summaryrefslogtreecommitdiffstats
path: root/sound/pci/vx222/vx222_ops.c
blob: c705af409b0fd3b2b8c30aaf49f29336bde200a8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
/*
 * Driver for Digigram VX222 V2/Mic soundcards
 *
 * VX222-specific low-level routines
 *
 * Copyright (c) 2002 by Takashi Iwai <tiwai@suse.de>
 *
 *   This program is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <sound/driver.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/firmware.h>
#include <sound/core.h>
#include <sound/control.h>
#include <asm/io.h>
#include "vx222.h"


static int vx2_reg_offset[VX_REG_MAX] = {
	[VX_ICR]    = 0x00,
	[VX_CVR]    = 0x04,
	[VX_ISR]    = 0x08,
	[VX_IVR]    = 0x0c,
	[VX_RXH]    = 0x14,
	[VX_RXM]    = 0x18,
	[VX_RXL]    = 0x1c,
	[VX_DMA]    = 0x10,
	[VX_CDSP]   = 0x20,
	[VX_CFG]    = 0x24,
	[VX_RUER]   = 0x28,
	[VX_DATA]   = 0x2c,
	[VX_STATUS] = 0x30,
	[VX_LOFREQ] = 0x34,
	[VX_HIFREQ] = 0x38,
	[VX_CSUER]  = 0x3c,
	[VX_SELMIC] = 0x40,
	[VX_COMPOT] = 0x44, // Write: POTENTIOMETER ; Read: COMPRESSION LEVEL activate
	[VX_SCOMPR] = 0x48, // Read: COMPRESSION THRESHOLD activate
	[VX_GLIMIT] = 0x4c, // Read: LEVEL LIMITATION activate
	[VX_INTCSR] = 0x4c, // VX_INTCSR_REGISTER_OFFSET
	[VX_CNTRL]  = 0x50,		// VX_CNTRL_REGISTER_OFFSET
	[VX_GPIOC]  = 0x54,		// VX_GPIOC (new with PLX9030)
};

static int vx2_reg_index[VX_REG_MAX] = {
	[VX_ICR]	= 1,
	[VX_CVR]	= 1,
	[VX_ISR]	= 1,
	[VX_IVR]	= 1,
	[VX_RXH]	= 1,
	[VX_RXM]	= 1,
	[VX_RXL]	= 1,
	[VX_DMA]	= 1,
	[VX_CDSP]	= 1,
	[VX_CFG]	= 1,
	[VX_RUER]	= 1,
	[VX_DATA]	= 1,
	[VX_STATUS]	= 1,
	[VX_LOFREQ]	= 1,
	[VX_HIFREQ]	= 1,
	[VX_CSUER]	= 1,
	[VX_SELMIC]	= 1,
	[VX_COMPOT]	= 1,
	[VX_SCOMPR]	= 1,
	[VX_GLIMIT]	= 1,
	[VX_INTCSR]	= 0,	/* on the PLX */
	[VX_CNTRL]	= 0,	/* on the PLX */
	[VX_GPIOC]	= 0,	/* on the PLX */
};

static inline unsigned long vx2_reg_addr(struct vx_core *_chip, int reg)
{
	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
	return chip->port[vx2_reg_index[reg]] + vx2_reg_offset[reg];
}

/**
 * snd_vx_inb - read a byte from the register
 * @offset: register enum
 */
static unsigned char vx2_inb(struct vx_core *chip, int offset)
{
	return inb(vx2_reg_addr(chip, offset));
}

/**
 * snd_vx_outb - write a byte on the register
 * @offset: the register offset
 * @val: the value to write
 */
static void vx2_outb(struct vx_core *chip, int offset, unsigned char val)
{
	outb(val, vx2_reg_addr(chip, offset));
	//printk("outb: %x -> %x\n", val, vx2_reg_addr(chip, offset));
}

/**
 * snd_vx_inl - read a 32bit word from the register
 * @offset: register enum
 */
static unsigned int vx2_inl(struct vx_core *chip, int offset)
{
	return inl(vx2_reg_addr(chip, offset));
}

/**
 * snd_vx_outl - write a 32bit word on the register
 * @offset: the register enum
 * @val: the value to write
 */
static void vx2_outl(struct vx_core *chip, int offset, unsigned int val)
{
	// printk("outl: %x -> %x\n", val, vx2_reg_addr(chip, offset));
	outl(val, vx2_reg_addr(chip, offset));
}

/*
 * redefine macros to call directly
 */
#undef vx_inb
#define vx_inb(chip,reg)	vx2_inb((struct vx_core*)(chip), VX_##reg)
#undef vx_outb
#define vx_outb(chip,reg,val)	vx2_outb((struct vx_core*)(chip), VX_##reg, val)
#undef vx_inl
#define vx_inl(chip,reg)	vx2_inl((struct vx_core*)(chip), VX_##reg)
#undef vx_outl
#define vx_outl(chip,reg,val)	vx2_outl((struct vx_core*)(chip), VX_##reg, val)


/*
 * vx_reset_dsp - reset the DSP
 */

#define XX_DSP_RESET_WAIT_TIME		2	/* ms */

static void vx2_reset_dsp(struct vx_core *_chip)
{
	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;

	/* set the reset dsp bit to 0 */
	vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_DSP_RESET_MASK);

	mdelay(XX_DSP_RESET_WAIT_TIME);

	chip->regCDSP |= VX_CDSP_DSP_RESET_MASK;
	/* set the reset dsp bit to 1 */
	vx_outl(chip, CDSP, chip->regCDSP);
}


static int vx2_test_xilinx(struct vx_core *_chip)
{
	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
	unsigned int data;

	snd_printdd("testing xilinx...\n");
	/* This test uses several write/read sequences on TEST0 and TEST1 bits
	 * to figure out whever or not the xilinx was correctly loaded
	 */

