diff options
author | Heiko Carstens <heiko.carstens@de.ibm.com> | 2013-01-14 16:55:55 +0100 |
---|---|---|
committer | Martin Schwidefsky <schwidefsky@de.ibm.com> | 2013-01-16 15:57:52 +0100 |
commit | ed4f20943cd4c7b55105c04daedf8d63ab6d499c (patch) | |
tree | 3737b2efcd486670eac2cbf5a93bb8fb90964b05 /arch/s390/include/asm/timex.h | |
parent | 7bdc229fad1d42beda70f1966042262470660082 (diff) |
s390/time: fix sched_clock() overflow
Converting a 64 Bit TOD format value to nanoseconds means that the value
must be divided by 4.096. In order to achieve that we multiply with 125
and divide by 512.
When used within sched_clock() this triggers an overflow after appr.
417 days. Resulting in a sched_clock() return value that is much smaller
than previously and therefore may cause all sort of weird things in
subsystems that rely on a monotonic sched_clock() behaviour.
To fix this implement a tod_to_ns() helper function which converts TOD
values without overflow and call this function from both places that
open coded the conversion: sched_clock() and kvm_s390_handle_wait().
Cc: stable@kernel.org
Reviewed-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Diffstat (limited to 'arch/s390/include/asm/timex.h')
-rw-r--r-- | arch/s390/include/asm/timex.h | 28 |
1 files changed, 28 insertions, 0 deletions
diff --git a/arch/s390/include/asm/timex.h b/arch/s390/include/asm/timex.h index fba4d66788a..4c060bb5b8e 100644 --- a/arch/s390/include/asm/timex.h +++ b/arch/s390/include/asm/timex.h @@ -128,4 +128,32 @@ static inline unsigned long long get_clock_monotonic(void) return get_clock_xt() - sched_clock_base_cc; } +/** + * tod_to_ns - convert a TOD format value to nanoseconds + * @todval: to be converted TOD format value + * Returns: number of nanoseconds that correspond to the TOD format value + * + * Converting a 64 Bit TOD format value to nanoseconds means that the value + * must be divided by 4.096. In order to achieve that we multiply with 125 + * and divide by 512: + * + * ns = (todval * 125) >> 9; + * + * In order to avoid an overflow with the multiplication we can rewrite this. + * With a split todval == 2^32 * th + tl (th upper 32 bits, tl lower 32 bits) + * we end up with + * + * ns = ((2^32 * th + tl) * 125 ) >> 9; + * -> ns = (2^23 * th * 125) + ((tl * 125) >> 9); + * + */ +static inline unsigned long long tod_to_ns(unsigned long long todval) +{ + unsigned long long ns; + + ns = ((todval >> 32) << 23) * 125; + ns += ((todval & 0xffffffff) * 125) >> 9; + return ns; +} + #endif |