_pte(mm, addr, &ptl);
	if (!pte)
		goto out;
	retval = -EBUSY;
	if (!pte_none(*pte))
		goto out_unlock;

	/* Ok, finally just insert the thing.. */
	get_page(page);
	inc_mm_counter_fast(mm, MM_FILEPAGES);
	page_add_file_rmap(page);
	set_pte_at(mm, addr, pte, mk_pte(page, prot));

	retval = 0;
	pte_unmap_unlock(pte, ptl);
	return retval;
out_unlock:
	pte_unmap_unlock(pte, ptl);
out:
	return retval;
}

/**
 * vm_insert_page - insert single page into user vma
 * @vma: user vma to map to
 * @addr: target user address of this page
 * @page: source kernel page
 *
 * This allows drivers to insert individual pages they've allocated
 * into a user vma.
 *
 * The page has to be a nice clean _individual_ kernel allocation.
 * If you allocate a compound page, you need to have marked it as
 * such (__GFP_COMP), or manually just split the page up yourself
 * (see split_page()).
 *
 * NOTE! Traditionally this was done with "remap_pfn_range()" which
 * took an arbitrary page protection parameter. This doesn't allow
 * that. Your vma protection will have to be set up correctly, which
 * means that if you want a shared writable mapping, you'd better
 * ask for a shared writable mapping!
 *
 * The page does not need to be reserved.
 */
int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
			struct page *page)
{
	if (addr < vma->vm_start || addr >= vma->vm_end)
		return -EFAULT;
	if (!page_count(page))
		return -EINVAL;
	vma->vm_flags |= VM_INSERTPAGE;
	return insert_page(vma, addr, page, vma->vm_page_prot);
}
EXPORT_SYMBOL(vm_insert_page);

static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
			unsigned long pfn, pgprot_t prot)
{
	struct mm_struct *mm = vma->vm_mm;
	int retval;
	pte_t *pte, entry;
	spinlock_t *ptl;

	retval = -ENOMEM;
	pte = get_locked_pte(mm, addr, &ptl);
	if (!pte)
		goto out;
	retval = -EBUSY;
	if (!pte_none(*pte))
		goto out_unlock;

	/* Ok, finally just insert the thing.. */
	entry = pte_mkspecial(pfn_pte(pfn, prot));
	set_pte_at(mm, addr, pte, entry);
	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */

	retval = 0;
out_unlock:
	pte_unmap_unlock(pte, ptl);
out:
	return retval;
}

/**
 * vm_insert_pfn - insert single pfn into user vma
 * @vma: user vma to map to
 * @addr: target user address of this page
 * @pfn: source kernel pfn
 *
 * Similar to vm_inert_page, this allows drivers to insert individual pages
 * they've allocated into a user vma. Same comments apply.
 *
 * This function should only be called from a vm_ops->fault handler, and
 * in that case the handler should return NULL.
 *
 * vma cannot be a COW mapping.
 *
 * As this is called only for pages that do not currently exist, we
 * do not need to flush old virtual caches or the TLB.
 */
int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
			unsigned long pfn)
{
	int ret;
	pgprot_t pgprot = vma->vm_page_prot;
	/*
	 * Technically, architectures with pte_special can avoid all these
	 * restrictions (same for remap_pfn_range).  However we would like
	 * consistency in testing and feature parity among all, so we should
	 * try to keep these invariants in place for everybody.
	 */
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return -EFAULT;
	if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
		return -EINVAL;

	ret = insert_pfn(vma, addr, pfn, pgprot);

	if (ret)
		untrack_pfn_vma(vma, pfn, PAGE_SIZE);

	return ret;
}
EXPORT_SYMBOL(vm_insert_pfn);

int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
			unsigned long pfn)
{
	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return -EFAULT;

	/*
	 * If we don't have pte special, then we have to use the pfn_valid()
	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
	 * refcount the page if pfn_valid is true (hence insert_page rather
	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
	 * without pte special, it would there be refcounted as a normal page.
	 */
	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
		struct page *page;

		page = pfn_to_page(pfn);
		return insert_page(vma, addr, page, vma->vm_page_prot);
	}
	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
}
EXPORT_SYMBOL(vm_insert_mixed);

/*
 * maps a range of physical memory into the requested pages. the old
 * mappings are removed. any references to nonexistent pages results
 * in null mappings (currently treated as "copy-on-access")
 */
static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
			unsigned long addr, unsigned long end,
			unsigned long pfn, pgprot_t prot)
{
	pte_t *pte;
	spinlock_t *ptl;

	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
	if (!pte)
		return -ENOMEM;
	arch_enter_lazy_mmu_mode();
	do {
		BUG_ON(!pte_none(*pte));
		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
		pfn++;
	} while (pte++, addr += PAGE_SIZE, addr != end);
	arch_leave_lazy_mmu_mode();
	pte_unmap_unlock(pte - 1, ptl);
	return 0;
}

static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
			unsigned long addr, unsigned long end,
			unsigned long pfn, pgprot_t prot)
{
	pmd_t *pmd;
	unsigned long next;

	pfn -= addr >> PAGE_SHIFT;
	pmd = pmd_alloc(mm, pud, addr);
	if (!pmd)
		return -ENOMEM;
	VM_BUG_ON(pmd_trans_huge(*pmd));
	do {
		next = pmd_addr_end(addr, end);
		if (remap_pte_range(mm, pmd, addr, next,
				pfn + (addr >> PAGE_SHIFT), prot))
			return -ENOMEM;
	} while (pmd++, addr = next, addr != end);
	return 0;
}

static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
			unsigned long addr, unsigned long end,
			unsigned long pfn, pgprot_t prot)
{
	pud_t *pud;
	unsigned long next;

	pfn -= addr >> PAGE_SHIFT;
	pud = pud_alloc(mm, pgd, addr);
	if (!pud)
		return -ENOMEM;
	do {
		next = pud_addr_end(addr, end);
		if (remap_pmd_range(mm, pud, addr, next,
				pfn + (addr >> PAGE_SHIFT), prot))
			return -ENOMEM;
	} while (pud++, addr = next, addr != end);
	return 0;
}

/**
 * remap_pfn_range - remap kernel memory to userspace
 * @vma: user vma to map to
 * @addr: target user address to start at
 * @pfn: physical address of kernel memory
 * @size: size of map area
 * @prot: page protection flags for this mapping
 *
 *  Note: this is only safe if the mm semaphore is held when called.
 */
int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
		    unsigned long pfn, unsigned long size, pgprot_t prot)
{
	pgd_t *pgd;
	unsigned long next;
	unsigned long end = addr + PAGE_ALIGN(size);
	struct mm_struct *mm = vma->vm_mm;
	int err;