	/* We write 1 on CDSP.TEST0. We should get 0 on STATUS.TEST0. */
	vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST0_MASK);
	vx_inl(chip, ISR);
	data = vx_inl(chip, STATUS);
	if ((data & VX_STATUS_VAL_TEST0_MASK) == VX_STATUS_VAL_TEST0_MASK) {
		snd_printdd("bad!\n");
		return -ENODEV;
	}

	/* We write 0 on CDSP.TEST0. We should get 1 on STATUS.TEST0. */
	vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST0_MASK);
	vx_inl(chip, ISR);
	data = vx_inl(chip, STATUS);
	if (! (data & VX_STATUS_VAL_TEST0_MASK)) {
		snd_printdd("bad! #2\n");
		return -ENODEV;
	}

	if (_chip->type == VX_TYPE_BOARD) {
		/* not implemented on VX_2_BOARDS */
		/* We write 1 on CDSP.TEST1. We should get 0 on STATUS.TEST1. */
		vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST1_MASK);
		vx_inl(chip, ISR);
		data = vx_inl(chip, STATUS);
		if ((data & VX_STATUS_VAL_TEST1_MASK) == VX_STATUS_VAL_TEST1_MASK) {
			snd_printdd("bad! #3\n");
			return -ENODEV;
		}

		/* We write 0 on CDSP.TEST1. We should get 1 on STATUS.TEST1. */
		vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST1_MASK);
		vx_inl(chip, ISR);
		data = vx_inl(chip, STATUS);
		if (! (data & VX_STATUS_VAL_TEST1_MASK)) {
			snd_printdd("bad! #4\n");
			return -ENODEV;
		}
	}
	snd_printdd("ok, xilinx fine.\n");
	return 0;
}


/**
 * vx_setup_pseudo_dma - set up the pseudo dma read/write mode.
 * @do_write: 0 = read, 1 = set up for DMA write
 */
static void vx2_setup_pseudo_dma(struct vx_core *chip, int do_write)
{
	/* Interrupt mode and HREQ pin enabled for host transmit data transfers
	 * (in case of the use of the pseudo-dma facility).
	 */
	vx_outl(chip, ICR, do_write ? ICR_TREQ : ICR_RREQ);

	/* Reset the pseudo-dma register (in case of the use of the
	 * pseudo-dma facility).
	 */
	vx_outl(chip, RESET_DMA, 0);
}

/*
 * vx_release_pseudo_dma - disable the pseudo-DMA mode
 */
static inline void vx2_release_pseudo_dma(struct vx_core *chip)
{
	/* HREQ pin disabled. */
	vx_outl(chip, ICR, 0);
}



/* pseudo-dma write */
static void vx2_dma_write(struct vx_core *chip, struct snd_pcm_runtime *runtime,
			  struct vx_pipe *pipe, int count)
{
	unsigned long port = vx2_reg_addr(chip, VX_DMA);
	int offset = pipe->hw_ptr;
	u32 *addr = (u32 *)(runtime->dma_area + offset);

	snd_assert(count % 4 == 0, return);

	vx2_setup_pseudo_dma(chip, 1);

	/* Transfer using pseudo-dma.
	 */
	if (offset + count > pipe->buffer_bytes) {
		int length = pipe->buffer_bytes - offset;
		count -= length;
		length >>= 2; /* in 32bit words */
		/* Transfer using pseudo-dma. */
		while (length-- > 0) {
			outl(cpu_to_le32(*addr), port);
			addr++;
		}
		addr = (u32 *)runtime->dma_area;
		pipe->hw_ptr = 0;
	}
	pipe->hw_ptr += count;
	count >>= 2; /* in 32bit words */
	/* Transfer using pseudo-dma. */
	while (count-- > 0) {
		outl(cpu_to_le32(*addr), port);
		addr++;
	}

	vx2_release_pseudo_dma(chip);
}


/* pseudo dma read */
static void vx2_dma_read(struct vx_core *chip, struct snd_pcm_runtime *runtime,
			 struct vx_pipe *pipe, int count)
{
	int offset = pipe->hw_ptr;
	u32 *addr = (u32 *)(runtime->dma_area + offset);
	unsigned long port = vx2_reg_addr(chip, VX_DMA);

	snd_assert(count % 4 == 0, return);

	vx2_setup_pseudo_dma(chip, 0);
	/* Transfer using pseudo-dma.
	 */
	if (offset + count > pipe->buffer_bytes) {
		int length = pipe->buffer_bytes - offset;
		count -= length;
		length >>= 2; /* in 32bit words */
		/* Transfer using pseudo-dma. */
		while (length-- > 0)
			*addr++ = le32_to_cpu(inl(port));
		addr = (u32 *)runtime->dma_area;
		pipe->hw_ptr = 0;
	}
	pipe->hw_ptr += count;
	count >>= 2; /* in 32bit words */
	/* Transfer using pseudo-dma. */
	while (count-- > 0)
		*addr++ = le32_to_cpu(inl(port));

	vx2_release_pseudo_dma(chip);
}

#define VX_XILINX_RESET_MASK        0x40000000
#define VX_USERBIT0_MASK            0x00000004
#define VX_USERBIT1_MASK            0x00000020
#define VX_CNTRL_REGISTER_VALUE     0x00172012

/*
 * transfer counts bits to PLX
 */
static int put_xilinx_data(struct vx_core *chip, unsigned int port, unsigned int counts, unsigned char data)
{
	unsigned int i;

	for (i = 0; i < counts; i++) {
		unsigned int val;

		/* set the clock bit to 0. */
		val = VX_CNTRL_REGISTER_VALUE & ~VX_USERBIT0_MASK;
		vx2_outl(chip, port, val);
		vx2_inl(chip, port);
		udelay(1);

		if (data & (1 << i))
			val |= VX_USERBIT1_MASK;
		else
			val &= ~VX_USERBIT1_MASK;
		vx2_outl(chip, port, val);
		vx2_inl(chip, port);

