summaryrefslogtreecommitdiffstats
path: root/mm/slob.c
blob: 06e5e725fab32dacfdc909e51991241f3671235e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
/*
 * SLOB Allocator: Simple List Of Blocks
 *
 * Matt Mackall <mpm@selenic.com> 12/30/03
 *
 * How SLOB works:
 *
 * The core of SLOB is a traditional K&R style heap allocator, with
 * support for returning aligned objects. The granularity of this
 * allocator is as little as 2 bytes, however typically most architectures
 * will require 4 bytes on 32-bit and 8 bytes on 64-bit.
 *
 * The slob heap is a linked list of pages from __get_free_page, and
 * within each page, there is a singly-linked list of free blocks (slob_t).
 * The heap is grown on demand and allocation from the heap is currently
 * first-fit.
 *
 * Above this is an implementation of kmalloc/kfree. Blocks returned
 * from kmalloc are prepended with a 4-byte header with the kmalloc size.
 * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
 * __get_free_pages directly, allocating compound pages so the page order
 * does not have to be separately tracked, and also stores the exact
 * allocation size in page->private so that it can be used to accurately
 * provide ksize(). These objects are detected in kfree() because slob_page()
 * is false for them.
 *
 * SLAB is emulated on top of SLOB by simply calling constructors and
 * destructors for every SLAB allocation. Objects are returned with the
 * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which
 * case the low-level allocator will fragment blocks to create the proper
 * alignment. Again, objects of page-size or greater are allocated by
 * calling __get_free_pages. As SLAB objects know their size, no separate
 * size bookkeeping is necessary and there is essentially no allocation
 * space overhead, and compound pages aren't needed for multi-page
 * allocations.
 */

#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/cache.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/rcupdate.h>
#include <linux/list.h>
#include <asm/atomic.h>

/*
 * slob_block has a field 'units', which indicates size of block if +ve,
 * or offset of next block if -ve (in SLOB_UNITs).
 *
 * Free blocks of size 1 unit simply contain the offset of the next block.
 * Those with larger size contain their size in the first SLOB_UNIT of
 * memory, and the offset of the next free block in the second SLOB_UNIT.
 */
#if PAGE_SIZE <= (32767 * 2)
typedef s16 slobidx_t;
#else
typedef s32 slobidx_t;
#endif

struct slob_block {
	slobidx_t units;
};
typedef struct slob_block slob_t;

/*
 * We use struct page fields to manage some slob allocation aspects,
 * however to avoid the horrible mess in include/linux/mm_types.h, we'll
 * just define our own struct page type variant here.
 */
struct slob_page {
	union {
		struct {
			unsigned long flags;	/* mandatory */
			atomic_t _count;	/* mandatory */
			slobidx_t units;	/* free units left in page */
			unsigned long pad[2];
			slob_t *free;		/* first free slob_t in page */
			struct list_head list;	/* linked list of free pages */
		};
		struct page page;
	};
};
static inline void struct_slob_page_wrong_size(void)
{ BUILD_BUG_ON(sizeof(struct slob_page) != sizeof(struct page)); }

/*
 * free_slob_page: call before a slob_page is returned to the page allocator.
 */
static inline void free_slob_page(struct slob_page *sp)
{
	reset_page_mapcount(&sp->page);
	sp->page.mapping = NULL;
}

/*
 * All (partially) free slob pages go on this list.
 */
static LIST_HEAD(free_slob_pages);

/*
 * slob_page: True for all slob pages (false for bigblock pages)
 */
static inline int slob_page(struct slob_page *sp)
{
	return test_bit(PG_active, &sp->flags);
}

static inline void set_slob_page(struct slob_page *sp)
{
	__set_bit(PG_active, &sp->flags);
}

static inline void clear_slob_page(struct slob_page *sp)
{
	__clear_bit(PG_active, &sp->flags);
}

/*
 * slob_page_free: true for pages on free_slob_pages list.
 */
static inline int slob_page_free(struct slob_page *sp)
{
	return test_bit(PG_private, &sp->flags);
}

static inline void set_slob_page_free(struct slob_page *sp)
{
	list_add(&sp->list, &free_slob_pages);
	__set_bit(PG_private, &sp->flags);
}

static inline void clear_slob_page_free(struct slob_page *sp)
{
	list_del(&sp->list);
	__clear_bit(PG_private, &sp->flags);
}

