summaryrefslogtreecommitdiffstats
path: root/Documentation/DocBook/crypto-API.tmpl
blob: 04a8c24ead47749f24359879557834ff577648a7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
	"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>

<book id="KernelCryptoAPI">
 <bookinfo>
  <title>Linux Kernel Crypto API</title>

  <authorgroup>
   <author>
    <firstname>Stephan</firstname>
    <surname>Mueller</surname>
    <affiliation>
     <address>
      <email>smueller@chronox.de</email>
     </address>
    </affiliation>
   </author>
   <author>
    <firstname>Marek</firstname>
    <surname>Vasut</surname>
    <affiliation>
     <address>
      <email>marek@denx.de</email>
     </address>
    </affiliation>
   </author>
  </authorgroup>

  <copyright>
   <year>2014</year>
   <holder>Stephan Mueller</holder>
  </copyright>


  <legalnotice>
   <para>
     This documentation is free software; you can redistribute
     it and/or modify it under the terms of the GNU General Public
     License as published by the Free Software Foundation; either
     version 2 of the License, or (at your option) any later
     version.
   </para>

   <para>
     This program is distributed in the hope that it will be
     useful, but WITHOUT ANY WARRANTY; without even the implied
     warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
     See the GNU General Public License for more details.
   </para>

   <para>
     You should have received a copy of the GNU General Public
     License along with this program; if not, write to the Free
     Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
     MA 02111-1307 USA
   </para>

   <para>
     For more details see the file COPYING in the source
     distribution of Linux.
   </para>
  </legalnotice>
 </bookinfo>

 <toc></toc>

 <chapter id="Intro">
  <title>Kernel Crypto API Interface Specification</title>

   <sect1><title>Introduction</title>

    <para>
     The kernel crypto API offers a rich set of cryptographic ciphers as
     well as other data transformation mechanisms and methods to invoke
     these. This document contains a description of the API and provides
     example code.
    </para>

    <para>
     To understand and properly use the kernel crypto API a brief
     explanation of its structure is given. Based on the architecture,
     the API can be separated into different components. Following the
     architecture specification, hints to developers of ciphers are
     provided. Pointers to the API function call  documentation are
     given at the end.
    </para>

    <para>
     The kernel crypto API refers to all algorithms as "transformations".
     Therefore, a cipher handle variable usually has the name "tfm".
     Besides cryptographic operations, the kernel crypto API also knows
     compression transformations and handles them the same way as ciphers.
    </para>

    <para>
     The kernel crypto API serves the following entity types:

     <itemizedlist>
      <listitem>
       <para>consumers requesting cryptographic services</para>
      </listitem>
      <listitem>
      <para>data transformation implementations (typically ciphers)
       that can be called by consumers using the kernel crypto
       API</para>
      </listitem>
     </itemizedlist>
    </para>

    <para>
     This specification is intended for consumers of the kernel crypto
     API as well as for developers implementing ciphers. This API
     specification, however, does not discuss all API calls available
     to data transformation implementations (i.e. implementations of
     ciphers and other transformations (such as CRC or even compression
     algorithms) that can register with the kernel crypto API).
    </para>

    <para>
     Note: The terms "transformation" and cipher algorithm are used
     interchangably.
    </para>
   </sect1>

   <sect1><title>Terminology</title>
    <para>
     The transformation implementation is an actual code or interface
     to hardware which implements a certain transformation with precisely
     defined behavior.
    </para>

    <para>
     The transformation object (TFM) is an instance of a transformation
     implementation. There can be multiple transformation objects
     associated with a single transformation implementation. Each of
     those transformation objects is held by a crypto API consumer or
     another transformation. Transformation object is allocated when a
     crypto API consumer requests a transformation implementation.
     The consumer is then provided with a structure, which contains
     a transformation object (TFM).
    </para>

    <para>
     The structure that contains transformation objects may also be
     referred to as a "cipher handle". Such a cipher handle is always
     subject to the following phases that are reflected in the API calls
     applicable to such a cipher handle:
    </para>

    <orderedlist>
     <listitem>
      <para>Initialization of a cipher handle.</para>
     </listitem>
     <listitem>
      <para>Execution of all intended cipher operations applicable
      for the handle where the cipher handle must be furnished to
      every API call.</para>
     </listitem>
     <listitem>
      <para>Destruction of a cipher handle.</para>
     </listitem>
    </orderedlist>

    <para>
     When using the initialization API calls, a cipher handle is
     created and returned to the consumer. Therefore, please refer
     to all initialization API calls that refer to the data
     structure type a consumer is expected to receive and subsequently
     to use. The initialization API calls have all the same naming
     conventions of crypto_alloc_*.
    </para>

    <para>
     The transformation context is private data associated with
     the transformation object.
    </para>
   </sect1>
  </chapter>

  <chapter id="Architecture"><title>Kernel Crypto API Architecture</title>
   <sect1><title>Cipher algorithm types</title>
    <para>
     The kernel crypto API provides different API calls for the
     following cipher types:

     <itemizedlist>
      <listitem><para>Symmetric ciphers</para></listitem>
      <listitem><para>AEAD ciphers</para></listitem>
      <listitem><para>Message digest, including keyed message digest</para></listitem>
      <listitem><para>Random number generation</para></listitem>
      <listitem><para>User space interface</para></listitem>
     </itemizedlist>
    </para>
   </sect1>