		/* set the clock bit to 1. */
		val |= VX_USERBIT0_MASK;
		vx2_outl(chip, port, val);
		vx2_inl(chip, port);
		udelay(1);
	}
	return 0;
}

/*
 * load the xilinx image
 */
static int vx2_load_xilinx_binary(struct vx_core *chip, const struct firmware *xilinx)
{
	unsigned int i;
	unsigned int port;
	unsigned char *image;

	/* XILINX reset (wait at least 1 milisecond between reset on and off). */
	vx_outl(chip, CNTRL, VX_CNTRL_REGISTER_VALUE | VX_XILINX_RESET_MASK);
	vx_inl(chip, CNTRL);
	msleep(10);
	vx_outl(chip, CNTRL, VX_CNTRL_REGISTER_VALUE);
	vx_inl(chip, CNTRL);
	msleep(10);

	if (chip->type == VX_TYPE_BOARD)
		port = VX_CNTRL;
	else
		port = VX_GPIOC; /* VX222 V2 and VX222_MIC_BOARD with new PLX9030 use this register */

	image = xilinx->data;
	for (i = 0; i < xilinx->size; i++, image++) {
		if (put_xilinx_data(chip, port, 8, *image) < 0)
			return -EINVAL;
		/* don't take too much time in this loop... */
		cond_resched();
	}
	put_xilinx_data(chip, port, 4, 0xff); /* end signature */

	msleep(200);

	/* test after loading (is buggy with VX222) */
	if (chip->type != VX_TYPE_BOARD) {
		/* Test if load successful: test bit 8 of register GPIOC (VX222: use CNTRL) ! */
		i = vx_inl(chip, GPIOC);
		if (i & 0x0100)
			return 0;
		snd_printk(KERN_ERR "vx222: xilinx test failed after load, GPIOC=0x%x\n", i);
		return -EINVAL;
	}

	return 0;
}

	
/*
 * load the boot/dsp images
 */
static int vx2_load_dsp(struct vx_core *vx, int index, const struct firmware *dsp)
{
	int err;

	switch (index) {
	case 1:
		/* xilinx image */
		if ((err = vx2_load_xilinx_binary(vx, dsp)) < 0)
			return err;
		if ((err = vx2_test_xilinx(vx)) < 0)
			return err;
		return 0;
	case 2:
		/* DSP boot */
		return snd_vx_dsp_boot(vx, dsp);
	case 3:
		/* DSP image */
		return snd_vx_dsp_load(vx, dsp);
	default:
		snd_BUG();
		return -EINVAL;
	}
}


/*
 * vx_test_and_ack - test and acknowledge interrupt
 *
 * called from irq hander, too
 *
 * spinlock held!
 */
static int vx2_test_and_ack(struct vx_core *chip)
{
	/* not booted yet? */
	if (! (chip->chip_status & VX_STAT_XILINX_LOADED))
		return -ENXIO;

	if (! (vx_inl(chip, STATUS) & VX_STATUS_MEMIRQ_MASK))
		return -EIO;
	
	/* ok, interrupts generated, now ack it */
	/* set ACQUIT bit up and down */
	vx_outl(chip, STATUS, 0);
	/* useless read just to spend some time and maintain
	 * the ACQUIT signal up for a while ( a bus cycle )
	 */
	vx_inl(chip, STATUS);
	/* ack */
	vx_outl(chip, STATUS, VX_STATUS_MEMIRQ_MASK);
	/* useless read just to spend some time and maintain
	 * the ACQUIT signal up for a while ( a bus cycle ) */
	vx_inl(chip, STATUS);
	/* clear */
	vx_outl(chip, STATUS, 0);

	return 0;
}


/*
 * vx_validate_irq - enable/disable IRQ
 */
static void vx2_validate_irq(struct vx_core *_chip, int enable)
{
	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;

	/* Set the interrupt enable bit to 1 in CDSP register */
	if (enable) {
		/* Set the PCI interrupt enable bit to 1.*/
		vx_outl(chip, INTCSR, VX_INTCSR_VALUE|VX_PCI_INTERRUPT_MASK);
		chip->regCDSP |= VX_CDSP_VALID_IRQ_MASK;
	} else {
		/* Set the PCI interrupt enable bit to 0. */
		vx_outl(chip, INTCSR, VX_INTCSR_VALUE&~VX_PCI_INTERRUPT_MASK);
		chip->regCDSP &= ~VX_CDSP_VALID_IRQ_MASK;
	}
	vx_outl(chip, CDSP, chip->regCDSP);
}


/*
 * write an AKM codec data (24bit)
 */
static void vx2_write_codec_reg(struct vx_core *chip, unsigned int data)
{
	unsigned int i;

	vx_inl(chip, HIFREQ);

	/* We have to send 24 bits (3 x 8 bits). Start with most signif. Bit */
	for (i = 0; i < 24; i++, data <<= 1)
		vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0));
	/* Terminate access to codec registers */
	vx_inl(chip, RUER);
}


#define AKM_CODEC_POWER_CONTROL_CMD 0xA007
#define AKM_CODEC_RESET_ON_CMD      0xA100
#define AKM_CODEC_RESET_OFF_CMD     0xA103
#define AKM_CODEC_CLOCK_FORMAT_CMD  0xA240
#define AKM_CODEC_MUTE_CMD          0xA38D
#define AKM_CODEC_UNMUTE_CMD        0xA30D
#define AKM_CODEC_LEFT_LEVEL_CMD    0xA400
#define AKM_CODEC_RIGHT_LEVEL_CMD   0xA500

