diff options
Diffstat (limited to 'arch/ppc/math-emu/op-4.h')
-rw-r--r-- | arch/ppc/math-emu/op-4.h | 297 |
1 files changed, 0 insertions, 297 deletions
diff --git a/arch/ppc/math-emu/op-4.h b/arch/ppc/math-emu/op-4.h deleted file mode 100644 index fcdd6d064c5..00000000000 --- a/arch/ppc/math-emu/op-4.h +++ /dev/null @@ -1,297 +0,0 @@ -/* - * Basic four-word fraction declaration and manipulation. - * - * When adding quadword support for 32 bit machines, we need - * to be a little careful as double multiply uses some of these - * macros: (in op-2.h) - * _FP_MUL_MEAT_2_wide() uses _FP_FRAC_DECL_4, _FP_FRAC_WORD_4, - * _FP_FRAC_ADD_4, _FP_FRAC_SRS_4 - * _FP_MUL_MEAT_2_gmp() uses _FP_FRAC_SRS_4 (and should use - * _FP_FRAC_DECL_4: it appears to be broken and is not used - * anywhere anyway. ) - * - * I've now fixed all the macros that were here from the sparc64 code. - * [*none* of the shift macros were correct!] -- PMM 02/1998 - * - * The only quadword stuff that remains to be coded is: - * 1) the conversion to/from ints, which requires - * that we check (in op-common.h) that the following do the right thing - * for quadwords: _FP_TO_INT(Q,4,r,X,rsz,rsg), _FP_FROM_INT(Q,4,X,r,rs,rt) - * 2) multiply, divide and sqrt, which require: - * _FP_MUL_MEAT_4_*(R,X,Y), _FP_DIV_MEAT_4_*(R,X,Y), _FP_SQRT_MEAT_4(R,S,T,X,q), - * This also needs _FP_MUL_MEAT_Q and _FP_DIV_MEAT_Q to be defined to - * some suitable _FP_MUL_MEAT_4_* macros in sfp-machine.h. - * [we're free to choose whatever FP_MUL_MEAT_4_* macros we need for - * these; they are used nowhere else. ] - */ - -#define _FP_FRAC_DECL_4(X) _FP_W_TYPE X##_f[4] -#define _FP_FRAC_COPY_4(D,S) \ - (D##_f[0] = S##_f[0], D##_f[1] = S##_f[1], \ - D##_f[2] = S##_f[2], D##_f[3] = S##_f[3]) -/* The _FP_FRAC_SET_n(X,I) macro is intended for use with another - * macro such as _FP_ZEROFRAC_n which returns n comma separated values. - * The result is that we get an expansion of __FP_FRAC_SET_n(X,I0,I1,I2,I3) - * which just assigns the In values to the array X##_f[]. - * This is why the number of parameters doesn't appear to match - * at first glance... -- PMM - */ -#define _FP_FRAC_SET_4(X,I) __FP_FRAC_SET_4(X, I) -#define _FP_FRAC_HIGH_4(X) (X##_f[3]) -#define _FP_FRAC_LOW_4(X) (X##_f[0]) -#define _FP_FRAC_WORD_4(X,w) (X##_f[w]) - -#define _FP_FRAC_SLL_4(X,N) \ - do { \ - _FP_I_TYPE _up, _down, _skip, _i; \ - _skip = (N) / _FP_W_TYPE_SIZE; \ - _up = (N) % _FP_W_TYPE_SIZE; \ - _down = _FP_W_TYPE_SIZE - _up; \ - for (_i = 3; _i > _skip; --_i) \ - X##_f[_i] = X##_f[_i-_skip] << _up | X##_f[_i-_skip-1] >> _down; \ -/* bugfixed: was X##_f[_i] <<= _up; -- PMM 02/1998 */ \ - X##_f[_i] = X##_f[0] << _up; \ - for (--_i; _i >= 0; --_i) \ - X##_f[_i] = 0; \ - } while (0) - -/* This one was broken too */ -#define _FP_FRAC_SRL_4(X,N) \ - do { \ - _FP_I_TYPE _up, _down, _skip, _i; \ - _skip = (N) / _FP_W_TYPE_SIZE; \ - _down = (N) % _FP_W_TYPE_SIZE; \ - _up = _FP_W_TYPE_SIZE - _down; \ - for (_i = 0; _i < 3-_skip; ++_i) \ - X##_f[_i] = X##_f[_i+_skip] >> _down | X##_f[_i+_skip+1] << _up; \ - X##_f[_i] = X##_f[3] >> _down; \ - for (++_i; _i < 4; ++_i) \ - X##_f[_i] = 0; \ - } while (0) - - -/* Right shift with sticky-lsb. - * What this