   <sect1><title>Ciphers And Templates</title>
    <para>
     The kernel crypto API provides implementations of single block
     ciphers and message digests. In addition, the kernel crypto API
     provides numerous "templates" that can be used in conjunction
     with the single block ciphers and message digests. Templates
     include all types of block chaining mode, the HMAC mechanism, etc.
    </para>

    <para>
     Single block ciphers and message digests can either be directly
     used by a caller or invoked together with a template to form
     multi-block ciphers or keyed message digests.
    </para>

    <para>
     A single block cipher may even be called with multiple templates.
     However, templates cannot be used without a single cipher.
    </para>

    <para>
     See /proc/crypto and search for "name". For example:

     <itemizedlist>
      <listitem><para>aes</para></listitem>
      <listitem><para>ecb(aes)</para></listitem>
      <listitem><para>cmac(aes)</para></listitem>
      <listitem><para>ccm(aes)</para></listitem>
      <listitem><para>rfc4106(gcm(aes))</para></listitem>
      <listitem><para>sha1</para></listitem>
      <listitem><para>hmac(sha1)</para></listitem>
      <listitem><para>authenc(hmac(sha1),cbc(aes))</para></listitem>
     </itemizedlist>
    </para>

    <para>
     In these examples, "aes" and "sha1" are the ciphers and all
     others are the templates.
    </para>
   </sect1>

   <sect1><title>Synchronous And Asynchronous Operation</title>
    <para>
     The kernel crypto API provides synchronous and asynchronous
     API operations.
    </para>

    <para>
     When using the synchronous API operation, the caller invokes
     a cipher operation which is performed synchronously by the
     kernel crypto API. That means, the caller waits until the
     cipher operation completes. Therefore, the kernel crypto API
     calls work like regular function calls. For synchronous
     operation, the set of API calls is small and conceptually
     similar to any other crypto library.
    </para>

    <para>
     Asynchronous operation is provided by the kernel crypto API
     which implies that the invocation of a cipher operation will
     complete almost instantly. That invocation triggers the
     cipher operation but it does not signal its completion. Before
     invoking a cipher operation, the caller must provide a callback
     function the kernel crypto API can invoke to signal the
     completion of the cipher operation. Furthermore, the caller
     must ensure it can handle such asynchronous events by applying
     appropriate locking around its data. The kernel crypto API
     does not perform any special serialization operation to protect
     the caller's data integrity.
    </para>
   </sect1>

   <sect1><title>Crypto API Cipher References And Priority</title>
    <para>
     A cipher is referenced by the caller with a string. That string
     has the following semantics:

     <programlisting>
	template(single block cipher)
     </programlisting>

     where "template" and "single block cipher" is the aforementioned
     template and single block cipher, respectively. If applicable,
     additional templates may enclose other templates, such as

      <programlisting>
	template1(template2(single block cipher)))
      </programlisting>
    </para>

    <para>
     The kernel crypto API may provide multiple implementations of a
     template or a single block cipher. For example, AES on newer
     Intel hardware has the following implementations: AES-NI,
     assembler implementation, or straight C. Now, when using the
     string "aes" with the kernel crypto API, which cipher
     implementation is used? The answer to that question is the
     priority number assigned to each cipher implementation by the
     kernel crypto API. When a caller uses the string to refer to a
     cipher during initialization of a cipher handle, the kernel
     crypto API looks up all implementations providing an
     implementation with that name and selects the implementation
     with the highest priority.
    </para>

    <para>
     Now, a caller may have the need to refer to a specific cipher
     implementation and thus does not want to rely on the
     priority-based selection. To accommodate this scenario, the
     kernel crypto API allows the cipher implementation to register
     a unique name in addition to common names. When using that
     unique name, a caller is therefore always sure to refer to
     the intended cipher implementation.
    </para>

    <para>
     The list of available ciphers is given in /proc/crypto. However,
     that list does not specify all possible permutations of
     templates and ciphers. Each block listed in /proc/crypto may
     contain the following information -- if one of the components
     listed as follows are not applicable to a cipher, it is not
     displayed:
    </para>