	/*
	 * Physically remapped pages are special. Tell the
	 * rest of the world about it:
	 *   VM_IO tells people not to look at these pages
	 *	(accesses can have side effects).
	 *   VM_RESERVED is specified all over the place, because
	 *	in 2.4 it kept swapout's vma scan off this vma; but
	 *	in 2.6 the LRU scan won't even find its pages, so this
	 *	flag means no more than count its pages in reserved_vm,
	 * 	and omit it from core dump, even when VM_IO turned off.
	 *   VM_PFNMAP tells the core MM that the base pages are just
	 *	raw PFN mappings, and do not have a "struct page" associated
	 *	with them.
	 *
	 * There's a horrible special case to handle copy-on-write
	 * behaviour that some programs depend on. We mark the "original"
	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
	 */
	if (addr == vma->vm_start && end == vma->vm_end) {
		vma->vm_pgoff = pfn;
		vma->vm_flags |= VM_PFN_AT_MMAP;
	} else if (is_cow_mapping(vma->vm_flags))
		return -EINVAL;

	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;

	err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
	if (err) {
		/*
		 * To indicate that track_pfn related cleanup is not
		 * needed from higher level routine calling unmap_vmas
		 */
		vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
		vma->vm_flags &= ~VM_PFN_AT_MMAP;
		return -EINVAL;
	}

	BUG_ON(addr >= end);
	pfn -= addr >> PAGE_SHIFT;
	pgd = pgd_offset(mm, addr);
	flush_cache_range(vma, addr, end);
	do {
		next = pgd_addr_end(addr, end);
		err = remap_pud_range(mm, pgd, addr, next,
				pfn + (addr >> PAGE_SHIFT), prot);
		if (err)
			break;
	} while (pgd++, addr = next, addr != end);

	if (err)
		untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));

	return err;
}
EXPORT_SYMBOL(remap_pfn_range);

static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
				     unsigned long addr, unsigned long end,
				     pte_fn_t fn, void *data)
{
	pte_t *pte;
	int err;
	pgtable_t token;
	spinlock_t *uninitialized_var(ptl);

	pte = (mm == &init_mm) ?
		pte_alloc_kernel(pmd, addr) :
		pte_alloc_map_lock(mm, pmd, addr, &ptl);
	if (!pte)
		return -ENOMEM;

	BUG_ON(pmd_huge(*pmd));

	arch_enter_lazy_mmu_mode();

	token = pmd_pgtable(*pmd);

	do {
		err = fn(pte++, token, addr, data);
		if (err)
			break;
	} while (addr += PAGE_SIZE, addr != end);

	arch_leave_lazy_mmu_mode();

	if (mm != &init_mm)
		pte_unmap_unlock(pte-1, ptl);
	return err;
}

static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
				     unsigned long addr, unsigned long end,
				     pte_fn_t fn, void *data)
{
	pmd_t *pmd;
	unsigned long next;
	int err;

	BUG_ON(pud_huge(*pud));

	pmd = pmd_alloc(mm, pud, addr);
	if (!pmd)
		return -ENOMEM;
	do {
		next = pmd_addr_end(addr, end);
		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
		if (err)
			break;
	} while (pmd++, addr = next, addr != end);
	return err;
}

static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
				     unsigned long addr, unsigned long end,
				     pte_fn_t fn, void *data)
{
	pud_t *pud;
	unsigned long next;
	int err;

	pud = pud_alloc(mm, pgd, addr);
	if (!pud)
		return -ENOMEM;
	do {
		next = pud_addr_end(addr, end);
		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
		if (err)
			break;
	} while (pud++, addr = next, addr != end);
	return err;
}

/*
 * Scan a region of virtual memory, filling in page tables as necessary
 * and calling a provided function on each leaf page table.
 */
int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
			unsigned long size, pte_fn_t fn, void *data)
{
	pgd_t *pgd;
	unsigned long next;
	unsigned long end = addr + size;
	int err;

	BUG_ON(addr >= end);
	pgd = pgd_offset(mm, addr);
	do {
		next = pgd_addr_end(addr, end);
		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
		if (err)
			break;
	} while (pgd++, addr = next, addr != end);

	return err;
}
EXPORT_SYMBOL_GPL(apply_to_page_range);

/*
 * handle_pte_fault chooses page fault handler according to an entry
 * which was read non-atomically.  Before making any commitment, on
 * those architectures or configurations (e.g. i386 with PAE) which
 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
 * must check under lock before unmapping the pte and proceeding
 * (but do_wp_page is only called after already making such a check;
 * and do_anonymous_page can safely check later on).
 */
static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
				pte_t *page_table, pte_t orig_pte)
{
	int same = 1;
#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
	if (sizeof(pte_t) > sizeof(unsigned long)) {
		spinlock_t *ptl = pte_lockptr(mm, pmd);
		spin_lock(ptl);
		same = pte_same(*page_table, orig_pte);
		spin_unlock(ptl);
	}
#endif
	pte_unmap(page_table);
	return same;
}

static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
{
	/*
	 * If the source page was a PFN mapping, we don't have
	 * a "struct page" for it. We do a best-effort copy by
	 * just copying from the original user address. If that
	 * fails, we just zero-fill it. Live with it.
	 */
	if (unlikely(!src)) {
		void *kaddr = kmap_atomic(dst, KM_USER0);
		void __user *uaddr = (void __user *)(va & PAGE_MASK);

		/*
		 * This really shouldn't fail, because the page is there
		 * in the page tables. But it might just be unreadable,
		 * in which case we just give up and fill the result with
		 * zeroes.
		 */
		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
			clear_page(kaddr);
		kunmap_atomic(kaddr, KM_USER0);
		flush_dcache_page(dst);
	} else
		copy_user_highpage(dst, src, va, vma);
}

/*
 * This routine handles present pages, when users try to write
 * to a shared page. It is done by copying the page to a new address
 * and decrementing the shared-page counter for the old page.
 *
 * Note that this routine assumes that the protection checks have been
 * done by the caller (the low-level page fault routine in most cases).
 * Thus we can safely just mark it writable once we've done any necessary
 * COW.
 *
 * We also mark the page dirty at this point even though the page will
 * change only once the write actually happens. This avoids a few races,
 * and potentially makes it more efficient.
 *
 * We enter with non-exclusive mmap_sem (to exclude vma changes,
 * but allow concurrent faults), with pte both mapped and locked.
 * We return with mmap_sem still held, but pte unmapped and unlocked.
 */
static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
		unsigned long address, pte_t *page_table, pmd_t *pmd,
		spinlock_t *ptl, pte_t orig_pte)
	__releases(ptl)
{
	struct page *old_page, *new_page;
	pte_t entry;
	int ret = 0;
	int page_mkwrite = 0;
	struct page *dirty_page = NULL;

	old_page = vm_normal_page(vma, address, orig_pte);
	if (!old_page) {
		/*
		 * VM_MIXEDMAP !pfn_valid() case
		 *
		 * We should not cow pages in a shared writeable mapping.
		 * Just mark the pages writable as we can't do any dirty
		 * accounting on raw pfn maps.
		 */
		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
				     (VM_WRITE|VM_SHARED))
			goto reuse;
		goto gotten;
	}