#define SLOB_UNIT sizeof(slob_t)
#define SLOB_UNITS(size) (((size) + SLOB_UNIT - 1)/SLOB_UNIT)
#define SLOB_ALIGN L1_CACHE_BYTES

/*
 * struct slob_rcu is inserted at the tail of allocated slob blocks, which
 * were created with a SLAB_DESTROY_BY_RCU slab. slob_rcu is used to free
 * the block using call_rcu.
 */
struct slob_rcu {
	struct rcu_head head;
	int size;
};

/*
 * slob_lock protects all slob allocator structures.
 */
static DEFINE_SPINLOCK(slob_lock);

/*
 * Encode the given size and next info into a free slob block s.
 */
static void set_slob(slob_t *s, slobidx_t size, slob_t *next)
{
	slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
	slobidx_t offset = next - base;

	if (size > 1) {
		s[0].units = size;
		s[1].units = offset;
	} else
		s[0].units = -offset;
}

/*
 * Return the size of a slob block.
 */
static slobidx_t slob_units(slob_t *s)
{
	if (s->units > 0)
		return s->units;
	return 1;
}

/*
 * Return the next free slob block pointer after this one.
 */
static slob_t *slob_next(slob_t *s)
{
	slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
	slobidx_t next;

	if (s[0].units < 0)
		next = -s[0].units;
	else
		next = s[1].units;
	return base+next;
}

/*
 * Returns true if s is the last free block in its page.
 */
static int slob_last(slob_t *s)
{
	return !((unsigned long)slob_next(s) & ~PAGE_MASK);
}

/*
 * Allocate a slob block within a given slob_page sp.
 */
static void *slob_page_alloc(struct slob_page *sp, size_t size, int align)
{
	slob_t *prev, *cur, *aligned = 0;
	int delta = 0, units = SLOB_UNITS(size);

	for (prev = NULL, cur = sp->free; ; prev = cur, cur = slob_next(cur)) {
		slobidx_t avail = slob_units(cur);

		if (align) {
			aligned = (slob_t *)ALIGN((unsigned long)cur, align);
			delta = aligned - cur;
		}
		if (avail >= units + delta) { /* room enough? */
			slob_t *next;

			if (delta) { /* need to fragment head to align? */
				next = slob_next(cur);
				set_slob(aligned, avail - delta, next);
				set_slob(cur, delta, aligned);
				prev = cur;
				cur = aligned;
				avail = slob_units(cur);
			}

			next = slob_next(cur);
			if (avail == units) { /* exact fit? unlink. */
				if (prev)
					set_slob(prev, slob_units(prev), next);
				else
					sp->free = next;
			} else { /* fragment */
				if (prev)
					set_slob(prev, slob_units(prev), cur + units);
				else
					sp->free = cur + units;
				set_slob(cur + units, avail - units, next);
			}

			sp->units -= units;
			if (!sp->units)
				clear_slob_page_free(sp);
			return cur;
		}
		if (slob_last(cur))
			return NULL;
	}
}

/*
 * slob_alloc: entry point into the slob allocator.
 */
static void *slob_alloc(size_t size, gfp_t gfp, int align)
{
	struct slob_page *sp;
	slob_t *b = NULL;
	unsigned long flags;

	spin_lock_irqsave(&slob_lock, flags);
	/* Iterate through each partially free page, try to find room */
	list_for_each_entry(sp, &free_slob_pages, list) {
		if (sp->units >= SLOB_UNITS(size)) {
			b = slob_page_alloc(sp, size, align);
			if (b)
				break;
		}
	}
	spin_unlock_irqrestore(&slob_lock, flags);

	/* Not enough space: must allocate a new page */
	if (!b) {
		b = (slob_t *)__get_free_page(gfp);
		if (!b)
			return 0;
		sp = (struct slob_page *)virt_to_page(b);
		set_slob_page(sp);

		spin_lock_irqsave(&slob_lock, flags);
		sp->units = SLOB_UNITS(PAGE_SIZE);
		sp->free = b;
		INIT_LIST_HEAD(&sp->list);
		set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE));
		set_slob_page_free(sp);
		b = slob_page_alloc(sp, size, align);
		BUG_ON(!b);
		spin_unlock_irqrestore(&slob_lock, flags);
	}
	return b;
}