    <itemizedlist>
     <listitem>
      <para>name: the generic name of the cipher that is subject
       to the priority-based selection -- this name can be used by
       the cipher allocation API calls (all names listed above are
       examples for such generic names)</para>
     </listitem>
     <listitem>
      <para>driver: the unique name of the cipher -- this name can
       be used by the cipher allocation API calls</para>
     </listitem>
     <listitem>
      <para>module: the kernel module providing the cipher
       implementation (or "kernel" for statically linked ciphers)</para>
     </listitem>
     <listitem>
      <para>priority: the priority value of the cipher implementation</para>
     </listitem>
     <listitem>
      <para>refcnt: the reference count of the respective cipher
       (i.e. the number of current consumers of this cipher)</para>
     </listitem>
     <listitem>
      <para>selftest: specification whether the self test for the
       cipher passed</para>
     </listitem>
     <listitem>
      <para>type:
       <itemizedlist>
        <listitem>
         <para>blkcipher for synchronous block ciphers</para>
        </listitem>
        <listitem>
         <para>ablkcipher for asynchronous block ciphers</para>
        </listitem>
        <listitem>
         <para>cipher for single block ciphers that may be used with
          an additional template</para>
        </listitem>
        <listitem>
         <para>shash for synchronous message digest</para>
        </listitem>
        <listitem>
         <para>ahash for asynchronous message digest</para>
        </listitem>
        <listitem>
         <para>aead for AEAD cipher type</para>
        </listitem>
        <listitem>
         <para>compression for compression type transformations</para>
        </listitem>
        <listitem>
         <para>rng for random number generator</para>
        </listitem>
        <listitem>
         <para>givcipher for cipher with associated IV generator
          (see the geniv entry below for the specification of the
          IV generator type used by the cipher implementation)</para>
        </listitem>
       </itemizedlist>
      </para>
     </listitem>
     <listitem>
      <para>blocksize: blocksize of cipher in bytes</para>
     </listitem>
     <listitem>
      <para>keysize: key size in bytes</para>
     </listitem>
     <listitem>
      <para>ivsize: IV size in bytes</para>
     </listitem>
     <listitem>
      <para>seedsize: required size of seed data for random number
       generator</para>
     </listitem>
     <listitem>
      <para>digestsize: output size of the message digest</para>
     </listitem>
     <listitem>
      <para>geniv: IV generation type:
       <itemizedlist>
        <listitem>
         <para>eseqiv for encrypted sequence number based IV
          generation</para>
        </listitem>
        <listitem>
         <para>seqiv for sequence number based IV generation</para>
        </listitem>
        <listitem>
         <para>chainiv for chain iv generation</para>
        </listitem>
        <listitem>
         <para>&lt;builtin&gt; is a marker that the cipher implements
          IV generation and handling as it is specific to the given
          cipher</para>
        </listitem>
       </itemizedlist>
      </para>
     </listitem>
    </itemizedlist>
   </sect1>

   <sect1><title>Key Sizes</title>
    <para>
     When allocating a cipher handle, the caller only specifies the
     cipher type. Symmetric ciphers, however, typically support
     multiple key sizes (e.g. AES-128 vs. AES-192 vs. AES-256).
     These key sizes are determined with the length of the provided
     key. Thus, the kernel crypto API does not provide a separate
     way to select the particular symmetric cipher key size.
    </para>
   </sect1>

   <sect1><title>Cipher Allocation Type And Masks</title>
    <para>
     The different cipher handle allocation functions allow the
     specification of a type and mask flag. Both parameters have
     the following meaning (and are therefore not covered in the
     subsequent sections).
    </para>

    <para>
     The type flag specifies the type of the cipher algorithm.
     The caller usually provides a 0 when the caller wants the
     default handling. Otherwise, the caller may provide the
     following selections which match the the aforementioned
     cipher types:
    </para>

    <itemizedlist>
     <listitem>
      <para>CRYPTO_ALG_TYPE_CIPHER Single block cipher</para>
     </listitem>
     <listitem>
      <para>CRYPTO_ALG_TYPE_COMPRESS Compression</para>
     </listitem>
     <listitem>
     <para>CRYPTO_ALG_TYPE_AEAD Authenticated Encryption with
      Associated Data (MAC)</para>
     </listitem>
     <listitem>
      <para>CRYPTO_ALG_TYPE_BLKCIPHER Synchronous multi-block cipher</para>
     </listitem>
     <listitem>
      <para>CRYPTO_ALG_TYPE_ABLKCIPHER Asynchronous multi-block cipher</para>
     </listitem>
     <listitem>
      <para>CRYPTO_ALG_TYPE_GIVCIPHER Asynchronous multi-block
       cipher packed together with an IV generator (see geniv field
       in the /proc/crypto listing for the known IV generators)</para>
     </listitem>
     <listitem>
      <para>CRYPTO_ALG_TYPE_DIGEST Raw message digest</para>
     </listitem>
     <listitem>
      <para>CRYPTO_ALG_TYPE_HASH Alias for CRYPTO_ALG_TYPE_DIGEST</para>
     </listitem>
     <listitem>
      <para>CRYPTO_ALG_TYPE_SHASH Synchronous multi-block hash</para>
     </listitem>
     <listitem>
      <para>CRYPTO_ALG_TYPE_AHASH Asynchronous multi-block hash</para>
     </listitem>
     <listitem>
      <para>CRYPTO_ALG_TYPE_RNG Random Number Generation</para>
     </listitem>
     <listitem>
      <para>CRYPTO_ALG_TYPE_PCOMPRESS Enhanced version of
       CRYPTO_ALG_TYPE_COMPRESS allowing for segmented compression /
       decompression instead of performing the operation on one
       segment only. CRYPTO_ALG_TYPE_PCOMPRESS is intended to replace
       CRYPTO_ALG_TYPE_COMPRESS once existing consumers are converted.</para>
     </listitem>
    </itemizedlist>

    <para>
     The mask flag restricts the type of cipher. The only allowed
     flag is CRYPTO_ALG_ASYNC to restrict the cipher lookup function
     to asynchronous ciphers. Usually, a caller provides a 0 for the
     mask flag.
    </para>

    <para>
     When the caller provides a mask and type specification, the
     caller limits the search the kernel crypto API can perform for
     a suitable cipher implementation for the given cipher name.
     That means, even when a caller uses a cipher name that exists
     during its initialization call, the kernel crypto API may not
     select it due to the used type and mask field.
    </para>
   </sect1>
  </chapter>

  <chapter id="Development"><title>Developing Cipher Algorithms</title>
   <sect1><title>Registering And Unregistering Transformation</title>
    <para>
     There are three distinct types of registration functions in
     the Crypto API. One is used to register a generic cryptographic
     transformation, while the other two are specific to HASH
     transformations and COMPRESSion. We will discuss the latter
     two in a separate chapter, here we will only look at the
     generic ones.
    </para>