static const u8 vx2_akm_gains_lut[VX2_AKM_LEVEL_MAX+1] = {
    0x7f,       // [000] =  +0.000 dB  ->  AKM(0x7f) =  +0.000 dB  error(+0.000 dB)
    0x7d,       // [001] =  -0.500 dB  ->  AKM(0x7d) =  -0.572 dB  error(-0.072 dB)
    0x7c,       // [002] =  -1.000 dB  ->  AKM(0x7c) =  -0.873 dB  error(+0.127 dB)
    0x7a,       // [003] =  -1.500 dB  ->  AKM(0x7a) =  -1.508 dB  error(-0.008 dB)
    0x79,       // [004] =  -2.000 dB  ->  AKM(0x79) =  -1.844 dB  error(+0.156 dB)
    0x77,       // [005] =  -2.500 dB  ->  AKM(0x77) =  -2.557 dB  error(-0.057 dB)
    0x76,       // [006] =  -3.000 dB  ->  AKM(0x76) =  -2.937 dB  error(+0.063 dB)
    0x75,       // [007] =  -3.500 dB  ->  AKM(0x75) =  -3.334 dB  error(+0.166 dB)
    0x73,       // [008] =  -4.000 dB  ->  AKM(0x73) =  -4.188 dB  error(-0.188 dB)
    0x72,       // [009] =  -4.500 dB  ->  AKM(0x72) =  -4.648 dB  error(-0.148 dB)
    0x71,       // [010] =  -5.000 dB  ->  AKM(0x71) =  -5.134 dB  error(-0.134 dB)
    0x70,       // [011] =  -5.500 dB  ->  AKM(0x70) =  -5.649 dB  error(-0.149 dB)
    0x6f,       // [012] =  -6.000 dB  ->  AKM(0x6f) =  -6.056 dB  error(-0.056 dB)
    0x6d,       // [013] =  -6.500 dB  ->  AKM(0x6d) =  -6.631 dB  error(-0.131 dB)
    0x6c,       // [014] =  -7.000 dB  ->  AKM(0x6c) =  -6.933 dB  error(+0.067 dB)
    0x6a,       // [015] =  -7.500 dB  ->  AKM(0x6a) =  -7.571 dB  error(-0.071 dB)
    0x69,       // [016] =  -8.000 dB  ->  AKM(0x69) =  -7.909 dB  error(+0.091 dB)
    0x67,       // [017] =  -8.500 dB  ->  AKM(0x67) =  -8.626 dB  error(-0.126 dB)
    0x66,       // [018] =  -9.000 dB  ->  AKM(0x66) =  -9.008 dB  error(-0.008 dB)
    0x65,       // [019] =  -9.500 dB  ->  AKM(0x65) =  -9.407 dB  error(+0.093 dB)
    0x64,       // [020] = -10.000 dB  ->  AKM(0x64) =  -9.826 dB  error(+0.174 dB)
    0x62,       // [021] = -10.500 dB  ->  AKM(0x62) = -10.730 dB  error(-0.230 dB)
    0x61,       // [022] = -11.000 dB  ->  AKM(0x61) = -11.219 dB  error(-0.219 dB)
    0x60,       // [023] = -11.500 dB  ->  AKM(0x60) = -11.738 dB  error(-0.238 dB)
    0x5f,       // [024] = -12.000 dB  ->  AKM(0x5f) = -12.149 dB  error(-0.149 dB)
    0x5e,       // [025] = -12.500 dB  ->  AKM(0x5e) = -12.434 dB  error(+0.066 dB)
    0x5c,       // [026] = -13.000 dB  ->  AKM(0x5c) = -13.033 dB  error(-0.033 dB)
    0x5b,       // [027] = -13.500 dB  ->  AKM(0x5b) = -13.350 dB  error(+0.150 dB)
    0x59,       // [028] = -14.000 dB  ->  AKM(0x59) = -14.018 dB  error(-0.018 dB)
    0x58,       // [029] = -14.500 dB  ->  AKM(0x58) = -14.373 dB  error(+0.127 dB)
    0x56,       // [030] = -15.000 dB  ->  AKM(0x56) = -15.130 dB  error(-0.130 dB)
    0x55,       // [031] = -15.500 dB  ->  AKM(0x55) = -15.534 dB  error(-0.034 dB)
    0x54,       // [032] = -16.000 dB  ->  AKM(0x54) = -15.958 dB  error(+0.042 dB)
    0x53,       // [033] = -16.500 dB  ->  AKM(0x53) = -16.404 dB  error(+0.096 dB)
    0x52,       // [034] = -17.000 dB  ->  AKM(0x52) = -16.874 dB  error(+0.126 dB)
    0x51,       // [035] = -17.500 dB  ->  AKM(0x51) = -17.371 dB  error(+0.129 dB)
    0x50,       // [036] = -18.000 dB  ->  AKM(0x50) = -17.898 dB  error(+0.102 dB)
    0x4e,       // [037] = -18.500 dB  ->  AKM(0x4e) = -18.605 dB  error(-0.105 dB)
    0x4d,       // [038] = -19.000 dB  ->  AKM(0x4d) = -18.905 dB  error(+0.095 dB)
    0x4b,       // [039] = -19.500 dB  ->  AKM(0x4b) = -19.538 dB  error(-0.038 dB)
    0x4a,       // [040] = -20.000 dB  ->  AKM(0x4a) = -19.872 dB  error(+0.128 dB)
    0x48,       // [041] = -20.500 dB  ->  AKM(0x48) = -20.583 dB  error(-0.083 dB)
    0x47,       // [042] = -21.000 dB  ->  AKM(0x47) = -20.961 dB  error(+0.039 dB)
    0x46,       // [043] = -21.500 dB  ->  AKM(0x46) = -21.356 dB  error(+0.144 dB)
    0x44,       // [044] = -22.000 dB  ->  AKM(0x44) = -22.206 dB  error(-0.206 dB)
    0x43,       // [045] = -22.500 dB  ->  AKM(0x43) = -22.664 dB  error(-0.164 dB)
    0x42,       // [046] = -23.000 dB  ->  AKM(0x42) = -23.147 dB  error(-0.147 dB)
    0x41,       // [047] = -23.500 dB  ->  AKM(0x41) = -23.659 dB  error(-0.159 dB)
    0x40,       // [048] = -24.000 dB  ->  AKM(0x40) = -24.203 dB  error(-0.203 dB)