/*
 * slob_free: entry point into the slob allocator.
 */
static void slob_free(void *block, int size)
{
	struct slob_page *sp;
	slob_t *prev, *next, *b = (slob_t *)block;
	slobidx_t units;
	unsigned long flags;

	if (!block)
		return;
	BUG_ON(!size);

	sp = (struct slob_page *)virt_to_page(block);
	units = SLOB_UNITS(size);

	spin_lock_irqsave(&slob_lock, flags);

	if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) {
		/* Go directly to page allocator. Do not pass slob allocator */
		if (slob_page_free(sp))
			clear_slob_page_free(sp);
		clear_slob_page(sp);
		free_slob_page(sp);
		free_page((unsigned long)b);
		goto out;
	}

	if (!slob_page_free(sp)) {
		/* This slob page is about to become partially free. Easy! */
		sp->units = units;
		sp->free = b;
		set_slob(b, units,
			(void *)((unsigned long)(b +
					SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK));
		set_slob_page_free(sp);
		goto out;
	}

	/*
	 * Otherwise the page is already partially free, so find reinsertion
	 * point.
	 */
	sp->units += units;

	if (b < sp->free) {
		set_slob(b, units, sp->free);
		sp->free = b;
	} else {
		prev = sp->free;
		next = slob_next(prev);
		while (b > next) {
			prev = next;
			next = slob_next(prev);
		}

		if (!slob_last(prev) && b + units == next) {
			units += slob_units(next);
			set_slob(b, units, slob_next(next));
		} else
			set_slob(b, units, next);

		if (prev + slob_units(prev) == b) {
			units = slob_units(b) + slob_units(prev);
			set_slob(prev, units, slob_next(b));
		} else
			set_slob(prev, slob_units(prev), b);
	}
out:
	spin_unlock_irqrestore(&slob_lock, flags);
}

/*
 * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend.
 */

#ifndef ARCH_KMALLOC_MINALIGN
#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long)
#endif

#ifndef ARCH_SLAB_MINALIGN
#define ARCH_SLAB_MINALIGN __alignof__(unsigned long)
#endif


void *__kmalloc(size_t size, gfp_t gfp)
{
	int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);

	if (size < PAGE_SIZE - align) {
		unsigned int *m;
		m = slob_alloc(size + align, gfp, align);
		if (m)
			*m = size;
		return (void *)m + align;
	} else {
		void *ret;

		ret = (void *) __get_free_pages(gfp | __GFP_COMP,
						get_order(size));
		if (ret) {
			struct page *page;
			page = virt_to_page(ret);
			page->private = size;
		}
		return ret;
	}
}
EXPORT_SYMBOL(__kmalloc);

/**
 * krealloc - reallocate memory. The contents will remain unchanged.
 *
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * The contents of the object pointed to are preserved up to the
 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
 * behaves exactly like kmalloc().  If @size is 0 and @p is not a
 * %NULL pointer, the object pointed to is freed.
 */
void *krealloc(const void *p, size_t new_size, gfp_t flags)
{
	void *ret;

	if (unlikely(!p))
		return kmalloc_track_caller(new_size, flags);

	if (unlikely(!new_size)) {
		kfree(p);
		return NULL;
	}

	ret = kmalloc_track_caller(new_size, flags);
	if (ret) {
		memcpy(ret, p, min(new_size, ksize(p)));
		kfree(p);
	}
	return ret;
}
EXPORT_SYMBOL(krealloc);

void kfree(const void *block)
{
	struct slob_page *sp;

	if (!block)
		return;

	sp = (struct slob_page *)virt_to_page(block);
	if (slob_page(sp)) {
		int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
		unsigned int *m = (unsigned int *)(block - align);
		slob_free(m, *m + align);
	} else
		put_page(&sp->page);
}

EXPORT_SYMBOL(kfree);