	/*
	 * Take out anonymous pages first, anonymous shared vmas are
	 * not dirty accountable.
	 */
	if (PageAnon(old_page) && !PageKsm(old_page)) {
		if (!trylock_page(old_page)) {
			page_cache_get(old_page);
			pte_unmap_unlock(page_table, ptl);
			lock_page(old_page);
			page_table = pte_offset_map_lock(mm, pmd, address,
							 &ptl);
			if (!pte_same(*page_table, orig_pte)) {
				unlock_page(old_page);
				goto unlock;
			}
			page_cache_release(old_page);
		}
		if (reuse_swap_page(old_page)) {
			/*
			 * The page is all ours.  Move it to our anon_vma so
			 * the rmap code will not search our parent or siblings.
			 * Protected against the rmap code by the page lock.
			 */
			page_move_anon_rmap(old_page, vma, address);
			unlock_page(old_page);
			goto reuse;
		}
		unlock_page(old_page);
	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
					(VM_WRITE|VM_SHARED))) {
		/*
		 * Only catch write-faults on shared writable pages,
		 * read-only shared pages can get COWed by
		 * get_user_pages(.write=1, .force=1).
		 */
		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
			struct vm_fault vmf;
			int tmp;

			vmf.virtual_address = (void __user *)(address &
								PAGE_MASK);
			vmf.pgoff = old_page->index;
			vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
			vmf.page = old_page;

			/*
			 * Notify the address space that the page is about to
			 * become writable so that it can prohibit this or wait
			 * for the page to get into an appropriate state.
			 *
			 * We do this without the lock held, so that it can
			 * sleep if it needs to.
			 */
			page_cache_get(old_page);
			pte_unmap_unlock(page_table, ptl);

			tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
			if (unlikely(tmp &
					(VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
				ret = tmp;
				goto unwritable_page;
			}
			if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
				lock_page(old_page);
				if (!old_page->mapping) {
					ret = 0; /* retry the fault */
					unlock_page(old_page);
					goto unwritable_page;
				}
			} else
				VM_BUG_ON(!PageLocked(old_page));

			/*
			 * Since we dropped the lock we need to revalidate
			 * the PTE as someone else may have changed it.  If
			 * they did, we just return, as we can count on the
			 * MMU to tell us if they didn't also make it writable.
			 */
			page_table = pte_offset_map_lock(mm, pmd, address,
							 &ptl);
			if (!pte_same(*page_table, orig_pte)) {
				unlock_page(old_page);
				goto unlock;
			}

			page_mkwrite = 1;
		}
		dirty_page = old_page;
		get_page(dirty_page);

reuse:
		flush_cache_page(vma, address, pte_pfn(orig_pte));
		entry = pte_mkyoung(orig_pte);
		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
		if (ptep_set_access_flags(vma, address, page_table, entry,1))
			update_mmu_cache(vma, address, page_table);
		pte_unmap_unlock(page_table, ptl);
		ret |= VM_FAULT_WRITE;

		if (!dirty_page)
			return ret;

		/*
		 * Yes, Virginia, this is actually required to prevent a race
		 * with clear_page_dirty_for_io() from clearing the page dirty
		 * bit after it clear all dirty ptes, but before a racing
		 * do_wp_page installs a dirty pte.
		 *
		 * __do_fault is protected similarly.
		 */
		if (!page_mkwrite) {
			wait_on_page_locked(dirty_page);
			set_page_dirty_balance(dirty_page, page_mkwrite);
		}
		put_page(dirty_page);
		if (page_mkwrite) {
			struct address_space *mapping = dirty_page->mapping;

			set_page_dirty(dirty_page);
			unlock_page(dirty_page);
			page_cache_release(dirty_page);
			if (mapping)	{
				/*
				 * Some device drivers do not set page.mapping
				 * but still dirty their pages
				 */
				balance_dirty_pages_ratelimited(mapping);
			}
		}

		/* file_update_time outside page_lock */
		if (vma->vm_file)
			file_update_time(vma->vm_file);

		return ret;
	}

	/*
	 * Ok, we need to copy. Oh, well..
	 */
	page_cache_get(old_page);
gotten:
	pte_unmap_unlock(page_table, ptl);

	if (unlikely(anon_vma_prepare(vma)))
		goto oom;

	if (is_zero_pfn(pte_pfn(orig_pte))) {
		new_page = alloc_zeroed_user_highpage_movable(vma, address);
		if (!new_page)
			goto oom;
	} else {
		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
		if (!new_page)
			goto oom;
		cow_user_page(new_page, old_page, address, vma);
	}
	__SetPageUptodate(new_page);

	if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
		goto oom_free_new;

	/*
	 * Re-check the pte - we dropped the lock
	 */
	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
	if (likely(pte_same(*page_table, orig_pte))) {
		if (old_page) {
			if (!PageAnon(old_page)) {
				dec_mm_counter_fast(mm, MM_FILEPAGES);
				inc_mm_counter_fast(mm, MM_ANONPAGES);
			}
		} else
			inc_mm_counter_fast(mm, MM_ANONPAGES);
		flush_cache_page(vma, address, pte_pfn(orig_pte));
		entry = mk_pte(new_page, vma->vm_page_prot);
		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
		/*
		 * Clear the pte entry and flush it first, before updating the
		 * pte with the new entry. This will avoid a race condition
		 * seen in the presence of one thread doing SMC and another
		 * thread doing COW.
		 */
		ptep_clear_flush(vma, address, page_table);
		page_add_new_anon_rmap(new_page, vma, address);
		/*
		 * We call the notify macro here because, when using secondary
		 * mmu page tables (such as kvm shadow page tables), we want the
		 * new page to be mapped directly into the secondary page table.
		 */
		set_pte_at_notify(mm, address, page_table, entry);
		update_mmu_cache(vma, address, page_table);
		if (old_page) {
			/*
			 * Only after switching the pte to the new page may
			 * we remove the mapcount here. Otherwise another
			 * process may come and find the rmap count decremented
			 * before the pte is switched to the new page, and
			 * "reuse" the old page writing into it while our pte
			 * here still points into it and can be read by other
			 * threads.
			 *
			 * The critical issue is to order this
			 * page_remove_rmap with the ptp_clear_flush above.
			 * Those stores are ordered by (if nothing else,)
			 * the barrier present in the atomic_add_negative
			 * in page_remove_rmap.
			 *
			 * Then the TLB flush in ptep_clear_flush ensures that
			 * no process can access the old page before the
			 * decremented mapcount is visible. And the old page
			 * cannot be reused until after the decremented
			 * mapcount is visible. So transitively, TLBs to
			 * old page will be flushed before it can be reused.
			 */
			page_remove_rmap(old_page);
		}