    0x3f,       // [049] = -24.500 dB  ->  AKM(0x3f) = -24.635 dB  error(-0.135 dB)
    0x3e,       // [050] = -25.000 dB  ->  AKM(0x3e) = -24.935 dB  error(+0.065 dB)
    0x3c,       // [051] = -25.500 dB  ->  AKM(0x3c) = -25.569 dB  error(-0.069 dB)
    0x3b,       // [052] = -26.000 dB  ->  AKM(0x3b) = -25.904 dB  error(+0.096 dB)
    0x39,       // [053] = -26.500 dB  ->  AKM(0x39) = -26.615 dB  error(-0.115 dB)
    0x38,       // [054] = -27.000 dB  ->  AKM(0x38) = -26.994 dB  error(+0.006 dB)
    0x37,       // [055] = -27.500 dB  ->  AKM(0x37) = -27.390 dB  error(+0.110 dB)
    0x36,       // [056] = -28.000 dB  ->  AKM(0x36) = -27.804 dB  error(+0.196 dB)
    0x34,       // [057] = -28.500 dB  ->  AKM(0x34) = -28.699 dB  error(-0.199 dB)
    0x33,       // [058] = -29.000 dB  ->  AKM(0x33) = -29.183 dB  error(-0.183 dB)
    0x32,       // [059] = -29.500 dB  ->  AKM(0x32) = -29.696 dB  error(-0.196 dB)
    0x31,       // [060] = -30.000 dB  ->  AKM(0x31) = -30.241 dB  error(-0.241 dB)
    0x31,       // [061] = -30.500 dB  ->  AKM(0x31) = -30.241 dB  error(+0.259 dB)
    0x30,       // [062] = -31.000 dB  ->  AKM(0x30) = -30.823 dB  error(+0.177 dB)
    0x2e,       // [063] = -31.500 dB  ->  AKM(0x2e) = -31.610 dB  error(-0.110 dB)
    0x2d,       // [064] = -32.000 dB  ->  AKM(0x2d) = -31.945 dB  error(+0.055 dB)
    0x2b,       // [065] = -32.500 dB  ->  AKM(0x2b) = -32.659 dB  error(-0.159 dB)
    0x2a,       // [066] = -33.000 dB  ->  AKM(0x2a) = -33.038 dB  error(-0.038 dB)
    0x29,       // [067] = -33.500 dB  ->  AKM(0x29) = -33.435 dB  error(+0.065 dB)
    0x28,       // [068] = -34.000 dB  ->  AKM(0x28) = -33.852 dB  error(+0.148 dB)
    0x27,       // [069] = -34.500 dB  ->  AKM(0x27) = -34.289 dB  error(+0.211 dB)
    0x25,       // [070] = -35.000 dB  ->  AKM(0x25) = -35.235 dB  error(-0.235 dB)
    0x24,       // [071] = -35.500 dB  ->  AKM(0x24) = -35.750 dB  error(-0.250 dB)
    0x24,       // [072] = -36.000 dB  ->  AKM(0x24) = -35.750 dB  error(+0.250 dB)
    0x23,       // [073] = -36.500 dB  ->  AKM(0x23) = -36.297 dB  error(+0.203 dB)
    0x22,       // [074] = -37.000 dB  ->  AKM(0x22) = -36.881 dB  error(+0.119 dB)
    0x21,       // [075] = -37.500 dB  ->  AKM(0x21) = -37.508 dB  error(-0.008 dB)
    0x20,       // [076] = -38.000 dB  ->  AKM(0x20) = -38.183 dB  error(-0.183 dB)
    0x1f,       // [077] = -38.500 dB  ->  AKM(0x1f) = -38.726 dB  error(-0.226 dB)
    0x1e,       // [078] = -39.000 dB  ->  AKM(0x1e) = -39.108 dB  error(-0.108 dB)
    0x1d,       // [079] = -39.500 dB  ->  AKM(0x1d) = -39.507 dB  error(-0.007 dB)
    0x1c,       // [080] = -40.000 dB  ->  AKM(0x1c) = -39.926 dB  error(+0.074 dB)
    0x1b,       // [081] = -40.500 dB  ->  AKM(0x1b) = -40.366 dB  error(+0.134 dB)
    0x1a,       // [082] = -41.000 dB  ->  AKM(0x1a) = -40.829 dB  error(+0.171 dB)
    0x19,       // [083] = -41.500 dB  ->  AKM(0x19) = -41.318 dB  error(+0.182 dB)
    0x18,       // [084] = -42.000 dB  ->  AKM(0x18) = -41.837 dB  error(+0.163 dB)
    0x17,       // [085] = -42.500 dB  ->  AKM(0x17) = -42.389 dB  error(+0.111 dB)
    0x16,       // [086] = -43.000 dB  ->  AKM(0x16) = -42.978 dB  error(+0.022 dB)
    0x15,       // [087] = -43.500 dB  ->  AKM(0x15) = -43.610 dB  error(-0.110 dB)
    0x14,       // [088] = -44.000 dB  ->  AKM(0x14) = -44.291 dB  error(-0.291 dB)
    0x14,       // [089] = -44.500 dB  ->  AKM(0x14) = -44.291 dB  error(+0.209 dB)
    0x13,       // [090] = -45.000 dB  ->  AKM(0x13) = -45.031 dB  error(-0.031 dB)
    0x12,       // [091] = -45.500 dB  ->  AKM(0x12) = -45.840 dB  error(-0.340 dB)
    0x12,       // [092] = -46.000 dB  ->  AKM(0x12) = -45.840 dB  error(+0.160 dB)
    0x11,       // [093] = -46.500 dB  ->  AKM(0x11) = -46.731 dB  error(-0.231 dB)
    0x11,       // [094] = -47.000 dB  ->  AKM(0x11) = -46.731 dB  error(+0.269 dB)
    0x10,       // [095] = -47.500 dB  ->  AKM(0x10) = -47.725 dB  error(-0.225 dB)
    0x10,       // [096] = -48.000 dB  ->  AKM(0x10) = -47.725 dB  error(+0.275 dB)
    0x0f,       // [097] = -48.500 dB  ->  AKM(0x0f) = -48.553 dB  error(-0.053 dB)