    <para>
     Before discussing the register functions, the data structure
     to be filled with each, struct crypto_alg, must be considered
     -- see below for a description of this data structure.
    </para>

    <para>
     The generic registration functions can be found in
     include/linux/crypto.h and their definition can be seen below.
     The former function registers a single transformation, while
     the latter works on an array of transformation descriptions.
     The latter is useful when registering transformations in bulk.
    </para>

    <programlisting>
   int crypto_register_alg(struct crypto_alg *alg);
   int crypto_register_algs(struct crypto_alg *algs, int count);
    </programlisting>

    <para>
     The counterparts to those functions are listed below.
    </para>

    <programlisting>
   int crypto_unregister_alg(struct crypto_alg *alg);
   int crypto_unregister_algs(struct crypto_alg *algs, int count);
    </programlisting>

    <para>
     Notice that both registration and unregistration functions
     do return a value, so make sure to handle errors. A return
     code of zero implies success. Any return code &lt; 0 implies
     an error.
    </para>

    <para>
     The bulk registration / unregistration functions require
     that struct crypto_alg is an array of count size. These
     functions simply loop over that array and register /
     unregister each individual algorithm. If an error occurs,
     the loop is terminated at the offending algorithm definition.
     That means, the algorithms prior to the offending algorithm
     are successfully registered. Note, the caller has no way of
     knowing which cipher implementations have successfully
     registered. If this is important to know, the caller should
     loop through the different implementations using the single
     instance *_alg functions for each individual implementation.
    </para>
   </sect1>

   <sect1><title>Single-Block Symmetric Ciphers [CIPHER]</title>
    <para>
     Example of transformations: aes, arc4, ...
    </para>

    <para>
     This section describes the simplest of all transformation
     implementations, that being the CIPHER type used for symmetric
     ciphers. The CIPHER type is used for transformations which
     operate on exactly one block at a time and there are no
     dependencies between blocks at all.
    </para>

    <sect2><title>Registration specifics</title>
     <para>
      The registration of [CIPHER] algorithm is specific in that
      struct crypto_alg field .cra_type is empty. The .cra_u.cipher
      has to be filled in with proper callbacks to implement this
      transformation.
     </para>

     <para>
      See struct cipher_alg below.
     </para>
    </sect2>

    <sect2><title>Cipher Definition With struct cipher_alg</title>
     <para>
      Struct cipher_alg defines a single block cipher.
     </para>

     <para>
      Here are schematics of how these functions are called when
      operated from other part of the kernel. Note that the
      .cia_setkey() call might happen before or after any of these
      schematics happen, but must not happen during any of these
      are in-flight.
     </para>

     <para>
      <programlisting>
         KEY ---.    PLAINTEXT ---.
                v                 v
          .cia_setkey() -&gt; .cia_encrypt()
                                  |
                                  '-----&gt; CIPHERTEXT
      </programlisting>
     </para>

     <para>
      Please note that a pattern where .cia_setkey() is called
      multiple times is also valid:
     </para>

     <para>
      <programlisting>

  KEY1 --.    PLAINTEXT1 --.         KEY2 --.    PLAINTEXT2 --.
         v                 v                v                 v
   .cia_setkey() -&gt; .cia_encrypt() -&gt; .cia_setkey() -&gt; .cia_encrypt()
                           |                                  |
                           '---&gt; CIPHERTEXT1                  '---&gt; CIPHERTEXT2
      </programlisting>
     </para>

    </sect2>
   </sect1>

   <sect1><title>Multi-Block Ciphers [BLKCIPHER] [ABLKCIPHER]</title>
    <para>
     Example of transformations: cbc(aes), ecb(arc4), ...
    </para>

    <para>
     This section describes the multi-block cipher transformation
     implementations for both synchronous [BLKCIPHER] and
     asynchronous [ABLKCIPHER] case. The multi-block ciphers are
     used for transformations which operate on scatterlists of
     data supplied to the transformation functions. They output
     the result into a scatterlist of data as well.
    </para>

    <sect2><title>Registration Specifics</title>

     <para>
      The registration of [BLKCIPHER] or [ABLKCIPHER] algorithms
      is one of the most standard procedures throughout the crypto API.
     </para>

     <para>
      Note, if a cipher implementation requires a proper alignment
      of data, the caller should use the functions of
      crypto_blkcipher_alignmask() or crypto_ablkcipher_alignmask()
      respectively to identify a memory alignment mask. The kernel
      crypto API is able to process requests that are unaligned.
      This implies, however, additional overhead as the kernel
      crypto API needs to perform the realignment of the data which
      may imply moving of data.
     </para>
    </sect2>

    <sect2><title>Cipher Definition With struct blkcipher_alg and ablkcipher_alg</title>
     <para>
      Struct blkcipher_alg defines a synchronous block cipher whereas
      struct ablkcipher_alg defines an asynchronous block cipher.
     </para>

     <para>
      Please refer to the single block cipher description for schematics
      of the block cipher usage. The usage patterns are exactly the same
      for [ABLKCIPHER] and [BLKCIPHER] as they are for plain [CIPHER].
     </para>
    </sect2>

    <sect2><title>Specifics Of Asynchronous Multi-Block Cipher</title>
     <para>
      There are a couple of specifics to the [ABLKCIPHER] interface.
     </para>