actually means is that we do a standard right-shift, - * but that if any of the bits that fall off the right hand side - * were one then we always set the LSbit. - */ -#define _FP_FRAC_SRS_4(X,N,size) \ - do { \ - _FP_I_TYPE _up, _down, _skip, _i; \ - _FP_W_TYPE _s; \ - _skip = (N) / _FP_W_TYPE_SIZE; \ - _down = (N) % _FP_W_TYPE_SIZE; \ - _up = _FP_W_TYPE_SIZE - _down; \ - for (_s = _i = 0; _i < _skip; ++_i) \ - _s |= X##_f[_i]; \ - _s |= X##_f[_i] << _up; \ -/* s is now != 0 if we want to set the LSbit */ \ - for (_i = 0; _i < 3-_skip; ++_i) \ - X##_f[_i] = X##_f[_i+_skip] >> _down | X##_f[_i+_skip+1] << _up; \ - X##_f[_i] = X##_f[3] >> _down; \ - for (++_i; _i < 4; ++_i) \ - X##_f[_i] = 0; \ - /* don't fix the LSB until the very end when we're sure f[0] is stable */ \ - X##_f[0] |= (_s != 0); \ - } while (0) - -#define _FP_FRAC_ADD_4(R,X,Y) \ - __FP_FRAC_ADD_4(R##_f[3], R##_f[2], R##_f[1], R##_f[0], \ - X##_f[3], X##_f[2], X##_f[1], X##_f[0], \ - Y##_f[3], Y##_f[2], Y##_f[1], Y##_f[0]) - -#define _FP_FRAC_SUB_4(R,X,Y) \ - __FP_FRAC_SUB_4(R##_f[3], R##_f[2], R##_f[1], R##_f[0], \ - X##_f[3], X##_f[2], X##_f[1], X##_f[0], \ - Y##_f[3], Y##_f[2], Y##_f[1], Y##_f[0]) - -#define _FP_FRAC_ADDI_4(X,I) \ - __FP_FRAC_ADDI_4(X##_f[3], X##_f[2], X##_f[1], X##_f[0], I) - -#define _FP_ZEROFRAC_4 0,0,0,0 -#define _FP_MINFRAC_4 0,0,0,1 - -#define _FP_FRAC_ZEROP_4(X) ((X##_f[0] | X##_f[1] | X##_f[2] | X##_f[3]) == 0) -#define _FP_FRAC_NEGP_4(X) ((_FP_WS_TYPE)X##_f[3] < 0) -#define _FP_FRAC_OVERP_4(fs,X) (X##_f[0] & _FP_OVERFLOW_##fs) - -#define _FP_FRAC_EQ_4(X,Y) \ - (X##_f[0] == Y##_f[0] && X##_f[1] == Y##_f[1] \ - && X##_f[2] == Y##_f[2] && X##_f[3] == Y##_f[3]) - -#define _FP_FRAC_GT_4(X,Y) \ - (X##_f[3] > Y##_f[3] || \ - (X##_f[3] == Y##_f[3] && (X##_f[2] > Y##_f[2] || \ - (X##_f[2] == Y##_f[2] && (X##_f[1] > Y##_f[1] || \ - (X##_f[1] == Y##_f[1] && X##_f[0] > Y##_f[0]) \ - )) \ - )) \ - ) - -#define _FP_FRAC_GE_4(X,Y) \ - (X##_f[3] > Y##_f[3] || \ - (X##_f[3] == Y##_f[3] && (X##_f[2] > Y##_f[2] || \ - (X##_f[2] == Y##_f[2] && (X##_f[1] > Y##_f[1] || \ - (X##_f[1] == Y##_f[1] && X##_f[0] >= Y##_f[0]) \ - )) \ - )) \ - ) - - -#define _FP_FRAC_CLZ_4(R,X) \ - do { \ - if (X##_f[3]) \ - { \ - __FP_CLZ(R,X##_f[3]); \ - } \ - else if (X##_f[2]) \ - { \ - __FP_CLZ(R,X##_f[2]); \ - R += _FP_W_TYPE_SIZE; \ - } \ - else if (X##_f[1]) \ - { \ - __FP_CLZ(R,X##_f[2]); \ - R += _FP_W_TYPE_SIZE*2; \ - } \ - else \ - { \ - __FP_CLZ(R,X##_f[0]); \ - R += _FP_W_TYPE_SIZE*3; \ - } \ - } while(0) - - -#define _FP_UNPACK_RAW_4(fs, X, val) \ - do { \ - union _FP_UNION_##fs _flo; _flo.flt = (val); \ - X##_f[0] = _flo.bits.frac0; \ - X##_f[1] = _flo.bits.frac1; \ - X##_f[2] = _flo.bits.frac2; \ - X##_f[3] = _flo.bits.frac3; \ - X##_e = _flo.bits.exp; \ - X##_s = _flo.bits.sign; \ - } while (0) - -#define _FP_PACK_RAW_4(fs, val, X) \ - do { \ - union _FP_UNION_##fs _flo; \ - _flo.bits.frac0 = X##_f[0]; \ - _flo.bits.frac1 = X##_f[1]; \ - _flo.bits.frac2 = X##_f[2]; \ - _flo.bits.frac3 = X##_f[3]; \ - _flo.bits.exp = X##_e; \ - _flo.bits.sign = X##_s; \ - (val) = _flo.flt; \ - } while (0) - - -/* - * Internals - */ - -#define __FP_FRAC_SET_4(X,I3,I2,I1,I0) \ - (X##_f[3] = I3, X##_f[2] = I2, X##_f[1] = I1, X##_f[0] = I0) - -#ifndef __FP_FRAC_ADD_4 -#define __FP_FRAC_ADD_4(r3,r2,r1,r0,x3,x2,x1,x0,y3,y2,y1,y0) \ - (r0 = x0 + y0, \ - r1 = x1 + y1 + (r0 < x0), \ - r2 = x2 + y2 + (r1 < x1), \ - r3 = x3 + y3 + (r2 < x2)) -#endif - -#ifndef __FP_FRAC_SUB_4 -#define __FP_FRAC_SUB_4(r3,r2,r1,r0,x3,x2,x1,x0,y3,y2,y1,y0) \ - (r0 = x0 - y0, \ - r1 = x1 - y1 - (r0 > x0), \ - r2 = x2 - y2 - (r1 > x1), \ - r3 = x3 - y3 - (r2 > x2)) -#endif - -#ifndef __FP_FRAC_ADDI_4 -/* I always wanted to be a lisp programmer :-> */ -#define __FP_FRAC_ADDI_4(x3,x2,x1,x0,i) \ - (x3 += ((x2 += ((x1 += ((x0 += i) < x0)) < x1) < x2))) -#endif - -/* Convert FP values between word sizes. This appears to be more - * complicated than I'd have expected it to be, so these might be - * wrong... These macros are in any case somewhat bogus because they - * use information about what various FRAC_n variables look like - * internally [eg, that 2 word vars are X_f0 and x_f1]. But so do - * the ones in op-2.h and op-1.h. - */ -#define _FP_FRAC_CONV_1_4(dfs, sfs, D, S) \ - do { \ - _FP_FRAC_SRS_4(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs), \ - _FP_WFRACBITS_##sfs); \ - D##_f = S##_f[0]; \ - } while (0) - -#define _FP_FRAC_CONV_2_4(dfs, sfs, D, S) \ - do { \ - _FP_FRAC_SRS_4(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs), \ - _FP_WFRACBITS_##sfs); \ - D##_f0 = S##_f[0]; \ - D##_f1 = S##_f[1]; \ - } while (0) - -/* Assembly/disassembly for converting to/from integral types. - * No shifting or overflow handled here. - */ -/* Put the FP value X into r, which is an integer of size rsize. */ -#define _FP_FRAC_ASSEMBLE_4(r, X, rsize) \ - do { \ - if (rsize <= _FP_W_TYPE_SIZE) \ - r = X##_f[0]; \ - else if (rsize <= 2*_FP_W_TYPE_SIZE) \ - { \ - r = X##_f[1]; \ - r <<= _FP_W_TYPE_SIZE; \ - r += X##_f[0]; \ - } \ - else \ - { \ - /* I'm feeling lazy so we deal with int == 3words (implausible)*/ \ - /* and int == 4words as a single case. */ \ - r = X##_f[3]; \ - r <<= _FP_W_TYPE_SIZE; \ - r += X##_f[2]; \ - r <<= _FP_W_TYPE_SIZE; \ - r += X##_f[1]; \ - r <<= _FP_W_TYPE_SIZE; \ - r += X##_f[0]; \ - } \ - } while (0) - -/* "No disassemble Number Five!" */ -/* move an integer of size rsize into X's fractional part. We rely on - * the _f[] array consisting of words of size _FP_W_TYPE_SIZE to avoid - * having to mask the values we store into it. - */ -#define _FP_FRAC_DISASSEMBLE_4(X, r, rsize) \ - do { \ - X##_f[0] = r; \ - X##_f[1] = (rsize <= _FP_W_TYPE_SIZE ? 0 : r >> _FP_W_TYPE_SIZE); \ - X##_f[2] = (rsize <= 2*_FP_W_TYPE_SIZE ? 0 : r >> 2*_FP_W_TYPE_SIZE); \ - X##_f[3] = (rsize <= 3*_FP_W_TYPE_SIZE ? 0 : r >> 3*_FP_W_TYPE_SIZE); \ - } while (0) - -#define _FP_FRAC_CONV_4_1(dfs, sfs, D, S) \ - do { \ - D##_f[0] = S##_f; \ - D##_f[1] = D##_f[2] = D##_f[3] = 0; \ - _FP_FRAC_SLL_4(D, (_FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs)); \ - } while (0) - -#define _FP_FRAC_CONV_4_2(dfs, sfs, D, S) \ - do { \ - D##_f[0] = S##_f0; \ - D##_f[1] = S##_f1; \ - D##_f[2] = D##_f[3] = 0; \ - _FP_FRAC_SLL_4(D, (_FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs)); \ - } while (0) - -/* FIXME! This has to be written */ -#define _FP_SQRT_MEAT_4(R, S, T, X, q) |