    0x0e,       // [098] = -49.000 dB  ->  AKM(0x0e) = -49.152 dB  error(-0.152 dB)
    0x0d,       // [099] = -49.500 dB  ->  AKM(0x0d) = -49.796 dB  error(-0.296 dB)
    0x0d,       // [100] = -50.000 dB  ->  AKM(0x0d) = -49.796 dB  error(+0.204 dB)
    0x0c,       // [101] = -50.500 dB  ->  AKM(0x0c) = -50.491 dB  error(+0.009 dB)
    0x0b,       // [102] = -51.000 dB  ->  AKM(0x0b) = -51.247 dB  error(-0.247 dB)
    0x0b,       // [103] = -51.500 dB  ->  AKM(0x0b) = -51.247 dB  error(+0.253 dB)
    0x0a,       // [104] = -52.000 dB  ->  AKM(0x0a) = -52.075 dB  error(-0.075 dB)
    0x0a,       // [105] = -52.500 dB  ->  AKM(0x0a) = -52.075 dB  error(+0.425 dB)
    0x09,       // [106] = -53.000 dB  ->  AKM(0x09) = -52.990 dB  error(+0.010 dB)
    0x09,       // [107] = -53.500 dB  ->  AKM(0x09) = -52.990 dB  error(+0.510 dB)
    0x08,       // [108] = -54.000 dB  ->  AKM(0x08) = -54.013 dB  error(-0.013 dB)
    0x08,       // [109] = -54.500 dB  ->  AKM(0x08) = -54.013 dB  error(+0.487 dB)
    0x07,       // [110] = -55.000 dB  ->  AKM(0x07) = -55.173 dB  error(-0.173 dB)
    0x07,       // [111] = -55.500 dB  ->  AKM(0x07) = -55.173 dB  error(+0.327 dB)
    0x06,       // [112] = -56.000 dB  ->  AKM(0x06) = -56.512 dB  error(-0.512 dB)
    0x06,       // [113] = -56.500 dB  ->  AKM(0x06) = -56.512 dB  error(-0.012 dB)
    0x06,       // [114] = -57.000 dB  ->  AKM(0x06) = -56.512 dB  error(+0.488 dB)
    0x05,       // [115] = -57.500 dB  ->  AKM(0x05) = -58.095 dB  error(-0.595 dB)
    0x05,       // [116] = -58.000 dB  ->  AKM(0x05) = -58.095 dB  error(-0.095 dB)
    0x05,       // [117] = -58.500 dB  ->  AKM(0x05) = -58.095 dB  error(+0.405 dB)
    0x05,       // [118] = -59.000 dB  ->  AKM(0x05) = -58.095 dB  error(+0.905 dB)
    0x04,       // [119] = -59.500 dB  ->  AKM(0x04) = -60.034 dB  error(-0.534 dB)
    0x04,       // [120] = -60.000 dB  ->  AKM(0x04) = -60.034 dB  error(-0.034 dB)
    0x04,       // [121] = -60.500 dB  ->  AKM(0x04) = -60.034 dB  error(+0.466 dB)
    0x04,       // [122] = -61.000 dB  ->  AKM(0x04) = -60.034 dB  error(+0.966 dB)
    0x03,       // [123] = -61.500 dB  ->  AKM(0x03) = -62.532 dB  error(-1.032 dB)
    0x03,       // [124] = -62.000 dB  ->  AKM(0x03) = -62.532 dB  error(-0.532 dB)
    0x03,       // [125] = -62.500 dB  ->  AKM(0x03) = -62.532 dB  error(-0.032 dB)
    0x03,       // [126] = -63.000 dB  ->  AKM(0x03) = -62.532 dB  error(+0.468 dB)
    0x03,       // [127] = -63.500 dB  ->  AKM(0x03) = -62.532 dB  error(+0.968 dB)
    0x03,       // [128] = -64.000 dB  ->  AKM(0x03) = -62.532 dB  error(+1.468 dB)
    0x02,       // [129] = -64.500 dB  ->  AKM(0x02) = -66.054 dB  error(-1.554 dB)
    0x02,       // [130] = -65.000 dB  ->  AKM(0x02) = -66.054 dB  error(-1.054 dB)
    0x02,       // [131] = -65.500 dB  ->  AKM(0x02) = -66.054 dB  error(-0.554 dB)
    0x02,       // [132] = -66.000 dB  ->  AKM(0x02) = -66.054 dB  error(-0.054 dB)
    0x02,       // [133] = -66.500 dB  ->  AKM(0x02) = -66.054 dB  error(+0.446 dB)
    0x02,       // [134] = -67.000 dB  ->  AKM(0x02) = -66.054 dB  error(+0.946 dB)
    0x02,       // [135] = -67.500 dB  ->  AKM(0x02) = -66.054 dB  error(+1.446 dB)
    0x02,       // [136] = -68.000 dB  ->  AKM(0x02) = -66.054 dB  error(+1.946 dB)
    0x02,       // [137] = -68.500 dB  ->  AKM(0x02) = -66.054 dB  error(+2.446 dB)
    0x02,       // [138] = -69.000 dB  ->  AKM(0x02) = -66.054 dB  error(+2.946 dB)
    0x01,       // [139] = -69.500 dB  ->  AKM(0x01) = -72.075 dB  error(-2.575 dB)
    0x01,       // [140] = -70.000 dB  ->  AKM(0x01) = -72.075 dB  error(-2.075 dB)
    0x01,       // [141] = -70.500 dB  ->  AKM(0x01) = -72.075 dB  error(-1.575 dB)
    0x01,       // [142] = -71.000 dB  ->  AKM(0x01) = -72.075 dB  error(-1.075 dB)
    0x01,       // [143] = -71.500 dB  ->  AKM(0x01) = -72.075 dB  error(-0.575 dB)
    0x01,       // [144] = -72.000 dB  ->  AKM(0x01) = -72.075 dB  error(-0.075 dB)
    0x01,       // [145] = -72.500 dB  ->  AKM(0x01) = -72.075 dB  error(+0.425 dB)
    0x01,       // [146] = -73.000 dB  ->  AKM(0x01) = -72.075 dB  error(+0.925 dB)
    0x00};      // [147] = -73.500 dB  ->  AKM(0x00) =  mute       error(+infini)