     <para>
      First of all, some of the drivers will want to use the
      Generic ScatterWalk in case the hardware needs to be fed
      separate chunks of the scatterlist which contains the
      plaintext and will contain the ciphertext. Please refer
      to the ScatterWalk interface offered by the Linux kernel
      scatter / gather list implementation.
     </para>
    </sect2>
   </sect1>

   <sect1><title>Hashing [HASH]</title>

    <para>
     Example of transformations: crc32, md5, sha1, sha256,...
    </para>

    <sect2><title>Registering And Unregistering The Transformation</title>

     <para>
      There are multiple ways to register a HASH transformation,
      depending on whether the transformation is synchronous [SHASH]
      or asynchronous [AHASH] and the amount of HASH transformations
      we are registering. You can find the prototypes defined in
      include/crypto/internal/hash.h:
     </para>

     <programlisting>
   int crypto_register_ahash(struct ahash_alg *alg);

   int crypto_register_shash(struct shash_alg *alg);
   int crypto_register_shashes(struct shash_alg *algs, int count);
     </programlisting>

     <para>
      The respective counterparts for unregistering the HASH
      transformation are as follows:
     </para>

     <programlisting>
   int crypto_unregister_ahash(struct ahash_alg *alg);

   int crypto_unregister_shash(struct shash_alg *alg);
   int crypto_unregister_shashes(struct shash_alg *algs, int count);
     </programlisting>
    </sect2>

    <sect2><title>Cipher Definition With struct shash_alg and ahash_alg</title>
     <para>
      Here are schematics of how these functions are called when
      operated from other part of the kernel. Note that the .setkey()
      call might happen before or after any of these schematics happen,
      but must not happen during any of these are in-flight. Please note
      that calling .init() followed immediately by .finish() is also a
      perfectly valid transformation.
     </para>

     <programlisting>
   I)   DATA -----------.
                        v
         .init() -&gt; .update() -&gt; .final()      ! .update() might not be called
                     ^    |         |            at all in this scenario.
                     '----'         '---&gt; HASH

   II)  DATA -----------.-----------.
                        v           v
         .init() -&gt; .update() -&gt; .finup()      ! .update() may not be called
                     ^    |         |            at all in this scenario.
                     '----'         '---&gt; HASH

   III) DATA -----------.
                        v
                    .digest()                  ! The entire process is handled
                        |                        by the .digest() call.
                        '---------------&gt; HASH
     </programlisting>

     <para>
      Here is a schematic of how the .export()/.import() functions are
      called when used from another part of the kernel.
     </para>

     <programlisting>
   KEY--.                 DATA--.
        v                       v                  ! .update() may not be called
    .setkey() -&gt; .init() -&gt; .update() -&gt; .export()   at all in this scenario.
                             ^     |         |
                             '-----'         '--&gt; PARTIAL_HASH

   ----------- other transformations happen here -----------

   PARTIAL_HASH--.   DATA1--.
                 v          v
             .import -&gt; .update() -&gt; .final()     ! .update() may not be called
                         ^    |         |           at all in this scenario.
                         '----'         '--&gt; HASH1

   PARTIAL_HASH--.   DATA2-.
                 v         v
             .import -&gt; .finup()
                           |
                           '---------------&gt; HASH2
     </programlisting>
    </sect2>

    <sect2><title>Specifics Of Asynchronous HASH Transformation</title>
     <para>
      Some of the drivers will want to use the Generic ScatterWalk
      in case the implementation needs to be fed separate chunks of the
      scatterlist which contains the input data. The buffer containing
      the resulting hash will always be properly aligned to
      .cra_alignmask so there is no need to worry about this.
     </para>
    </sect2>
   </sect1>
  </chapter>