		/* Free the old page.. */
		new_page = old_page;
		ret |= VM_FAULT_WRITE;
	} else
		mem_cgroup_uncharge_page(new_page);

	if (new_page)
		page_cache_release(new_page);
unlock:
	pte_unmap_unlock(page_table, ptl);
	if (old_page) {
		/*
		 * Don't let another task, with possibly unlocked vma,
		 * keep the mlocked page.
		 */
		if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
			lock_page(old_page);	/* LRU manipulation */
			munlock_vma_page(old_page);
			unlock_page(old_page);
		}
		page_cache_release(old_page);
	}
	return ret;
oom_free_new:
	page_cache_release(new_page);
oom:
	if (old_page) {
		if (page_mkwrite) {
			unlock_page(old_page);
			page_cache_release(old_page);
		}
		page_cache_release(old_page);
	}
	return VM_FAULT_OOM;

unwritable_page:
	page_cache_release(old_page);
	return ret;
}

static void unmap_mapping_range_vma(struct vm_area_struct *vma,
		unsigned long start_addr, unsigned long end_addr,
		struct zap_details *details)
{
	zap_page_range(vma, start_addr, end_addr - start_addr, details);
}

static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
					    struct zap_details *details)
{
	struct vm_area_struct *vma;
	struct prio_tree_iter iter;
	pgoff_t vba, vea, zba, zea;

	vma_prio_tree_foreach(vma, &iter, root,
			details->first_index, details->last_index) {

		vba = vma->vm_pgoff;
		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
		zba = details->first_index;
		if (zba < vba)
			zba = vba;
		zea = details->last_index;
		if (zea > vea)
			zea = vea;

		unmap_mapping_range_vma(vma,
			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
				details);
	}
}

static inline void unmap_mapping_range_list(struct list_head *head,
					    struct zap_details *details)
{
	struct vm_area_struct *vma;

	/*
	 * In nonlinear VMAs there is no correspondence between virtual address
	 * offset and file offset.  So we must perform an exhaustive search
	 * across *all* the pages in each nonlinear VMA, not just the pages
	 * whose virtual address lies outside the file truncation point.
	 */
	list_for_each_entry(vma, head, shared.vm_set.list) {
		details->nonlinear_vma = vma;
		unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
	}
}

/**
 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
 * @mapping: the address space containing mmaps to be unmapped.
 * @holebegin: byte in first page to unmap, relative to the start of
 * the underlying file.  This will be rounded down to a PAGE_SIZE
 * boundary.  Note that this is different from truncate_pagecache(), which
 * must keep the partial page.  In contrast, we must get rid of
 * partial pages.
 * @holelen: size of prospective hole in bytes.  This will be rounded
 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
 * end of the file.
 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
 * but 0 when invalidating pagecache, don't throw away private data.
 */
void unmap_mapping_range(struct address_space *mapping,
		loff_t const holebegin, loff_t const holelen, int even_cows)
{
	struct zap_details details;
	pgoff_t hba = holebegin >> PAGE_SHIFT;
	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;

	/* Check for overflow. */
	if (sizeof(holelen) > sizeof(hlen)) {
		long long holeend =
			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
		if (holeend & ~(long long)ULONG_MAX)
			hlen = ULONG_MAX - hba + 1;
	}

	details.check_mapping = even_cows? NULL: mapping;
	details.nonlinear_vma = NULL;
	details.first_index = hba;
	details.last_index = hba + hlen - 1;
	if (details.last_index < details.first_index)
		details.last_index = ULONG_MAX;


	mutex_lock(&mapping->i_mmap_mutex);
	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
		unmap_mapping_range_tree(&mapping->i_mmap, &details);
	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
	mutex_unlock(&mapping->i_mmap_mutex);
}
EXPORT_SYMBOL(unmap_mapping_range);

/*
 * We enter with non-exclusive mmap_sem (to exclude vma changes,
 * but allow concurrent faults), and pte mapped but not yet locked.
 * We return with mmap_sem still held, but pte unmapped and unlocked.
 */
static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
		unsigned long address, pte_t *page_table, pmd_t *pmd,
		unsigned int flags, pte_t orig_pte)
{
	spinlock_t *ptl;
	struct page *page, *swapcache = NULL;
	swp_entry_t entry;
	pte_t pte;
	int locked;
	struct mem_cgroup *ptr;
	int exclusive = 0;
	int ret = 0;

	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
		goto out;

	entry = pte_to_swp_entry(orig_pte);
	if (unlikely(non_swap_entry(entry))) {
		if (is_migration_entry(entry)) {
			migration_entry_wait(mm, pmd, address);
		} else if (is_hwpoison_entry(entry)) {
			ret = VM_FAULT_HWPOISON;
		} else {
			print_bad_pte(vma, address, orig_pte, NULL);
			ret = VM_FAULT_SIGBUS;
		}
		goto out;
	}
	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
	page = lookup_swap_cache(entry);
	if (!page) {
		grab_swap_token(mm); /* Contend for token _before_ read-in */
		page = swapin_readahead(entry,
					GFP_HIGHUSER_MOVABLE, vma, address);
		if (!page) {
			/*
			 * Back out if somebody else faulted in this pte
			 * while we released the pte lock.
			 */
			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
			if (likely(pte_same(*page_table, orig_pte)))
				ret = VM_FAULT_OOM;
			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
			goto unlock;
		}

		/* Had to read the page from swap area: Major fault */
		ret = VM_FAULT_MAJOR;
		count_vm_event(PGMAJFAULT);
		mem_cgroup_count_vm_event(mm, PGMAJFAULT);
	} else if (PageHWPoison(page)) {
		/*
		 * hwpoisoned dirty swapcache pages are kept for killing
		 * owner processes (which may be unknown at hwpoison time)
		 */
		ret = VM_FAULT_HWPOISON;
		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
		goto out_release;
	}

	locked = lock_page_or_retry(page, mm, flags);
	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
	if (!locked) {
		ret |= VM_FAULT_RETRY;
		goto out_release;
	}

	/*
	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
	 * release the swapcache from under us.  The page pin, and pte_same
	 * test below, are not enough to exclude that.  Even if it is still
	 * swapcache, we need to check that the page's swap has not changed.
	 */
	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
		goto out_page;

	if (ksm_might_need_to_copy(page, vma, address)) {
		swapcache = page;
		page = ksm_does_need_to_copy(page, vma, address);

		if (unlikely(!page)) {
			ret = VM_FAULT_OOM;
			page = swapcache;
			swapcache = NULL;
			goto out_page;
		}
	}

	if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
		ret = VM_FAULT_OOM;
		goto out_page;
	}

	/*
	 * Back out if somebody else already faulted in this pte.
	 */
	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
	if (unlikely(!pte_same(*page_table, orig_pte)))
		goto out_nomap;

	if (unlikely(!PageUptodate(page))) {
		ret = VM_FAULT_SIGBUS;
		goto out_nomap;
	}