/* can't use ksize for kmem_cache_alloc memory, only kmalloc */
size_t ksize(const void *block)
{
	struct slob_page *sp;

	if (!block)
		return 0;

	sp = (struct slob_page *)virt_to_page(block);
	if (slob_page(sp))
		return ((slob_t *)block - 1)->units + SLOB_UNIT;
	else
		return sp->page.private;
}

struct kmem_cache {
	unsigned int size, align;
	unsigned long flags;
	const char *name;
	void (*ctor)(void *, struct kmem_cache *, unsigned long);
};

struct kmem_cache *kmem_cache_create(const char *name, size_t size,
	size_t align, unsigned long flags,
	void (*ctor)(void*, struct kmem_cache *, unsigned long),
	void (*dtor)(void*, struct kmem_cache *, unsigned long))
{
	struct kmem_cache *c;

	c = slob_alloc(sizeof(struct kmem_cache), flags, 0);

	if (c) {
		c->name = name;
		c->size = size;
		if (flags & SLAB_DESTROY_BY_RCU) {
			/* leave room for rcu footer at the end of object */
			c->size += sizeof(struct slob_rcu);
		}
		c->flags = flags;
		c->ctor = ctor;
		/* ignore alignment unless it's forced */
		c->align = (flags & SLAB_HWCACHE_ALIGN) ? SLOB_ALIGN : 0;
		if (c->align < ARCH_SLAB_MINALIGN)
			c->align = ARCH_SLAB_MINALIGN;
		if (c->align < align)
			c->align = align;
	} else if (flags & SLAB_PANIC)
		panic("Cannot create slab cache %s\n", name);

	return c;
}
EXPORT_SYMBOL(kmem_cache_create);

void kmem_cache_destroy(struct kmem_cache *c)
{
	slob_free(c, sizeof(struct kmem_cache));
}
EXPORT_SYMBOL(kmem_cache_destroy);

void *kmem_cache_alloc(struct kmem_cache *c, gfp_t flags)
{
	void *b;

	if (c->size < PAGE_SIZE)
		b = slob_alloc(c->size, flags, c->align);
	else
		b = (void *)__get_free_pages(flags, get_order(c->size));

	if (c->ctor)
		c->ctor(b, c, 0);

	return b;
}
EXPORT_SYMBOL(kmem_cache_alloc);

void *kmem_cache_zalloc(struct kmem_cache *c, gfp_t flags)
{
	void *ret = kmem_cache_alloc(c, flags);
	if (ret)
		memset(ret, 0, c->size);

	return ret;
}
EXPORT_SYMBOL(kmem_cache_zalloc);

static void __kmem_cache_free(void *b, int size)
{
	if (size < PAGE_SIZE)
		slob_free(b, size);
	else
		free_pages((unsigned long)b, get_order(size));
}

static void kmem_rcu_free(struct rcu_head *head)
{
	struct slob_rcu *slob_rcu = (struct slob_rcu *)head;
	void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu));

	__kmem_cache_free(b, slob_rcu->size);
}

void kmem_cache_free(struct kmem_cache *c, void *b)
{
	if (unlikely(c->flags & SLAB_DESTROY_BY_RCU)) {
		struct slob_rcu *slob_rcu;
		slob_rcu = b + (c->size - sizeof(struct slob_rcu));
		INIT_RCU_HEAD(&slob_rcu->head);
		slob_rcu->size = c->size;
		call_rcu(&slob_rcu->head, kmem_rcu_free);
	} else {
		__kmem_cache_free(b, c->size);
	}
}
EXPORT_SYMBOL(kmem_cache_free);

unsigned int kmem_cache_size(struct kmem_cache *c)
{
	return c->size;
}
EXPORT_SYMBOL(kmem_cache_size);

const char *kmem_cache_name(struct kmem_cache *c)
{
	return c->name;
}
EXPORT_SYMBOL(kmem_cache_name);

int kmem_cache_shrink(struct kmem_cache *d)
{
	return 0;
}
EXPORT_SYMBOL(kmem_cache_shrink);

int kmem_ptr_validate(struct kmem_cache *a, const void *b)
{
	return 0;
}

void __init kmem_cache_init(void)
{
}