  <chapter id="API"><title>Programming Interface</title>
   <sect1><title>Block Cipher Context Data Structures</title>
!Pinclude/linux/crypto.h Block Cipher Context Data Structures
!Finclude/linux/crypto.h aead_request
   </sect1>
   <sect1><title>Block Cipher Algorithm Definitions</title>
!Pinclude/linux/crypto.h Block Cipher Algorithm Definitions
!Finclude/linux/crypto.h crypto_alg
!Finclude/linux/crypto.h ablkcipher_alg
!Finclude/linux/crypto.h aead_alg
!Finclude/linux/crypto.h blkcipher_alg
!Finclude/linux/crypto.h cipher_alg
!Finclude/linux/crypto.h rng_alg
   </sect1>
   <sect1><title>Asynchronous Block Cipher API</title>
!Pinclude/linux/crypto.h Asynchronous Block Cipher API
!Finclude/linux/crypto.h crypto_alloc_ablkcipher
!Finclude/linux/crypto.h crypto_free_ablkcipher
!Finclude/linux/crypto.h crypto_has_ablkcipher
!Finclude/linux/crypto.h crypto_ablkcipher_ivsize
!Finclude/linux/crypto.h crypto_ablkcipher_blocksize
!Finclude/linux/crypto.h crypto_ablkcipher_setkey
!Finclude/linux/crypto.h crypto_ablkcipher_reqtfm
!Finclude/linux/crypto.h crypto_ablkcipher_encrypt
!Finclude/linux/crypto.h crypto_ablkcipher_decrypt
   </sect1>
   <sect1><title>Asynchronous Cipher Request Handle</title>
!Pinclude/linux/crypto.h Asynchronous Cipher Request Handle
!Finclude/linux/crypto.h crypto_ablkcipher_reqsize
!Finclude/linux/crypto.h ablkcipher_request_set_tfm
!Finclude/linux/crypto.h ablkcipher_request_alloc
!Finclude/linux/crypto.h ablkcipher_request_free
!Finclude/linux/crypto.h ablkcipher_request_set_callback
!Finclude/linux/crypto.h ablkcipher_request_set_crypt
   </sect1>
   <sect1><title>Authenticated Encryption With Associated Data (AEAD) Cipher API</title>
!Pinclude/linux/crypto.h Authenticated Encryption With Associated Data (AEAD) Cipher API
!Finclude/linux/crypto.h crypto_alloc_aead
!Finclude/linux/crypto.h crypto_free_aead
!Finclude/linux/crypto.h crypto_aead_ivsize
!Finclude/linux/crypto.h crypto_aead_authsize
!Finclude/linux/crypto.h crypto_aead_blocksize
!Finclude/linux/crypto.h crypto_aead_setkey
!Finclude/linux/crypto.h crypto_aead_setauthsize
!Finclude/linux/crypto.h crypto_aead_encrypt
!Finclude/linux/crypto.h crypto_aead_decrypt
   </sect1>
   <sect1><title>Asynchronous AEAD Request Handle</title>
!Pinclude/linux/crypto.h Asynchronous AEAD Request Handle
!Finclude/linux/crypto.h crypto_aead_reqsize
!Finclude/linux/crypto.h aead_request_set_tfm
!Finclude/linux/crypto.h aead_request_alloc
!Finclude/linux/crypto.h aead_request_free
!Finclude/linux/crypto.h aead_request_set_callback
!Finclude/linux/crypto.h aead_request_set_crypt
!Finclude/linux/crypto.h aead_request_set_assoc
   </sect1>
   <sect1><title>Synchronous Block Cipher API</title>
!Pinclude/linux/crypto.h Synchronous Block Cipher API
!Finclude/linux/crypto.h crypto_alloc_blkcipher
!Finclude/linux/crypto.h crypto_free_blkcipher
!Finclude/linux/crypto.h crypto_has_blkcipher
!Finclude/linux/crypto.h crypto_blkcipher_name
!Finclude/linux/crypto.h crypto_blkcipher_ivsize
!Finclude/linux/crypto.h crypto_blkcipher_blocksize
!Finclude/linux/crypto.h crypto_blkcipher_setkey
!Finclude/linux/crypto.h crypto_blkcipher_encrypt
!Finclude/linux/crypto.h crypto_blkcipher_encrypt_iv
!Finclude/linux/crypto.h crypto_blkcipher_decrypt
!Finclude/linux/crypto.h crypto_blkcipher_decrypt_iv
!Finclude/linux/crypto.h crypto_blkcipher_set_iv
!Finclude/linux/crypto.h crypto_blkcipher_get_iv
   </sect1>
   <sect1><title>Single Block Cipher API</title>
!Pinclude/linux/crypto.h Single Block Cipher API
!Finclude/linux/crypto.h crypto_alloc_cipher
!Finclude/linux/crypto.h crypto_free_cipher
!Finclude/linux/crypto.h crypto_has_cipher
!Finclude/linux/crypto.h crypto_cipher_blocksize
!Finclude/linux/crypto.h crypto_cipher_setkey
!Finclude/linux/crypto.h crypto_cipher_encrypt_one
!Finclude/linux/crypto.h crypto_cipher_decrypt_one
   </sect1>
   <sect1><title>Synchronous Message Digest API</title>
!Pinclude/linux/crypto.h Synchronous Message Digest API
!Finclude/linux/crypto.h crypto_alloc_hash
!Finclude/linux/crypto.h crypto_free_hash
!Finclude/linux/crypto.h crypto_has_hash
!Finclude/linux/crypto.h crypto_hash_blocksize
!Finclude/linux/crypto.h crypto_hash_digestsize
!Finclude/linux/crypto.h crypto_hash_init
!Finclude/linux/crypto.h crypto_hash_update
!Finclude/linux/crypto.h crypto_hash_final
!Finclude/linux/crypto.h crypto_hash_digest
!Finclude/linux/crypto.h crypto_hash_setkey
   </sect1>
   <sect1><title>Message Digest Algorithm Definitions</title>
!Pinclude/crypto/hash.h Message Digest Algorithm Definitions
!Finclude/crypto/hash.h hash_alg_common
!Finclude/crypto/hash.h ahash_alg
!Finclude/crypto/hash.h shash_alg
   </sect1>
   <sect1><title>Asynchronous Message Digest API</title>
!Pinclude/crypto/hash.h Asynchronous Message Digest API
!Finclude/crypto/hash.h crypto_alloc_ahash
!Finclude/crypto/hash.h crypto_free_ahash
!Finclude/crypto/hash.h crypto_ahash_init
!Finclude/crypto/hash.h crypto_ahash_digestsize
!Finclude/crypto/hash.h crypto_ahash_reqtfm
!Finclude/crypto/hash.h crypto_ahash_reqsize
!Finclude/crypto/hash.h crypto_ahash_setkey
!Finclude/crypto/hash.h crypto_ahash_finup
!Finclude/crypto/hash.h crypto_ahash_final
!Finclude/crypto/hash.h crypto_ahash_digest
!Finclude/crypto/hash.h crypto_ahash_export
!Finclude/crypto/hash.h crypto_ahash_import
   </sect1>
   <sect1><title>Asynchronous Hash Request Handle</title>
!Pinclude/crypto/hash.h Asynchronous Hash Request Handle
!Finclude/crypto/hash.h ahash_request_set_tfm
!Finclude/crypto/hash.h ahash_request_alloc
!Finclude/crypto/hash.h ahash_request_free
!Finclude/crypto/hash.h ahash_request_set_callback
!Finclude/crypto/hash.h ahash_request_set_crypt
   </sect1>
   <sect1><title>Synchronous Message Digest API</title>
!Pinclude/crypto/hash.h Synchronous Message Digest API
!Finclude/crypto/hash.h crypto_alloc_shash
!Finclude/crypto/hash.h crypto_free_shash
!Finclude/crypto/hash.h crypto_shash_blocksize
!Finclude/crypto/hash.h crypto_shash_digestsize
!Finclude/crypto/hash.h crypto_shash_descsize
!Finclude/crypto/hash.h crypto_shash_setkey
!Finclude/crypto/hash.h crypto_shash_digest
!Finclude/crypto/hash.h crypto_shash_export
!Finclude/crypto/hash.h crypto_shash_import
!Finclude/crypto/hash.h crypto_shash_init
!Finclude/crypto/hash.h crypto_shash_update
!Finclude/crypto/hash.h crypto_shash_final
!Finclude/crypto/hash.h crypto_shash_finup
   </sect1>
   <sect1><title>Crypto API Random Number API</title>
!Pinclude/crypto/rng.h Random number generator API
!Finclude/crypto/rng.h crypto_alloc_rng
!Finclude/crypto/rng.h crypto_rng_alg
!Finclude/crypto/rng.h crypto_free_rng
!Finclude/crypto/rng.h crypto_rng_get_bytes
!Finclude/crypto/rng.h crypto_rng_reset
!Finclude/crypto/rng.h crypto_rng_seedsize
!Cinclude/crypto/rng.h
   </sect1>
  </chapter>