	/*
	 * The page isn't present yet, go ahead with the fault.
	 *
	 * Be careful about the sequence of operations here.
	 * To get its accounting right, reuse_swap_page() must be called
	 * while the page is counted on swap but not yet in mapcount i.e.
	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
	 * must be called after the swap_free(), or it will never succeed.
	 * Because delete_from_swap_page() may be called by reuse_swap_page(),
	 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
	 * in page->private. In this case, a record in swap_cgroup  is silently
	 * discarded at swap_free().
	 */

	inc_mm_counter_fast(mm, MM_ANONPAGES);
	dec_mm_counter_fast(mm, MM_SWAPENTS);
	pte = mk_pte(page, vma->vm_page_prot);
	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
		flags &= ~FAULT_FLAG_WRITE;
		ret |= VM_FAULT_WRITE;
		exclusive = 1;
	}
	flush_icache_page(vma, page);
	set_pte_at(mm, address, page_table, pte);
	do_page_add_anon_rmap(page, vma, address, exclusive);
	/* It's better to call commit-charge after rmap is established */
	mem_cgroup_commit_charge_swapin(page, ptr);

	swap_free(entry);
	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
		try_to_free_swap(page);
	unlock_page(page);
	if (swapcache) {
		/*
		 * Hold the lock to avoid the swap entry to be reused
		 * until we take the PT lock for the pte_same() check
		 * (to avoid false positives from pte_same). For
		 * further safety release the lock after the swap_free
		 * so that the swap count won't change under a
		 * parallel locked swapcache.
		 */
		unlock_page(swapcache);
		page_cache_release(swapcache);
	}

	if (flags & FAULT_FLAG_WRITE) {
		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
		if (ret & VM_FAULT_ERROR)
			ret &= VM_FAULT_ERROR;
		goto out;
	}

	/* No need to invalidate - it was non-present before */
	update_mmu_cache(vma, address, page_table);
unlock:
	pte_unmap_unlock(page_table, ptl);
out:
	return ret;
out_nomap:
	mem_cgroup_cancel_charge_swapin(ptr);
	pte_unmap_unlock(page_table, ptl);
out_page:
	unlock_page(page);
out_release:
	page_cache_release(page);
	if (swapcache) {
		unlock_page(swapcache);
		page_cache_release(swapcache);
	}
	return ret;
}

/*
 * This is like a special single-page "expand_{down|up}wards()",
 * except we must first make sure that 'address{-|+}PAGE_SIZE'
 * doesn't hit another vma.
 */
static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
{
	address &= PAGE_MASK;
	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
		struct vm_area_struct *prev = vma->vm_prev;

		/*
		 * Is there a mapping abutting this one below?
		 *
		 * That's only ok if it's the same stack mapping
		 * that has gotten split..
		 */
		if (prev && prev->vm_end == address)
			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;

		expand_downwards(vma, address - PAGE_SIZE);
	}
	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
		struct vm_area_struct *next = vma->vm_next;

		/* As VM_GROWSDOWN but s/below/above/ */
		if (next && next->vm_start == address + PAGE_SIZE)
			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;

		expand_upwards(vma, address + PAGE_SIZE);
	}
	return 0;
}

/*
 * We enter with non-exclusive mmap_sem (to exclude vma changes,
 * but allow concurrent faults), and pte mapped but not yet locked.
 * We return with mmap_sem still held, but pte unmapped and unlocked.
 */
static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
		unsigned long address, pte_t *page_table, pmd_t *pmd,
		unsigned int flags)
{
	struct page *page;
	spinlock_t *ptl;
	pte_t entry;

	pte_unmap(page_table);

	/* Check if we need to add a guard page to the stack */
	if (check_stack_guard_page(vma, address) < 0)
		return VM_FAULT_SIGBUS;

	/* Use the zero-page for reads */
	if (!(flags & FAULT_FLAG_WRITE)) {
		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
						vma->vm_page_prot));
		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
		if (!pte_none(*page_table))
			goto unlock;
		goto setpte;
	}

	/* Allocate our own private page. */
	if (unlikely(anon_vma_prepare(vma)))
		goto oom;
	page = alloc_zeroed_user_highpage_movable(vma, address);
	if (!page)
		goto oom;
	__SetPageUptodate(page);

	if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
		goto oom_free_page;

	entry = mk_pte(page, vma->vm_page_prot);
	if (vma->vm_flags & VM_WRITE)
		entry = pte_mkwrite(pte_mkdirty(entry));

	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
	if (!pte_none(*page_table))
		goto release;

	inc_mm_counter_fast(mm, MM_ANONPAGES);
	page_add_new_anon_rmap(page, vma, address);
setpte:
	set_pte_at(mm, address, page_table, entry);

	/* No need to invalidate - it was non-present before */
	update_mmu_cache(vma, address, page_table);
unlock:
	pte_unmap_unlock(page_table, ptl);
	return 0;
release:
	mem_cgroup_uncharge_page(page);
	page_cache_release(page);
	goto unlock;
oom_free_page:
	page_cache_release(page);
oom:
	return VM_FAULT_OOM;
}

/*
 * __do_fault() tries to create a new page mapping. It aggressively
 * tries to share with existing pages, but makes a separate copy if
 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
 * the next page fault.
 *
 * As this is called only for pages that do not currently exist, we
 * do not need to flush old virtual caches or the TLB.
 *
 * We enter with non-exclusive mmap_sem (to exclude vma changes,
 * but allow concurrent faults), and pte neither mapped nor locked.
 * We return with mmap_sem still held, but pte unmapped and unlocked.
 */
static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
		unsigned long address, pmd_t *pmd,
		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
{
	pte_t *page_table;
	spinlock_t *ptl;
	struct page *page;
	struct page *cow_page;
	pte_t entry;
	int anon = 0;
	struct page *dirty_page = NULL;
	struct vm_fault vmf;
	int ret;
	int page_mkwrite = 0;

	/*
	 * If we do COW later, allocate page befor taking lock_page()
	 * on the file cache page. This will reduce lock holding time.
	 */
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {

		if (unlikely(anon_vma_prepare(vma)))
			return VM_FAULT_OOM;

		cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
		if (!cow_page)
			return VM_FAULT_OOM;

		if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
			page_cache_release(cow_page);
			return VM_FAULT_OOM;
		}
	} else
		cow_page = NULL;

	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
	vmf.pgoff = pgoff;
	vmf.flags = flags;
	vmf.page = NULL;

	ret = vma->vm_ops->fault(vma, &vmf);
	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
			    VM_FAULT_RETRY)))
		goto uncharge_out;

	if (unlikely(PageHWPoison(vmf.page))) {
		if (ret & VM_FAULT_LOCKED)
			unlock_page(vmf.page);
		ret = VM_FAULT_HWPOISON;
		goto uncharge_out;
	}

	/*
	 * For consistency in subsequent calls, make the faulted page always
	 * locked.
	 */
	if (unlikely(!(ret & VM_FAULT_LOCKED)))
		lock_page(vmf.page);
	else
		VM_BUG_ON(!PageLocked(vmf.page));

