summaryrefslogtreecommitdiffstats
path: root/arch/mips/alchemy/xxs1500/init.c
diff options
context:
space:
mode:
authorPaul Mackerras <paulus@samba.org>2009-01-17 18:10:22 +1100
committerPaul Mackerras <paulus@samba.org>2009-01-17 18:10:22 +1100
commitd859e29fe34cb833071b20aef860ee94fbad9bb2 (patch)
tree6359fe345851db2b7e8379fa65b7ed6a873d3ee3 /arch/mips/alchemy/xxs1500/init.c
parent3b6f9e5cb21964b7ce12bf81076f830885563ec8 (diff)
perf_counter: Add counter enable/disable ioctls
Impact: New perf_counter features This primarily adds a way for perf_counter users to enable and disable counters and groups. Enabling or disabling a counter or group also enables or disables all of the child counters that have been cloned from it to monitor children of the task monitored by the top-level counter. The userspace interface to enable/disable counters is via ioctl on the counter file descriptor. Along the way this extends the code that handles child counters to handle child counter groups properly. A group with multiple counters will be cloned to child tasks if and only if the group leader has the hw_event.inherit bit set - if it is set the whole group is cloned as a group in the child task. In order to be able to enable or disable all child counters of a given top-level counter, we need a way to find them all. Hence I have added a child_list field to struct perf_counter, which is the head of the list of children for a top-level counter, or the link in that list for a child counter. That list is protected by the perf_counter.mutex field. This also adds a mutex to the perf_counter_context struct. Previously the list of counters was protected just by the lock field in the context, which meant that perf_counter_init_task had to take that lock and then take whatever lock/mutex protects the top-level counter's child_list. But the counter enable/disable functions need to take that lock in order to traverse the list, then for each counter take the lock in that counter's context in order to change the counter's state safely, which will lead to a deadlock. To solve this, we now have both a mutex and a spinlock in the context, and taking either is sufficient to ensure the list of counters can't change - you have to take both before changing the list. Now perf_counter_init_task takes the mutex instead of the lock (which incidentally means that inherit_counter can use GFP_KERNEL instead of GFP_ATOMIC) and thus avoids the possible deadlock. Similarly the new enable/disable functions can take the mutex while traversing the list of child counters without incurring a possible deadlock when the counter manipulation code locks the context for a child counter. We also had an misfeature that the first counter added to a context would possibly not go on until the next sched-in, because we were using ctx->nr_active to detect if the context was running on a CPU. But nr_active is the number of active counters, and if that was zero (because the context didn't have any counters yet) it would look like the context wasn't running on a cpu and so the retry code in __perf_install_in_context wouldn't retry. So this adds an 'is_active' field that is set when the context is on a CPU, even if it has no counters. The is_active field is only used for task contexts, not for per-cpu contexts. If we enable a subsidiary counter in a group that is active on a CPU, and the arch code can't enable the counter, then we have to pull the whole group off the CPU. We do this with group_sched_out, which gets moved up in the file so it comes before all its callers. This also adds similar logic to __perf_install_in_context so that the "all on, or none" invariant of groups is preserved when adding a new counter to a group. Signed-off-by: Paul Mackerras <paulus@samba.org>
Diffstat (limited to 'arch/mips/alchemy/xxs1500/init.c')
0 files changed, 0 insertions, 0 deletions