diff options
author | Tejun Heo <tj@kernel.org> | 2013-05-24 10:55:38 +0900 |
---|---|---|
committer | Tejun Heo <tj@kernel.org> | 2013-05-24 10:55:38 +0900 |
commit | 53fa5261747a90746531e8a1c81eeb78fedc2f71 (patch) | |
tree | b615f4ac453b9f40d412b5ba22498b827902f438 /include/linux/cgroup.h | |
parent | bdc7119f1bdd0632d42f435941dc290216a436e7 (diff) |
cgroup: add cgroup->serial_nr and implement cgroup_next_sibling()
Currently, there's no easy way to find out the next sibling cgroup
unless it's known that the current cgroup is accessed from the
parent's children list in a single RCU critical section. This in turn
forces all iterators to require whole iteration to be enclosed in a
single RCU critical section, which sometimes is too restrictive. This
patch implements cgroup_next_sibling() which can reliably determine
the next sibling regardless of the state of the current cgroup as long
as it's accessible.
It currently is impossible to determine the next sibling after
dropping RCU read lock because the cgroup being iterated could be
removed anytime and if RCU read lock is dropped, nothing guarantess
its ->sibling.next pointer is accessible. A removed cgroup would
continue to point to its next sibling for RCU accesses but stop
receiving updates from the sibling. IOW, the next sibling could be
removed and then complete its grace period while RCU read lock is
dropped, making it unsafe to dereference ->sibling.next after dropping
and re-acquiring RCU read lock.
This can be solved by adding a way to traverse to the next sibling
without dereferencing ->sibling.next. This patch adds a monotonically
increasing cgroup serial number, cgroup->serial_nr, which guarantees
that all cgroup->children lists are kept in increasing serial_nr
order. A new function, cgroup_next_sibling(), is implemented, which,
if CGRP_REMOVED is not set on the current cgroup, follows
->sibling.next; otherwise, traverses the parent's ->children list
until it sees a sibling with higher ->serial_nr.
This allows the function to always return the next sibling regardless
of the state of the current cgroup without adding overhead in the fast
path.
Further patches will update the iterators to use cgroup_next_sibling()
so that they allow dropping RCU read lock and blocking while iteration
is in progress which in turn will be used to simplify controllers.
v2: Typo fix as per Serge.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Serge E. Hallyn <serge.hallyn@ubuntu.com>
Diffstat (limited to 'include/linux/cgroup.h')
-rw-r--r-- | include/linux/cgroup.h | 10 |
1 files changed, 10 insertions, 0 deletions
diff --git a/include/linux/cgroup.h b/include/linux/cgroup.h index 8d9f3c911fc..ee041a01a67 100644 --- a/include/linux/cgroup.h +++ b/include/linux/cgroup.h @@ -189,6 +189,14 @@ struct cgroup { struct dentry *dentry; /* cgroup fs entry, RCU protected */ /* + * Monotonically increasing unique serial number which defines a + * uniform order among all cgroups. It's guaranteed that all + * ->children lists are in the ascending order of ->serial_nr. + * It's used to allow interrupting and resuming iterations. + */ + u64 serial_nr; + + /* * This is a copy of dentry->d_name, and it's needed because * we can't use dentry->d_name in cgroup_path(). * @@ -675,6 +683,8 @@ static inline struct cgroup* task_cgroup(struct task_struct *task, return task_subsys_state(task, subsys_id)->cgroup; } +struct cgroup *cgroup_next_sibling(struct cgroup *pos); + /** * cgroup_for_each_child - iterate through children of a cgroup * @pos: the cgroup * to use as the loop cursor |