	/*
	 * Should we do an early C-O-W break?
	 */
	page = vmf.page;
	if (flags & FAULT_FLAG_WRITE) {
		if (!(vma->vm_flags & VM_SHARED)) {
			page = cow_page;
			anon = 1;
			copy_user_highpage(page, vmf.page, address, vma);
			__SetPageUptodate(page);
		} else {
			/*
			 * If the page will be shareable, see if the backing
			 * address space wants to know that the page is about
			 * to become writable
			 */
			if (vma->vm_ops->page_mkwrite) {
				int tmp;

				unlock_page(page);
				vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
				tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
				if (unlikely(tmp &
					  (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
					ret = tmp;
					goto unwritable_page;
				}
				if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
					lock_page(page);
					if (!page->mapping) {
						ret = 0; /* retry the fault */
						unlock_page(page);
						goto unwritable_page;
					}
				} else
					VM_BUG_ON(!PageLocked(page));
				page_mkwrite = 1;
			}
		}

	}

	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);

	/*
	 * This silly early PAGE_DIRTY setting removes a race
	 * due to the bad i386 page protection. But it's valid
	 * for other architectures too.
	 *
	 * Note that if FAULT_FLAG_WRITE is set, we either now have
	 * an exclusive copy of the page, or this is a shared mapping,
	 * so we can make it writable and dirty to avoid having to
	 * handle that later.
	 */
	/* Only go through if we didn't race with anybody else... */
	if (likely(pte_same(*page_table, orig_pte))) {
		flush_icache_page(vma, page);
		entry = mk_pte(page, vma->vm_page_prot);
		if (flags & FAULT_FLAG_WRITE)
			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
		if (anon) {
			inc_mm_counter_fast(mm, MM_ANONPAGES);
			page_add_new_anon_rmap(page, vma, address);
		} else {
			inc_mm_counter_fast(mm, MM_FILEPAGES);
			page_add_file_rmap(page);
			if (flags & FAULT_FLAG_WRITE) {
				dirty_page = page;
				get_page(dirty_page);
			}
		}
		set_pte_at(mm, address, page_table, entry);

		/* no need to invalidate: a not-present page won't be cached */
		update_mmu_cache(vma, address, page_table);
	} else {
		if (cow_page)
			mem_cgroup_uncharge_page(cow_page);
		if (anon)
			page_cache_release(page);
		else
			anon = 1; /* no anon but release faulted_page */
	}

	pte_unmap_unlock(page_table, ptl);

	if (dirty_page) {
		struct address_space *mapping = page->mapping;

		if (set_page_dirty(dirty_page))
			page_mkwrite = 1;
		unlock_page(dirty_page);
		put_page(dirty_page);
		if (page_mkwrite && mapping) {
			/*
			 * Some device drivers do not set page.mapping but still
			 * dirty their pages
			 */
			balance_dirty_pages_ratelimited(mapping);
		}

		/* file_update_time outside page_lock */
		if (vma->vm_file)
			file_update_time(vma->vm_file);
	} else {
		unlock_page(vmf.page);
		if (anon)
			page_cache_release(vmf.page);
	}

	return ret;

unwritable_page:
	page_cache_release(page);
	return ret;
uncharge_out:
	/* fs's fault handler get error */
	if (cow_page) {
		mem_cgroup_uncharge_page(cow_page);
		page_cache_release(cow_page);
	}
	return ret;
}

static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
		unsigned long address, pte_t *page_table, pmd_t *pmd,
		unsigned int flags, pte_t orig_pte)
{
	pgoff_t pgoff = (((address & PAGE_MASK)
			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;

	pte_unmap(page_table);
	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
}

/*
 * Fault of a previously existing named mapping. Repopulate the pte
 * from the encoded file_pte if possible. This enables swappable
 * nonlinear vmas.
 *
 * We enter with non-exclusive mmap_sem (to exclude vma changes,
 * but allow concurrent faults), and pte mapped but not yet locked.
 * We return with mmap_sem still held, but pte unmapped and unlocked.
 */
static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
		unsigned long address, pte_t *page_table, pmd_t *pmd,
		unsigned int flags, pte_t orig_pte)
{
	pgoff_t pgoff;

	flags |= FAULT_FLAG_NONLINEAR;

	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
		return 0;

	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
		/*
		 * Page table corrupted: show pte and kill process.
		 */
		print_bad_pte(vma, address, orig_pte, NULL);
		return VM_FAULT_SIGBUS;
	}

	pgoff = pte_to_pgoff(orig_pte);
	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
}

/*
 * These routines also need to handle stuff like marking pages dirty
 * and/or accessed for architectures that don't do it in hardware (most
 * RISC architectures).  The early dirtying is also good on the i386.
 *
 * There is also a hook called "update_mmu_cache()" that architectures
 * with external mmu caches can use to update those (ie the Sparc or
 * PowerPC hashed page tables that act as extended TLBs).
 *
 * We enter with non-exclusive mmap_sem (to exclude vma changes,
 * but allow concurrent faults), and pte mapped but not yet locked.
 * We return with mmap_sem still held, but pte unmapped and unlocked.
 */
int handle_pte_fault(struct mm_struct *mm,
		     struct vm_area_struct *vma, unsigned long address,
		     pte_t *pte, pmd_t *pmd, unsigned int flags)
{
	pte_t entry;
	spinlock_t *ptl;

	entry = *pte;
	if (!pte_present(entry)) {
		if (pte_none(entry)) {
			if (vma->vm_ops) {
				if (likely(vma->vm_ops->fault))
					return do_linear_fault(mm, vma, address,
						pte, pmd, flags, entry);
			}
			return do_anonymous_page(mm, vma, address,
						 pte, pmd, flags);
		}
		if (pte_file(entry))
			return do_nonlinear_fault(mm, vma, address,
					pte, pmd, flags, entry);
		return do_swap_page(mm, vma, address,
					pte, pmd, flags, entry);
	}

	ptl = pte_lockptr(mm, pmd);
	spin_lock(ptl);
	if (unlikely(!pte_same(*pte, entry)))
		goto unlock;
	if (flags & FAULT_FLAG_WRITE) {
		if (!pte_write(entry))
			return do_wp_page(mm, vma, address,
					pte, pmd, ptl, entry);
		entry = pte_mkdirty(entry);
	}
	entry = pte_mkyoung(entry);
	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
		update_mmu_cache(vma, address, pte);
	} else {
		/*
		 * This is needed only for protection faults but the arch code
		 * is not yet telling us if this is a protection fault or not.
		 * This still avoids useless tlb flushes for .text page faults
		 * with threads.
		 */
		if (flags & FAULT_FLAG_WRITE)
			flush_tlb_fix_spurious_fault(vma, address);
	}
unlock:
	pte_unmap_unlock(pte, ptl);
	return 0;
}

/*
 * By the time we get here, we already hold the mm semaphore
 */
int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
		unsigned long address, unsigned int flags)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;

	__set_current_state(TASK_RUNNING);

	count_vm_event(PGFAULT);
	mem_cgroup_count_vm_event(mm, PGFAULT);