/*
 * pseudo-codec write entry
 */
static void vx2_write_akm(struct vx_core *chip, int reg, unsigned int data)
{
	unsigned int val;

	if (reg == XX_CODEC_DAC_CONTROL_REGISTER) {
		vx2_write_codec_reg(chip, data ? AKM_CODEC_MUTE_CMD : AKM_CODEC_UNMUTE_CMD);
		return;
	}

	/* `data' is a value between 0x0 and VX2_AKM_LEVEL_MAX = 0x093, in the case of the AKM codecs, we need
	   a look up table, as there is no linear matching between the driver codec values
	   and the real dBu value
	*/
	snd_assert(data < sizeof(vx2_akm_gains_lut), return);

	switch (reg) {
	case XX_CODEC_LEVEL_LEFT_REGISTER:
		val = AKM_CODEC_LEFT_LEVEL_CMD;
		break;
	case XX_CODEC_LEVEL_RIGHT_REGISTER:
		val = AKM_CODEC_RIGHT_LEVEL_CMD;
		break;
	default:
		snd_BUG();
		return;
	}
	val |= vx2_akm_gains_lut[data];

	vx2_write_codec_reg(chip, val);
}


/*
 * write codec bit for old VX222 board
 */
static void vx2_old_write_codec_bit(struct vx_core *chip, int codec, unsigned int data)
{
	int i;

	/* activate access to codec registers */
	vx_inl(chip, HIFREQ);

	for (i = 0; i < 24; i++, data <<= 1)
		vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0));

	/* Terminate access to codec registers */
	vx_inl(chip, RUER);
}


/*
 * reset codec bit
 */
static void vx2_reset_codec(struct vx_core *_chip)
{
	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;

	/* Set the reset CODEC bit to 0. */
	vx_outl(chip, CDSP, chip->regCDSP &~ VX_CDSP_CODEC_RESET_MASK);
	vx_inl(chip, CDSP);
	msleep(10);
	/* Set the reset CODEC bit to 1. */
	chip->regCDSP |= VX_CDSP_CODEC_RESET_MASK;
	vx_outl(chip, CDSP, chip->regCDSP);
	vx_inl(chip, CDSP);
	if (_chip->type == VX_TYPE_BOARD) {
		msleep(1);
		return;
	}

	msleep(5);  /* additionnel wait time for AKM's */

	vx2_write_codec_reg(_chip, AKM_CODEC_POWER_CONTROL_CMD); /* DAC power up, ADC power up, Vref power down */
	
	vx2_write_codec_reg(_chip, AKM_CODEC_CLOCK_FORMAT_CMD); /* default */
	vx2_write_codec_reg(_chip, AKM_CODEC_MUTE_CMD); /* Mute = ON ,Deemphasis = OFF */
	vx2_write_codec_reg(_chip, AKM_CODEC_RESET_OFF_CMD); /* DAC and ADC normal operation */

	if (_chip->type == VX_TYPE_MIC) {
		/* set up the micro input selector */
		chip->regSELMIC =  MICRO_SELECT_INPUT_NORM |
			MICRO_SELECT_PREAMPLI_G_0 |
			MICRO_SELECT_NOISE_T_52DB;

		/* reset phantom power supply */
		chip->regSELMIC &= ~MICRO_SELECT_PHANTOM_ALIM;

		vx_outl(_chip, SELMIC, chip->regSELMIC);
	}
}


/*
 * change the audio source
 */
static void vx2_change_audio_source(struct vx_core *_chip, int src)
{
	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;

	switch (src) {
	case VX_AUDIO_SRC_DIGITAL:
		chip->regCFG |= VX_CFG_DATAIN_SEL_MASK;
		break;
	default:
		chip->regCFG &= ~VX_CFG_DATAIN_SEL_MASK;
		break;
	}
	vx_outl(chip, CFG, chip->regCFG);
}


/*
 * set the clock source
 */
static void vx2_set_clock_source(struct vx_core *_chip, int source)
{
	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;

	if (source == INTERNAL_QUARTZ)
		chip->regCFG &= ~VX_CFG_CLOCKIN_SEL_MASK;
	else
		chip->regCFG |= VX_CFG_CLOCKIN_SEL_MASK;
	vx_outl(chip, CFG, chip->regCFG);
}

/*
 * reset the board
 */
static void vx2_reset_board(struct vx_core *_chip, int cold_reset)
{
	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;

	/* initialize the register values */
	chip->regCDSP = VX_CDSP_CODEC_RESET_MASK | VX_CDSP_DSP_RESET_MASK ;
	chip->regCFG = 0;
}



/*
 * input level controls for VX222 Mic
 */

/* Micro level is specified to be adjustable from -96dB to 63 dB (board coded 0x00 ... 318),
 * 318 = 210 + 36 + 36 + 36   (210 = +9dB variable) (3 * 36 = 3 steps of 18dB pre ampli)
 * as we will mute if less than -110dB, so let's simply use line input coded levels and add constant offset !
 */
#define V2_MICRO_LEVEL_RANGE        (318 - 255)

static void vx2_set_input_level(struct snd_vx222 *chip)
{
	int i, miclevel, preamp;
	unsigned int data;

	miclevel = chip->mic_level;
	miclevel += V2_MICRO_LEVEL_RANGE; /* add 318 - 0xff */
	preamp = 0;
        while (miclevel > 210) { /* limitation to +9dB of 3310 real gain */
		preamp++;	/* raise pre ampli + 18dB */
		miclevel -= (18 * 2);   /* lower level 18 dB (*2 because of 0.5 dB steps !) */
        }
	snd_assert(preamp < 4, return);