  <chapter id="Code"><title>Code Examples</title>
   <sect1><title>Code Example For Asynchronous Block Cipher Operation</title>
    <programlisting>

struct tcrypt_result {
	struct completion completion;
	int err;
};

/* tie all data structures together */
struct ablkcipher_def {
	struct scatterlist sg;
	struct crypto_ablkcipher *tfm;
	struct ablkcipher_request *req;
	struct tcrypt_result result;
};

/* Callback function */
static void test_ablkcipher_cb(struct crypto_async_request *req, int error)
{
	struct tcrypt_result *result = req-&gt;data;

	if (error == -EINPROGRESS)
		return;
	result-&gt;err = error;
	complete(&amp;result-&gt;completion);
	pr_info("Encryption finished successfully\n");
}

/* Perform cipher operation */
static unsigned int test_ablkcipher_encdec(struct ablkcipher_def *ablk,
					   int enc)
{
	int rc = 0;

	if (enc)
		rc = crypto_ablkcipher_encrypt(ablk-&gt;req);
	else
		rc = crypto_ablkcipher_decrypt(ablk-&gt;req);

	switch (rc) {
	case 0:
		break;
	case -EINPROGRESS:
	case -EBUSY:
		rc = wait_for_completion_interruptible(
			&amp;ablk-&gt;result.completion);
		if (!rc &amp;&amp; !ablk-&gt;result.err) {
			reinit_completion(&amp;ablk-&gt;result.completion);
			break;
		}
	default:
		pr_info("ablkcipher encrypt returned with %d result %d\n",
		       rc, ablk-&gt;result.err);
		break;
	}
	init_completion(&amp;ablk-&gt;result.completion);

	return rc;
}

/* Initialize and trigger cipher operation */
static int test_ablkcipher(void)
{
	struct ablkcipher_def ablk;
	struct crypto_ablkcipher *ablkcipher = NULL;
	struct ablkcipher_request *req = NULL;
	char *scratchpad = NULL;
	char *ivdata = NULL;
	unsigned char key[32];
	int ret = -EFAULT;

	ablkcipher = crypto_alloc_ablkcipher("cbc-aes-aesni", 0, 0);
	if (IS_ERR(ablkcipher)) {
		pr_info("could not allocate ablkcipher handle\n");
		return PTR_ERR(ablkcipher);
	}

	req = ablkcipher_request_alloc(ablkcipher, GFP_KERNEL);
	if (IS_ERR(req)) {
		pr_info("could not allocate request queue\n");
		ret = PTR_ERR(req);
		goto out;
	}

	ablkcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
					test_ablkcipher_cb,
					&amp;ablk.result);

	/* AES 256 with random key */
	get_random_bytes(&amp;key, 32);
	if (crypto_ablkcipher_setkey(ablkcipher, key, 32)) {
		pr_info("key could not be set\n");
		ret = -EAGAIN;
		goto out;
	}

	/* IV will be random */
	ivdata = kmalloc(16, GFP_KERNEL);
	if (!ivdata) {
		pr_info("could not allocate ivdata\n");
		goto out;
	}
	get_random_bytes(ivdata, 16);

	/* Input data will be random */
	scratchpad = kmalloc(16, GFP_KERNEL);
	if (!scratchpad) {
		pr_info("could not allocate scratchpad\n");
		goto out;
	}
	get_random_bytes(scratchpad, 16);

	ablk.tfm = ablkcipher;
	ablk.req = req;

	/* We encrypt one block */
	sg_init_one(&amp;ablk.sg, scratchpad, 16);
	ablkcipher_request_set_crypt(req, &amp;ablk.sg, &amp;ablk.sg, 16, ivdata);
	init_completion(&amp;ablk.result.completion);