	/* do counter updates before entering really critical section. */
	check_sync_rss_stat(current);

	if (unlikely(is_vm_hugetlb_page(vma)))
		return hugetlb_fault(mm, vma, address, flags);

	pgd = pgd_offset(mm, address);
	pud = pud_alloc(mm, pgd, address);
	if (!pud)
		return VM_FAULT_OOM;
	pmd = pmd_alloc(mm, pud, address);
	if (!pmd)
		return VM_FAULT_OOM;
	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
		if (!vma->vm_ops)
			return do_huge_pmd_anonymous_page(mm, vma, address,
							  pmd, flags);
	} else {
		pmd_t orig_pmd = *pmd;
		barrier();
		if (pmd_trans_huge(orig_pmd)) {
			if (flags & FAULT_FLAG_WRITE &&
			    !pmd_write(orig_pmd) &&
			    !pmd_trans_splitting(orig_pmd))
				return do_huge_pmd_wp_page(mm, vma, address,
							   pmd, orig_pmd);
			return 0;
		}
	}

	/*
	 * Use __pte_alloc instead of pte_alloc_map, because we can't
	 * run pte_offset_map on the pmd, if an huge pmd could
	 * materialize from under us from a different thread.
	 */
	if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
		return VM_FAULT_OOM;
	/* if an huge pmd materialized from under us just retry later */
	if (unlikely(pmd_trans_huge(*pmd)))
		return 0;
	/*
	 * A regular pmd is established and it can't morph into a huge pmd
	 * from under us anymore at this point because we hold the mmap_sem
	 * read mode and khugepaged takes it in write mode. So now it's
	 * safe to run pte_offset_map().
	 */
	pte = pte_offset_map(pmd, address);

	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
}

#ifndef __PAGETABLE_PUD_FOLDED
/*
 * Allocate page upper directory.
 * We've already handled the fast-path in-line.
 */
int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
{
	pud_t *new = pud_alloc_one(mm, address);
	if (!new)
		return -ENOMEM;

	smp_wmb(); /* See comment in __pte_alloc */

	spin_lock(&mm->page_table_lock);
	if (pgd_present(*pgd))		/* Another has populated it */
		pud_free(mm, new);
	else
		pgd_populate(mm, pgd, new);
	spin_unlock(&mm->page_table_lock);
	return 0;
}
#endif /* __PAGETABLE_PUD_FOLDED */

#ifndef __PAGETABLE_PMD_FOLDED
/*
 * Allocate page middle directory.
 * We've already handled the fast-path in-line.
 */
int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
{
	pmd_t *new = pmd_alloc_one(mm, address);
	if (!new)
		return -ENOMEM;

	smp_wmb(); /* See comment in __pte_alloc */

	spin_lock(&mm->page_table_lock);
#ifndef __ARCH_HAS_4LEVEL_HACK
	if (pud_present(*pud))		/* Another has populated it */
		pmd_free(mm, new);
	else
		pud_populate(mm, pud, new);
#else
	if (pgd_present(*pud))		/* Another has populated it */
		pmd_free(mm, new);
	else
		pgd_populate(mm, pud, new);
#endif /* __ARCH_HAS_4LEVEL_HACK */
	spin_unlock(&mm->page_table_lock);
	return 0;
}
#endif /* __PAGETABLE_PMD_FOLDED */

int make_pages_present(unsigned long addr, unsigned long end)
{
	int ret, len, write;
	struct vm_area_struct * vma;

	vma = find_vma(current->mm, addr);
	if (!vma)
		return -ENOMEM;
	/*
	 * We want to touch writable mappings with a write fault in order
	 * to break COW, except for shared mappings because these don't COW
	 * and we would not want to dirty them for nothing.
	 */
	write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
	BUG_ON(addr >= end);
	BUG_ON(end > vma->vm_end);
	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
	ret = get_user_pages(current, current->mm, addr,
			len, write, 0, NULL, NULL);
	if (ret < 0)
		return ret;
	return ret == len ? 0 : -EFAULT;
}

#if !defined(__HAVE_ARCH_GATE_AREA)

#if defined(AT_SYSINFO_EHDR)
static struct vm_area_struct gate_vma;

static int __init gate_vma_init(void)
{
	gate_vma.vm_mm = NULL;
	gate_vma.vm_start = FIXADDR_USER_START;
	gate_vma.vm_end = FIXADDR_USER_END;
	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
	gate_vma.vm_page_prot = __P101;
	/*
	 * Make sure the vDSO gets into every core dump.
	 * Dumping its contents makes post-mortem fully interpretable later
	 * without matching up the same kernel and hardware config to see
	 * what PC values meant.
	 */
	gate_vma.vm_flags |= VM_ALWAYSDUMP;
	return 0;
}
__initcall(gate_vma_init);
#endif

struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
{
#ifdef AT_SYSINFO_EHDR
	return &gate_vma;
#else
	return NULL;
#endif
}

int in_gate_area_no_mm(unsigned long addr)
{
#ifdef AT_SYSINFO_EHDR
	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
		return 1;
#endif
	return 0;
}

#endif	/* __HAVE_ARCH_GATE_AREA */

static int __follow_pte(struct mm_struct *mm, unsigned long address,
		pte_t **ptepp, spinlock_t **ptlp)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *ptep;

	pgd = pgd_offset(mm, address);
	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
		goto out;

	pud = pud_offset(pgd, address);
	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
		goto out;

	pmd = pmd_offset(pud, address);
	VM_BUG_ON(pmd_trans_huge(*pmd));
	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
		goto out;

	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
	if (pmd_huge(*pmd))
		goto out;

	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
	if (!ptep)
		goto out;
	if (!pte_present(*ptep))
		goto unlock;
	*ptepp = ptep;
	return 0;
unlock:
	pte_unmap_unlock(ptep, *ptlp);
out:
	return -EINVAL;
}

static inline int follow_pte(struct mm_struct *mm, unsigned long address,
			     pte_t **ptepp, spinlock_t **ptlp)
{
	int res;

	/* (void) is needed to make gcc happy */
	(void) __cond_lock(*ptlp,
			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
	return res;
}

/**
 * follow_pfn - look up PFN at a user virtual address
 * @vma: memory mapping
 * @address: user virtual address
 * @pfn: location to store found PFN
 *
 * Only IO mappings and raw PFN mappings are allowed.
 *
 * Returns zero and the pfn at @pfn on success, -ve otherwise.
 */
int follow_pfn(struct vm_area_struct *vma, unsigned long address,
	unsigned long *pfn)
{
	int ret = -EINVAL;
	spinlock_t *ptl;
	pte_t *ptep;

	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
		return ret;

	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
	if (ret)
		return ret;
	*pfn = pte_pfn(*ptep);
	pte_unmap_unlock(ptep, ptl);
	return 0;
}
EXPORT_SYMBOL(follow_pfn);