	/* set pre-amp level */
	chip->regSELMIC &= ~MICRO_SELECT_PREAMPLI_MASK;
	chip->regSELMIC |= (preamp << MICRO_SELECT_PREAMPLI_OFFSET) & MICRO_SELECT_PREAMPLI_MASK;
	vx_outl(chip, SELMIC, chip->regSELMIC);

	data = (unsigned int)miclevel << 16 |
		(unsigned int)chip->input_level[1] << 8 |
		(unsigned int)chip->input_level[0];
	vx_inl(chip, DATA); /* Activate input level programming */

	/* We have to send 32 bits (4 x 8 bits) */
	for (i = 0; i < 32; i++, data <<= 1)
		vx_outl(chip, DATA, ((data & 0x80000000) ? VX_DATA_CODEC_MASK : 0));

	vx_inl(chip, RUER); /* Terminate input level programming */
}


#define MIC_LEVEL_MAX	0xff

/*
 * controls API for input levels
 */

/* input levels */
static int vx_input_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
	uinfo->count = 2;
	uinfo->value.integer.min = 0;
	uinfo->value.integer.max = MIC_LEVEL_MAX;
	return 0;
}

static int vx_input_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
	struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
	down(&_chip->mixer_mutex);
	ucontrol->value.integer.value[0] = chip->input_level[0];
	ucontrol->value.integer.value[1] = chip->input_level[1];
	up(&_chip->mixer_mutex);
	return 0;
}

static int vx_input_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
	struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
	down(&_chip->mixer_mutex);
	if (chip->input_level[0] != ucontrol->value.integer.value[0] ||
	    chip->input_level[1] != ucontrol->value.integer.value[1]) {
		chip->input_level[0] = ucontrol->value.integer.value[0];
		chip->input_level[1] = ucontrol->value.integer.value[1];
		vx2_set_input_level(chip);
		up(&_chip->mixer_mutex);
		return 1;
	}
	up(&_chip->mixer_mutex);
	return 0;
}

/* mic level */
static int vx_mic_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
	uinfo->count = 1;
	uinfo->value.integer.min = 0;
	uinfo->value.integer.max = MIC_LEVEL_MAX;
	return 0;
}

static int vx_mic_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
	struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
	ucontrol->value.integer.value[0] = chip->mic_level;
	return 0;
}

static int vx_mic_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
	struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
	down(&_chip->mixer_mutex);
	if (chip->mic_level != ucontrol->value.integer.value[0]) {
		chip->mic_level = ucontrol->value.integer.value[0];
		vx2_set_input_level(chip);
		up(&_chip->mixer_mutex);
		return 1;
	}
	up(&_chip->mixer_mutex);
	return 0;
}

static struct snd_kcontrol_new vx_control_input_level = {
	.iface =	SNDRV_CTL_ELEM_IFACE_MIXER,
	.name =		"Capture Volume",
	.info =		vx_input_level_info,
	.get =		vx_input_level_get,
	.put =		vx_input_level_put,
};

static struct snd_kcontrol_new vx_control_mic_level = {
	.iface =	SNDRV_CTL_ELEM_IFACE_MIXER,
	.name =		"Mic Capture Volume",
	.info =		vx_mic_level_info,
	.get =		vx_mic_level_get,
	.put =		vx_mic_level_put,
};

/*
 * FIXME: compressor/limiter implementation is missing yet...
 */

static int vx2_add_mic_controls(struct vx_core *_chip)
{
	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
	int err;

	if (_chip->type != VX_TYPE_MIC)
		return 0;

	/* mute input levels */
	chip->input_level[0] = chip->input_level[1] = 0;
	chip->mic_level = 0;
	vx2_set_input_level(chip);

	/* controls */
	if ((err = snd_ctl_add(_chip->card, snd_ctl_new1(&vx_control_input_level, chip))) < 0)
		return err;
	if ((err = snd_ctl_add(_chip->card, snd_ctl_new1(&vx_control_mic_level, chip))) < 0)
		return err;

	return 0;
}


/*
 * callbacks
 */
struct snd_vx_ops vx222_ops = {
	.in8 = vx2_inb,
	.in32 = vx2_inl,
	.out8 = vx2_outb,
	.out32 = vx2_outl,
	.test_and_ack = vx2_test_and_ack,
	.validate_irq = vx2_validate_irq,
	.akm_write = vx2_write_akm,
	.reset_codec = vx2_reset_codec,
	.change_audio_source = vx2_change_audio_source,
	.set_clock_source = vx2_set_clock_source,
	.load_dsp = vx2_load_dsp,
	.reset_dsp = vx2_reset_dsp,
	.reset_board = vx2_reset_board,
	.dma_write = vx2_dma_write,
	.dma_read = vx2_dma_read,
	.add_controls = vx2_add_mic_controls,
};

/* for old VX222 board */
struct snd_vx_ops vx222_old_ops = {
	.in8 = vx2_inb,
	.in32 = vx2_inl,
	.out8 = vx2_outb,
	.out32 = vx2_outl,
	.test_and_ack = vx2_test_and_ack,
	.validate_irq = vx2_validate_irq,
	.write_codec = vx2_old_write_codec_bit,
	.reset_codec = vx2_reset_codec,
	.change_audio_source = vx2_change_audio_source,
	.set_clock_source = vx2_set_clock_source,
	.load_dsp = vx2_load_dsp,
	.reset_dsp = vx2_reset_dsp,
	.reset_board = vx2_reset_board,
	.dma_write = vx2_dma_write,
	.dma_read = vx2_dma_read,
};