	/* encrypt data */
	ret = test_ablkcipher_encdec(&amp;ablk, 1);
	if (ret)
		goto out;

	pr_info("Encryption triggered successfully\n");

out:
	if (ablkcipher)
		crypto_free_ablkcipher(ablkcipher);
	if (req)
		ablkcipher_request_free(req);
	if (ivdata)
		kfree(ivdata);
	if (scratchpad)
		kfree(scratchpad);
	return ret;
}
    </programlisting>
   </sect1>

   <sect1><title>Code Example For Synchronous Block Cipher Operation</title>
    <programlisting>

static int test_blkcipher(void)
{
	struct crypto_blkcipher *blkcipher = NULL;
	char *cipher = "cbc(aes)";
	// AES 128
	charkey =
"\x12\x34\x56\x78\x90\xab\xcd\xef\x12\x34\x56\x78\x90\xab\xcd\xef";
	chariv =
"\x12\x34\x56\x78\x90\xab\xcd\xef\x12\x34\x56\x78\x90\xab\xcd\xef";
	unsigned int ivsize = 0;
	char *scratchpad = NULL; // holds plaintext and ciphertext
	struct scatterlist sg;
	struct blkcipher_desc desc;
	int ret = -EFAULT;

	blkcipher = crypto_alloc_blkcipher(cipher, 0, 0);
	if (IS_ERR(blkcipher)) {
		printk("could not allocate blkcipher handle for %s\n", cipher);
		return -PTR_ERR(blkcipher);
	}

	if (crypto_blkcipher_setkey(blkcipher, key, strlen(key))) {
		printk("key could not be set\n");
		ret = -EAGAIN;
		goto out;
	}

	ivsize = crypto_blkcipher_ivsize(blkcipher);
	if (ivsize) {
		if (ivsize != strlen(iv))
			printk("IV length differs from expected length\n");
		crypto_blkcipher_set_iv(blkcipher, iv, ivsize);
	}

	scratchpad = kmalloc(crypto_blkcipher_blocksize(blkcipher), GFP_KERNEL);
	if (!scratchpad) {
		printk("could not allocate scratchpad for %s\n", cipher);
		goto out;
	}
	/* get some random data that we want to encrypt */
	get_random_bytes(scratchpad, crypto_blkcipher_blocksize(blkcipher));

	desc.flags = 0;
	desc.tfm = blkcipher;
	sg_init_one(&amp;sg, scratchpad, crypto_blkcipher_blocksize(blkcipher));

	/* encrypt data in place */
	crypto_blkcipher_encrypt(&amp;desc, &amp;sg, &amp;sg,
				 crypto_blkcipher_blocksize(blkcipher));

	/* decrypt data in place
	 * crypto_blkcipher_decrypt(&amp;desc, &amp;sg, &amp;sg,
	 */			 crypto_blkcipher_blocksize(blkcipher));


	printk("Cipher operation completed\n");
	return 0;

out:
	if (blkcipher)
		crypto_free_blkcipher(blkcipher);
	if (scratchpad)
		kzfree(scratchpad);
	return ret;
}
    </programlisting>
   </sect1>

   <sect1><title>Code Example For Use of Operational State Memory With SHASH</title>
    <programlisting>

struct sdesc {
	struct shash_desc shash;
	char ctx[];
};

static struct sdescinit_sdesc(struct crypto_shash *alg)
{
	struct sdescsdesc;
	int size;

	size = sizeof(struct shash_desc) + crypto_shash_descsize(alg);
	sdesc = kmalloc(size, GFP_KERNEL);
	if (!sdesc)
		return ERR_PTR(-ENOMEM);
	sdesc-&gt;shash.tfm = alg;
	sdesc-&gt;shash.flags = 0x0;
	return sdesc;
}

static int calc_hash(struct crypto_shashalg,
		     const unsigned chardata, unsigned int datalen,
		     unsigned chardigest) {
	struct sdescsdesc;
	int ret;

	sdesc = init_sdesc(alg);
	if (IS_ERR(sdesc)) {
		pr_info("trusted_key: can't alloc %s\n", hash_alg);
		return PTR_ERR(sdesc);
	}

	ret = crypto_shash_digest(&amp;sdesc-&gt;shash, data, datalen, digest);
	kfree(sdesc);
	return ret;
}
    </programlisting>
   </sect1>

   <sect1><title>Code Example For Random Number Generator Usage</title>
    <programlisting>

static int get_random_numbers(u8 *buf, unsigned int len)
{
	struct crypto_rngrng = NULL;
	chardrbg = "drbg_nopr_sha256"; /* Hash DRBG with SHA-256, no PR */
	int ret;

	if (!buf || !len) {
		pr_debug("No output buffer provided\n");
		return -EINVAL;
	}

	rng = crypto_alloc_rng(drbg, 0, 0);
	if (IS_ERR(rng)) {
		pr_debug("could not allocate RNG handle for %s\n", drbg);
		return -PTR_ERR(rng);
	}

	ret = crypto_rng_get_bytes(rng, buf, len);
	if (ret &lt; 0)
		pr_debug("generation of random numbers failed\n");
	else if (ret == 0)
		pr_debug("RNG returned no data");
	else
		pr_debug("RNG returned %d bytes of data\n", ret);

out:
	crypto_free_rng(rng);
	return ret;
}
    </programlisting>
   </sect1>
  </chapter>
 </book>