#ifdef CONFIG_HAVE_IOREMAP_PROT
int follow_phys(struct vm_area_struct *vma,
		unsigned long address, unsigned int flags,
		unsigned long *prot, resource_size_t *phys)
{
	int ret = -EINVAL;
	pte_t *ptep, pte;
	spinlock_t *ptl;

	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
		goto out;

	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
		goto out;
	pte = *ptep;

	if ((flags & FOLL_WRITE) && !pte_write(pte))
		goto unlock;

	*prot = pgprot_val(pte_pgprot(pte));
	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;

	ret = 0;
unlock:
	pte_unmap_unlock(ptep, ptl);
out:
	return ret;
}

int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
			void *buf, int len, int write)
{
	resource_size_t phys_addr;
	unsigned long prot = 0;
	void __iomem *maddr;
	int offset = addr & (PAGE_SIZE-1);

	if (follow_phys(vma, addr, write, &prot, &phys_addr))
		return -EINVAL;

	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
	if (write)
		memcpy_toio(maddr + offset, buf, len);
	else
		memcpy_fromio(buf, maddr + offset, len);
	iounmap(maddr);

	return len;
}
#endif

/*
 * Access another process' address space as given in mm.  If non-NULL, use the
 * given task for page fault accounting.
 */
static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
		unsigned long addr, void *buf, int len, int write)
{
	struct vm_area_struct *vma;
	void *old_buf = buf;

	down_read(&mm->mmap_sem);
	/* ignore errors, just check how much was successfully transferred */
	while (len) {
		int bytes, ret, offset;
		void *maddr;
		struct page *page = NULL;

		ret = get_user_pages(tsk, mm, addr, 1,
				write, 1, &page, &vma);
		if (ret <= 0) {
			/*
			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
			 * we can access using slightly different code.
			 */
#ifdef CONFIG_HAVE_IOREMAP_PROT
			vma = find_vma(mm, addr);
			if (!vma || vma->vm_start > addr)
				break;
			if (vma->vm_ops && vma->vm_ops->access)
				ret = vma->vm_ops->access(vma, addr, buf,
							  len, write);
			if (ret <= 0)
#endif
				break;
			bytes = ret;
		} else {
			bytes = len;
			offset = addr & (PAGE_SIZE-1);
			if (bytes > PAGE_SIZE-offset)
				bytes = PAGE_SIZE-offset;

			maddr = kmap(page);
			if (write) {
				copy_to_user_page(vma, page, addr,
						  maddr + offset, buf, bytes);
				set_page_dirty_lock(page);
			} else {
				copy_from_user_page(vma, page, addr,
						    buf, maddr + offset, bytes);
			}
			kunmap(page);
			page_cache_release(page);
		}
		len -= bytes;
		buf += bytes;
		addr += bytes;
	}
	up_read(&mm->mmap_sem);

	return buf - old_buf;
}

/**
 * access_remote_vm - access another process' address space
 * @mm:		the mm_struct of the target address space
 * @addr:	start address to access
 * @buf:	source or destination buffer
 * @len:	number of bytes to transfer
 * @write:	whether the access is a write
 *
 * The caller must hold a reference on @mm.
 */
int access_remote_vm(struct mm_struct *mm, unsigned long addr,
		void *buf, int len, int write)
{
	return __access_remote_vm(NULL, mm, addr, buf, len, write);
}

/*
 * Access another process' address space.
 * Source/target buffer must be kernel space,
 * Do not walk the page table directly, use get_user_pages
 */
int access_process_vm(struct task_struct *tsk, unsigned long addr,
		void *buf, int len, int write)
{
	struct mm_struct *mm;
	int ret;

	mm = get_task_mm(tsk);
	if (!mm)
		return 0;

	ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
	mmput(mm);

	return ret;
}

/*
 * Print the name of a VMA.
 */
void print_vma_addr(char *prefix, unsigned long ip)
{
	struct mm_struct *mm = current->mm;
	struct vm_area_struct *vma;

	/*
	 * Do not print if we are in atomic
	 * contexts (in exception stacks, etc.):
	 */
	if (preempt_count())
		return;

	down_read(&mm->mmap_sem);
	vma = find_vma(mm, ip);
	if (vma && vma->vm_file) {
		struct file *f = vma->vm_file;
		char *buf = (char *)__get_free_page(GFP_KERNEL);
		if (buf) {
			char *p, *s;

			p = d_path(&f->f_path, buf, PAGE_SIZE);
			if (IS_ERR(p))
				p = "?";
			s = strrchr(p, '/');
			if (s)
				p = s+1;
			printk("%s%s[%lx+%lx]", prefix, p,
					vma->vm_start,
					vma->vm_end - vma->vm_start);
			free_page((unsigned long)buf);
		}
	}
	up_read(&current->mm->mmap_sem);
}

#ifdef CONFIG_PROVE_LOCKING
void might_fault(void)
{
	/*
	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
	 * holding the mmap_sem, this is safe because kernel memory doesn't
	 * get paged out, therefore we'll never actually fault, and the
	 * below annotations will generate false positives.
	 */
	if (segment_eq(get_fs(), KERNEL_DS))
		return;

	might_sleep();
	/*
	 * it would be nicer only to annotate paths which are not under
	 * pagefault_disable, however that requires a larger audit and
	 * providing helpers like get_user_atomic.
	 */
	if (!in_atomic() && current->mm)
		might_lock_read(&current->mm->mmap_sem);
}
EXPORT_SYMBOL(might_fault);
#endif

#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
static void clear_gigantic_page(struct page *page,
				unsigned long addr,
				unsigned int pages_per_huge_page)
{
	int i;
	struct page *p = page;

	might_sleep();
	for (i = 0; i < pages_per_huge_page;
	     i++, p = mem_map_next(p, page, i)) {
		cond_resched();
		clear_user_highpage(p, addr + i * PAGE_SIZE);
	}
}
void clear_huge_page(struct page *page,
		     unsigned long addr, unsigned int pages_per_huge_page)
{
	int i;

	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
		clear_gigantic_page(page, addr, pages_per_huge_page);
		return;
	}

	might_sleep();
	for (i = 0; i < pages_per_huge_page; i++) {
		cond_resched();
		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
	}
}

static void copy_user_gigantic_page(struct page *dst, struct page *src,
				    unsigned long addr,
				    struct vm_area_struct *vma,
				    unsigned int pages_per_huge_page)
{
	int i;
	struct page *dst_base = dst;
	struct page *src_base = src;

	for (i = 0; i < pages_per_huge_page; ) {
		cond_resched();
		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}

void copy_user_huge_page(struct page *dst, struct page *src,
			 unsigned long addr, struct vm_area_struct *vma,
			 unsigned int pages_per_huge_page)
{
	int i;

	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
		copy_user_gigantic_page(dst, src, addr, vma,
					pages_per_huge_page);
		return;
	}

	might_sleep();
	for (i = 0; i < pages_per_huge_page; i++) {
		cond_resched();
		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
	}
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */